1
|
Peng Y, Duan X, Zhang L, Guo Y, Cao J, Ao W, Xuan R. Transcriptomic analysis of mammary gland tissues in lactating and non-lactating dairy goats reveals miRNA-mediated regulation of lactation, involution, and remodeling. Front Cell Dev Biol 2025; 13:1604855. [PMID: 40519264 PMCID: PMC12162918 DOI: 10.3389/fcell.2025.1604855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Accepted: 05/20/2025] [Indexed: 06/18/2025] Open
Abstract
Background Dynamic changes in the mammary gland during lactation and the dry period involve proliferation, secretion, apoptosis, and remodeling of mammary epithelial cells. MicroRNAs (miRNAs) are recognized as critical regulators of mammary gland development and lactation. However, their expression patterns and regulatory mechanisms at different lactation stages-particularly during mammary involution and remodeling-remain poorly understood in dairy goats. Methods In this study, high-throughput sequencing was employed to analyze miRNA expression profiles in goat mammary tissues at five key stages: late gestation (LG), early lactation (EL), peak lactation (PL), late lactation (LL), and the dry period (DP). Differential expression analysis, miRNA clustering, Gene Ontology (GO) annotation, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed to predict the functions of target genes. A miRNA-mRNA regulatory network associated with mammary gland development was constructed, and functional validation experiments were conducted to confirm key regulatory relationships. Results A total of 1,120 miRNAs were identified, including 408 known and 712 newly predicted miRNAs. Among them, 383 were significantly differentially expressed, with the largest number observed between the dry period and late gestation. Six expression-specific miRNA clusters were identified. Functional enrichment analysis indicated that these miRNAs may regulate epithelial cell proliferation, apoptosis, and tissue remodeling by targeting pathways such as energy metabolism, cell adhesion, and the PI3K/Akt signaling pathway. IGF1R was identified as a key regulatory gene in the miRNA-mRNA network related to mammary gland development. Experimental validation showed that chi-miR-423-3p inhibited mammary epithelial cell proliferation, induced G1/S cell cycle arrest, and promoted apoptosis by targeting IGF1R and suppressing the PI3K/Akt pathway. Conclusion This study highlights the dynamic regulatory roles of miRNAs in the goat mammary gland across lactation stages. Notably, the miR-423-3p/IGF1R axis is a key regulator of mammary remodeling during the dry period, offering new insights into the molecular basis of mammary gland functional transitions.
Collapse
Affiliation(s)
- Yanan Peng
- Key Laboratory of Livestock and Forage Resources Utilization around Tarim, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Xinhua Duan
- Animal Husbandry and Veterinary Bureau of Tashkurgan County, Kashgar, Xinjiang, China
| | - Linfan Zhang
- Key Laboratory of Livestock and Forage Resources Utilization around Tarim, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Yiyi Guo
- Key Laboratory of Livestock and Forage Resources Utilization around Tarim, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Jinlin Cao
- Key Laboratory of Livestock and Forage Resources Utilization around Tarim, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Weiping Ao
- Key Laboratory of Livestock and Forage Resources Utilization around Tarim, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Rong Xuan
- Key Laboratory of Livestock and Forage Resources Utilization around Tarim, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| |
Collapse
|
2
|
Wang X, Fei Y, Shao Y, Liao Q, Meng Q, Chen R, Deng L. Transcriptome analysis reveals immune function-related mRNA expression in donkey mammary glands during four developmental stages. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101169. [PMID: 38096640 DOI: 10.1016/j.cbd.2023.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024]
Abstract
The low susceptibility to mastitis of female donkey (jenny) mammary glands and the strong immune properties of donkey milk are acknowledged, but little is known about the genes involved in mammary gland immunity in jennies. Herein, we used RNA-sequencing and bioinformatics analyses to explore jenny mammary gland transcriptomes and detect potential functional differentially expressed (DE) mRNAs related to immunity during four specific developmental stages: foetal (F), pubertal (P), adult parous nonlactation (N) and lactation (L). A total of 2497, 583 and 1820 DE mRNAs were identified in jenny mammary glands at F vs. P, P vs. N, and N vs. L, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) analyses revealed numerous GO terms related to immune function, especially between F and P. Seven significantly enriched profiles were identified, among which 497 and 1261 DE mRNAs were upregulated in profiles 19 and 17. Eleven mRNAs were enriched in over 10 KEGG pathways. β-2-microglobulin (B2M), immunoglobulin heavy constant mu (IGHM), toll like receptor 2 (TLR2), toll like receptor 4 (TLR4) and myeloid differentiation factor 88 (MYD88) were mainly involved in phosphoinositide 3-kinase (PI3K)-Akt signalling, phagosome and nuclear factor kappa-B (NF-kappa B) signalling pathways. The findings provide insight into the molecular features underpinning the low prevalence of intramammary infections (i.e., mastitis) in donkeys.
