1
|
Aoun N, Georgoulis SJ, Avalos JK, Grulla KJ, Miqueo K, Tom C, Lowe-Power TM. A pangenomic atlas reveals eco-evolutionary dynamics that shape type VI secretion systems in plant-pathogenic Ralstonia. mBio 2024; 15:e0032324. [PMID: 39191402 PMCID: PMC11481896 DOI: 10.1128/mbio.00323-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Soilborne Ralstonia solanacearum species complex (RSSC) pathogens disrupt microbial communities as they invade roots and fatally wilt plants. RSSC pathogens secrete antimicrobial toxins using a type VI secretion system (T6SS). To investigate how evolution and ecology have shaped the T6SS of these bacterial pathogens, we analyzed the T6SS gene content and architecture across the RSSC and their evolutionary relatives. Our analysis reveals that two ecologically similar Burkholderiaceae taxa, xylem-pathogenic RSSC and Paracidovorax, have convergently evolved to wield large arsenals of T6SS toxins. To understand the mechanisms underlying genomic enrichment of T6SS toxins, we compiled an atlas of 1,066 auxiliary T6SS toxin clusters ("aux" clusters) across 99 high-quality RSSC genomes. We classified 25 types of aux clusters with toxins that predominantly target lipids, nucleic acids, or unknown cellular substrates. The aux clusters were located in diverse genetic neighborhoods and had complex phylogenetic distributions, suggesting frequent horizontal gene flow. Phages and other mobile genetic elements account for most of the aux cluster acquisition on the chromosome but very little on the megaplasmid. Nevertheless, RSSC genomes were more enriched in aux clusters on the megaplasmid. Although the single, ancestral T6SS was broadly conserved in the RSSC, the T6SS has been convergently lost in atypical, non-soilborne lineages. Overall, our data suggest dynamic interplay between the lifestyle of RSSC lineages and the evolution of T6SSes with robust arsenals of toxins. This pangenomic atlas poises the RSSC as an emerging, tractable model to understand the role of the T6SS in shaping pathogen populations.IMPORTANCEWe explored the eco-evolutionary dynamics that shape the inter-microbial warfare mechanisms of a globally significant plant pathogen, the Ralstonia solanacearum species complex. We discovered that most Ralstonia wilt pathogens have evolved extensive and diverse repertoires of type VI secretion system-associated antimicrobial toxins. These expansive toxin arsenals potentially enhance the ability of Ralstonia pathogens to invade plant microbiomes, enabling them to rapidly colonize and kill their host plants. We devised a classification system to categorize the Ralstonia toxins. Interestingly, many of the toxin gene clusters are encoded on mobile genetic elements, including prophages, which may be mutualistic symbionts that enhance the inter-microbial competitiveness of Ralstonia wilt pathogens. Moreover, our findings suggest that the convergent loss of this multi-gene trait contributes to genome reduction in two vector-transmitted lineages of Ralstonia pathogens. Our findings demonstrate that the interplay between microbial ecology and pathogen lifestyle shapes the evolution of a genetically complex antimicrobial weapon.
Collapse
Affiliation(s)
- Nathalie Aoun
- Department of Plant Pathology, University of California, Davis, California, USA
| | | | - Jason K. Avalos
- Department of Plant Pathology, University of California, Davis, California, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | - Kimberly J. Grulla
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Kasey Miqueo
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Cloe Tom
- Department of Plant Pathology, University of California, Davis, California, USA
| | | |
Collapse
|
2
|
Tang Y, Zhou M, Yang C, Liu R, Du H, Ma M. Advances in isolated phages that affect Ralstonia solanacearum and their application in the biocontrol of bacterial wilt in plants. Lett Appl Microbiol 2024; 77:ovae037. [PMID: 38573829 DOI: 10.1093/lambio/ovae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
Bacterial wilt is a widespread and devastating disease that impacts the production of numerous crucial crops worldwide. The main causative agent of the disease is Ralstonia solanacearum. Due to the pathogen's broad host range and prolonged survival in the soil, it is challenging to control the disease with conventional strategies. Therefore, it is of great importance to develop effective alternative disease control strategies. In recent years, phage therapy has emerged as an environmentally friendly and sustainable biocontrol alternative, demonstrating significant potential in controlling this severe disease. This paper summarized basic information about isolated phages that infect R. solanacearum, and presented some examples of their application in the biocontrol of bacterial wilt. The risks of phage application and future prospect in this area were also discussed. Overall, R. solanacearum phages have been isolated from various regions and environments worldwide. These phages belong mainly to the Inoviridae, Autographiviridae, Peduoviridae, and Cystoviridae families, with some being unclassified. Studies on the application of these phages have demonstrated their ability to reduce pathogenicity of R. solanacearum through direct lysis or indirect alteration of the pathogen's physiological properties. These findings suggested bacteriophage is a promising tool for biocontrol of bacterial wilt in plants.
Collapse
Affiliation(s)
- You Tang
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| | - Moxi Zhou
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| | - Chuyun Yang
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| | - Rong Liu
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Hongyi Du
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| | - Ming Ma
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| |
Collapse
|
3
|
Baroukh C, Cottret L, Pires E, Peyraud R, Guidot A, Genin S. Insights into the metabolic specificities of pathogenic strains from the Ralstonia solanacearum species complex. mSystems 2023; 8:e0008323. [PMID: 37341493 PMCID: PMC10470067 DOI: 10.1128/msystems.00083-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/14/2023] [Indexed: 06/22/2023] Open
Abstract
All the strains grouped under the species Ralstonia solanacearum represent a species complex responsible for many diseases on agricultural crops throughout the world. The strains have different lifestyles and host range. Here, we investigated whether specific metabolic pathways contribute to strain diversification. To this end, we carried out systematic comparisons on 11 strains representing the diversity of the species complex. We reconstructed the metabolic network of each strain from its genome sequence and looked for the metabolic pathways differentiating the different reconstructed networks and, by extension, the different strains. Finally, we conducted an experimental validation by determining the metabolic profile of each strain with the Biolog technology. Results revealed that the metabolism is conserved between strains, with a core metabolism composed of 82% of the pan-reactome. The three species composing the species complex could be distinguished according to the presence/absence of some metabolic pathways, in particular, one involving salicylic acid degradation. Phenotypic assays revealed that the trophic preferences on organic acids and several amino acids such as glutamine, glutamate, aspartate, and asparagine are conserved between strains. Finally, we generated mutants lacking the quorum-sensing-dependent regulator PhcA in four diverse strains, and we showed that the phcA-dependent trade-off between growth and production of virulence factors is conserved across the R. solanacearum species complex. IMPORTANCE Ralstonia solanacearum is one of the most important threats to plant health worldwide, causing disease on a very large range of agricultural crops such as tomato or potato. Behind the R. solanacearum name are hundreds of strains with different host range and lifestyle, classified into three species. Studying the differences between strains allows to better apprehend the biology of the pathogens and the specificity of some strains. None of the published genomic comparative studies have focused on the metabolism of the strains so far. We developed a new bioinformatic pipeline to build high-quality metabolic networks and used a combination of metabolic modeling and high-throughput phenotypic Biolog microplates to look for the metabolic differences between 11 strains across the three species. Our study revealed that genes encoding enzymes are overall conserved, with few variations between strains. However, more variations were observed when considering substrate usage. These variations probably result from regulation rather than the presence or absence of enzymes in the genome.
Collapse
Affiliation(s)
- Caroline Baroukh
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Ludovic Cottret
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Emma Pires
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Rémi Peyraud
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Alice Guidot
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Stéphane Genin
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
4
|
Greenrod STE, Stoycheva M, Elphinstone J, Friman VP. Influence of insertion sequences on population structure of phytopathogenic bacteria in the Ralstonia solanacearum species complex. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001364. [PMID: 37458734 PMCID: PMC10433421 DOI: 10.1099/mic.0.001364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Abstract
Ralstonia solanacearum species complex (RSSC) is a destructive group of plant pathogenic bacteria and the causative agent of bacterial wilt disease. Experimental studies have attributed RSSC virulence to insertion sequences (IS), transposable genetic elements which can both disrupt and activate host genes. Yet, the global diversity and distribution of RSSC IS are unknown. In this study, IS were bioinformatically identified in a diverse collection of 356 RSSC isolates representing five phylogenetic lineages and their diversity investigated based on genetic distance measures and comparisons with the ISFinder database. IS phylogenetic associations were determined based on their distribution across the RSSC phylogeny. Moreover, IS positions within genomes were characterised and their potential gene disruptions determined based on IS proximity to coding sequences. In total, we found 24732 IS belonging to eleven IS families and 26 IS subgroups with over half of the IS found in the megaplasmid. While IS families were generally widespread across the RSSC phylogeny, IS subgroups showed strong lineage-specific distributions and genetically similar bacterial isolates had similar IS contents. Similar associations with bacterial host genetic background were also observed with IS insertion positions which were highly conserved in closely related bacterial isolates. Finally, IS were found to disrupt genes with predicted functions in virulence, stress tolerance, and metabolism suggesting that they might be adaptive. This study highlights that RSSC insertion sequences track the evolution of their bacterial hosts potentially contributing to both intra- and inter-lineage genetic diversity.