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yaqi Fei
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Shao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qingchao Liao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qingze Meng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ran Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Liang Deng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
3
|
Yao H, Dou Z, Zhao Z, Liang X, Yue H, Ma W, Su Z, Wang Y, Hao Z, Yan H, Wu Z, Wang L, Chen G, Yang J. Transcriptome analysis of the Bactrian camel (Camelus bactrianus) reveals candidate genes affecting milk production traits. BMC Genomics 2023; 24:660. [PMID: 37919661 PMCID: PMC10621195 DOI: 10.1186/s12864-023-09703-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Milk production traits are complex traits with vital economic importance in the camel industry. However, the genetic mechanisms regulating milk production traits in camels remain poorly understood. Therefore, we aimed to identify candidate genes and metabolic pathways that affect milk production traits in Bactrian camels. METHODS We classified camels (fourth parity) as low- or high-yield, examined pregnant camels using B-mode ultrasonography, observed the microscopic changes in the mammary gland using hematoxylin and eosin (HE) staining, and used RNA sequencing to identify differentially expressed genes (DEGs) and pathways. RESULTS The average standard milk yield over the 300 days during parity was recorded as 470.18 ± 9.75 and 978.34 ± 3.80 kg in low- and high-performance camels, respectively. Nine female Junggar Bactrian camels were subjected to transcriptome sequencing, and 609 and 393 DEGs were identified in the low-yield vs. high-yield (WDL vs. WGH) and pregnancy versus colostrum period (RSQ vs. CRQ) comparison groups, respectively. The DEGs were compared with genes associated with milk production traits in the Animal Quantitative Trait Loci database and in Alashan Bactrian camels, and 65 and 46 overlapping candidate genes were obtained, respectively. Functional enrichment and protein-protein interaction network analyses of the DEGs and candidate genes were conducted. After comparing our results with those of other livestock studies, we identified 16 signaling pathways and 27 core candidate genes associated with maternal parturition, estrogen regulation, initiation of lactation, and milk production traits. The pathways suggest that emerged milk production involves the regulation of multiple complex metabolic and cellular developmental processes in camels. Finally, the RNA sequencing results were validated using quantitative real-time PCR; the 15 selected genes exhibited consistent expression changes. CONCLUSIONS This study identified DEGs and metabolic pathways affecting maternal parturition and milk production traits. The results provides a theoretical foundation for further research on the molecular mechanism of genes related to milk production traits in camels. Furthermore, these findings will help improve breeding strategies to achieve the desired milk yield in camels.
Collapse
Affiliation(s)
- Huaibing Yao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Zhihua Dou
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Zhongkai Zhao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Xiaorui Liang
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Haitao Yue
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Wanpeng Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zhanqiang Su
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yuzhuo Wang
- Xinjiang Altai Regional Animal Husbandry Veterinary Station, Altay, 836500, Xinjiang, China
| | - Zelin Hao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Hui Yan
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Zhuangyuan Wu
- Xinjiang Altai Regional Animal Husbandry Veterinary Station, Altay, 836500, Xinjiang, China
| | - Liang Wang
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
- Bactrian Camel Academy of Xinjiang, Xinjiang Wangyuan Camel Milk Limited Company, Altay, 836500, Xinjiang, China
| | - Gangliang Chen
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
- Bactrian Camel Academy of Xinjiang, Xinjiang Wangyuan Camel Milk Limited Company, Altay, 836500, Xinjiang, China
| | - Jie Yang
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China.