Collapse
Affiliation(s)
- Samuel T. E. Greenrod
- Department of Biology, University of York, York, UK
- Present address: Department of Biology, University of Oxford, Oxford, UK
| | | | - John Elphinstone
- Fera Science Ltd, National Agri-Food Innovation Campus, Sand Hutton, York, UK
| | - Ville-Petri Friman
- Department of Biology, University of York, York, UK
- Present address: Department of Microbiology, University of Helsinki, 00014, Helsinki, Finland
| |
Collapse
|
5
|
Qian F, Huang X, Bao Y. Heavy metals reshaping the structure and function of phylloplane bacterial community of native plant Tamarix ramosissima from Pb/Cd/Cu/Zn smelting regions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114495. [PMID: 36640572 DOI: 10.1016/j.ecoenv.2022.114495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Heavy metal (HM) is noxious element that cannot be biodegraded, thus accumulating in the environment and posing a serious threat to the ecology. Plant phylloplane harbors diverse microbial communities that profoundly influence ecosystem functioning and host health. With more HM accumulating around smelters, native plants and microbes in various habitats tend to suffer from HM. However, the response of phylloplane bacteria of native plants to HM remains unclear. Thus, this study aimed to explain the response of Tamarix ramosissima, a phylloplane bacterial community to HM as well as the effect of the process on host growth in situ by investigating the potential source of HM and bacterial community shift. Results showed that, in most cases, the contaminated site with high HM level caused more accumulation of HM in phylloplane and leaves. Moreover, HM in the phylloplane was not from the internal transport of the plant but it could be due to the wind action or rains. Bacteria in phylloplane may have come from the soil due to their strong positive correlation with corresponding soil at the genus level. High HM level inhibited the relative abundance of dominant bacteria, increased the diversity and species richness of bacterial community in phylloplane, and induced more special bacteria to maintain higher productivity of the host plant, for which, Cu and Pb were the major contributors. Meanwhile, bacteria in phylloplane showed a universal positive correlation in the co-occurrence network, which showed less stability than that in corresponding soil in the smelting region, and it is helpful to regulate the growth of plants more rapidly. Nearly 25% of KEGG pathways were modulated by high HM level and bacterial function tended to stabilize HM to avoid the potential process of leaf absorption. The study illustrated that HM in phylloplane played an important role in shaping the bacterial community of phylloplane as compared to HM in leaves or phyllosphere, and the resulting increase of diversity and richness of bacterial community and special bacteria further maintained the growth of the host plant suffering from HM stress.
Collapse
Affiliation(s)
- Fanghan Qian
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinjian Huang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yanyu Bao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
6
|
Greenrod STE, Stoycheva M, Elphinstone J, Friman VP. Global diversity and distribution of prophages are lineage-specific within the Ralstonia solanacearum species complex. BMC Genomics 2022; 23:689. [PMID: 36199029 PMCID: PMC9535894 DOI: 10.1186/s12864-022-08909-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background Ralstonia solanacearum species complex (RSSC) strains are destructive plant pathogenic bacteria and the causative agents of bacterial wilt disease, infecting over 200 plant species worldwide. In addition to chromosomal genes, their virulence is mediated by mobile genetic elements including integrated DNA of bacteriophages, i.e., prophages, which may carry fitness-associated auxiliary genes or modulate host gene expression. Although experimental studies have characterised several prophages that shape RSSC virulence, the global diversity, distribution, and wider functional gene content of RSSC prophages are unknown. In this study, prophages were identified in a diverse collection of 192 RSSC draft genome assemblies originating from six continents. Results Prophages were identified bioinformatically and their diversity investigated using genetic distance measures, gene content, GC, and total length. Prophage distributions were characterised using metadata on RSSC strain geographic origin and lineage classification (phylotypes), and their functional gene content was assessed by identifying putative prophage-encoded auxiliary genes. In total, 313 intact prophages were identified, forming ten genetically distinct clusters. These included six prophage clusters with similarity to the Inoviridae, Myoviridae, and Siphoviridae phage families, and four uncharacterised clusters, possibly representing novel, previously undescribed phages. The prophages had broad geographical distributions, being present across multiple continents. However, they were generally host phylogenetic lineage-specific, and overall, prophage diversity was proportional to the genetic diversity of their hosts. The prophages contained many auxiliary genes involved in metabolism and virulence of both phage and bacteria. Conclusions Our results show that while RSSC prophages are highly diverse globally, they make lineage-specific contributions to the RSSC accessory genome, which could have resulted from shared coevolutionary history. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08909-7.