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China.
| |
Collapse
|
4
|
Guo L, DaoLema, Liu B, Dai L, Wang X, Wang X, Cao J, Zhang W. Identification of milk-related genes and regulatory networks in Bactrian camel either supplemented or under grazing. Trop Anim Health Prod 2023; 55:342. [PMID: 37776405 DOI: 10.1007/s11250-023-03749-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
Using gene co-expression networks to understand dynamic characterizations in lactating animals becomes a common method. However, there are rarely reporters focusing on milk traits in Bactrian camel by high-throughput sequencing. We used RNA-seq to generate the camel transcriptome from the blood of 16 lactating Alxa Bactrian camel in different feeding groups. In total, we obtained 1185 milk-related genes correlated with milk yield, milk protein, milk fat, and milk lactose across the WGCNA analysis. Moreover, 364 milk-related genes were differentially expressed between supplementation and grazing feeding groups. The differential expression-camel milk-related genes CMRGs (DE-CMRGs) in supplement direct an intensive gene co-expression network to improve milk performance in lactating camels. This study provides a non-invasive method to identify the camel milk-related genes in camel blood for four primary milk traits and valuable theoretical basis and research ideas for the study of the milk performance regulation mechanism of camelid animals.
Collapse
Affiliation(s)
- Lili Guo
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Inner Mongolia Agricultural University, Hohhot, China
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - DaoLema
- Bactrian Camel Institute of Alsha, Inner Mongolia, 16 Tuerhute Road, Bayanhot, Inner Mongolia, China
| | - Bin Liu
- Inner Mongolia Bionew Technology Co., Ltd., Hohhot, China
| | - Lingli Dai
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Inner Mongolia Agricultural University, Hohhot, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xue Wang
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Inner Mongolia Agricultural University, Hohhot, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xiaoshan Wang
- Bactrian Camel Institute of Alsha, Inner Mongolia, 16 Tuerhute Road, Bayanhot, Inner Mongolia, China
| | - Junwei Cao
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| | - Wenguang Zhang
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Inner Mongolia Agricultural University, Hohhot, China.
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
5
|
Identification of Unique Key miRNAs, TFs, and mRNAs in Virulent MTB Infection Macrophages by Network Analysis. Int J Mol Sci 2021; 23:ijms23010382. [PMID: 35008808 PMCID: PMC8745702 DOI: 10.3390/ijms23010382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Although Mycobacterium tuberculosis (MTB) has existed for thousands of years, its immune escape mechanism remains obscure. Increasing evidence signifies that microRNAs (miRNAs) play pivotal roles in the progression of tuberculosis (TB). RNA sequencing was used to sequence miRNAs in human acute monocytic leukemia cells (THP-1) infected by the virulent MTB-1458 strain and the avirulent vaccine strain Mycobacterium bovis Bacillus Calmette-Guérin (BCG). Sets of differentially expressed miRNAs (DE-miRNAs) between MTB-1458/BCG-infected groups and uninfected groups were identified, among which 18 were differentially expressed only in the MTB-1458-infected THP-1 group. Then, 13 transcription factors (TFs) and 81 target genes of these 18 DE-miRNAs were matched. Gene Ontology classification as well as Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the candidate targets were predominantly involved in apoptotic-associated and interferon-γ-mediated signaling pathways. A TF-miRNA-mRNA interaction network was constructed to analyze the relationships among these 18 DE-miRNAs and their targets and TFs, as well as display the hub miRNAs, TFs, and target genes. Considering the degrees from network analysis and the reported functions, this study focused on the BHLHE40-miR-378d-BHLHE40 regulation axis and confirmed that BHLHE40 was a target of miR-378d. This cross-talk among DE-miRNAs, mRNAs, and TFs might be an important feature in TB, and the findings merited further study and provided new insights into immune defense and evasion underlying host-pathogen interactions.
Collapse
|