Collapse
Affiliation(s)
| | | | - John Elphinstone
- Fera Science Ltd, National Agri-Food Innovation Campus, Sand Hutton, York, UK
| | | |
Collapse
|
7
|
de Almeida JCF, da Silva Xavier A, Cascardo RDS, de Rezende RR, de Souza FO, Lopes CA, Alfenas-Zerbini P. Genomic and Biological Characterization of Ralstonia solanacearum Inovirus Brazil 1, an Inovirus that Alters the Pathogenicity of the Phytopathogen Ralstonia pseudosolanacearum. MICROBIAL ECOLOGY 2022; 84:527-538. [PMID: 34557947 DOI: 10.1007/s00248-021-01874-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Filamentous bacteriophages contain a single-stranded DNA genome and have a peculiar lifestyle, since they do not cause host cell lysis, but establish a persistent association with the host, often causing behavioral changes, with effects on bacterial ecology. Over the years, a gradual reduction in the incidence of bacterial wilt has been observed in some fields from Brazil. This event, which has been associated with the loss of pathogenicity of Rasltonia spp. isolates due to infection by filamentous viruses of the inovirus group, is widely reported for Ralstonia spp. Asian isolates infected by inoviruses. In an attempt to elucidate which factors are associated with the phenomenon reported in Brazil, we investigated one isolate of R. solanacearum (UB-2014), with unusual characteristics for R. solanacearum, obtained from eggplant with mild wilt symptoms. To verify if the presence of filamentous bacteriophage was related to this phenotype, we performed viral purification and nucleic acid extraction. The phage genome was sequenced, and phylogenetic analyses demonstrated that the virus belongs to the family Inoviridae and was named as Ralstonia solanacerarum inovirus Brazil 1 (RSIBR1). RSIBR1 was transmitted to R. pseudosolanacearum GMI1000, and the virus-infected GMI1000 (GMI1000 VI) isolate showed alterations in phenotypic characteristics, as well as loss of pathogenicity, similarly to that observed in R. solanacearum isolate UB-2014. The presence of virus-infected UB-2014 and GMI1000 VI plants without symptoms, after 3 months, confirms that the infected isolates can colonize the plant without causing disease, which demonstrates that the phage infection changed the behavior of these pathogens.
Collapse
Affiliation(s)
- Juliana Cristina Fraleon de Almeida
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - André da Silva Xavier
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Renan de Souza Cascardo
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Rafael Reis de Rezende
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Flavia Oliveira de Souza
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Carlos Alberto Lopes
- EMBRAPA - National Center for Research on Vegetables (CNPH), Gama, DF, 70359-970, Brazil
| | - Poliane Alfenas-Zerbini
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil.
| |
Collapse
|
8
|
Host-Associated Phages Disperse across the Extraterrestrial Analogue Antarctica. Appl Environ Microbiol 2022; 88:e0031522. [PMID: 35499326 DOI: 10.1128/aem.00315-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Extreme Antarctic conditions provide one of the closest analogues of extraterrestrial environments. Since air and snow samples, especially from polar regions, yield DNA amounts in the lower picogram range, binning of prokaryotic genomes is challenging and renders studying the dispersal of biological entities across these environments difficult. Here, we hypothesized that dispersal of host-associated bacteriophages (adsorbed, replicating, or prophages) across the Antarctic continent can be tracked via their genetic signatures, aiding our understanding of virus and host dispersal across long distances. Phage genome fragments (PGFs) reconstructed from surface snow metagenomes of three Antarctic stations were assigned to four host genomes, mainly Betaproteobacteria, including Ralstonia spp. We reconstructed the complete genome of a temperate phage with nearly complete alignment to a prophage in the reference genome of Ralstonia pickettii 12D. PGFs from different stations were related to each other at the genus level and matched similar hosts. Metagenomic read mapping and nucleotide polymorphism analysis revealed a wide dispersal of highly identical PGFs, 13 of which were detected in seawater from the Western Antarctic Peninsula at a distance of 5,338 km from the snow sampling stations. Our results suggest that host-associated phages, especially of Ralstonia sp., disperse over long distances despite the harsh conditions of the Antarctic continent. Given that 14 phages associated with two R. pickettii draft genomes isolated from space equipment were identified, we conclude that Ralstonia phages are ideal mobile genetic elements to track dispersal and contamination in ecosystems relevant for astrobiology. IMPORTANCE Host-associated phages of the bacterium Ralstonia identified in snow samples can be used to track microbial dispersal over thousands of kilometers across the Antarctic continent, which functions as an extraterrestrial analogue because of its harsh environmental conditions. Due to the presence of these bacteria carrying genome-integrated prophages on space-related equipment and the potential for dispersal of host-associated phages demonstrated here, our work has implications for planetary protection, a discipline in astrobiology interested in preventing contamination of celestial bodies with alien biomolecules or forms of life.
Collapse
|