1
|
Kuang W, Qin D, Huang Y, Liu Y, Cao X, Xu M. Analysis of the miR482 Gene Family in Plants. Genes (Basel) 2024; 15:1043. [PMID: 39202403 PMCID: PMC11353999 DOI: 10.3390/genes15081043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/05/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
MicroRNA482 (miR482) is a conserved microRNA family in plants, playing critical regulatory roles in different biological activities. Though the members of the miR482 gene family have been identified in plants, a systematic study has not been reported yet. In the present research, 140 mature sequences generated by 106 precursors were used for molecular characterization, phylogenetic analysis, and target gene prediction, and the competing endogenous RNA (ceRNA) network mediated by miR482 was summarized. The length of mature sequences ranged from 17 nt to 25 nt, with 22 nt being the most abundant, and the start and end of the mature sequences had a preference for uracil (U). By sequence multiplex comparison, it was found that the mature sequences of 5p were clustered into one group, and others were clustered into the other group. Phylogenetic analysis revealed that the 140 mature sequences were categorized into six groups. Meanwhile, all the precursor sequences formed a stable hairpin structure, and the 106 precursors were divided into five groups. However, the expression of miR482 varied significantly between different species and tissues. In total, 149 target genes were predicted and their functions focused on single-organism process, cellular process, and cell and cell part. The ceRNA network of miR482 in tomato, cotton, and peanut was summarized based on related publications. In conclusion, this research will provide a foundation for further understanding of the miR482 gene family.
Collapse
Affiliation(s)
| | | | | | | | - Xue Cao
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China; (W.K.); (D.Q.); (Y.H.); (Y.L.); (M.X.)
| | | |
Collapse
|
2
|
Leonetti P, Dallera D, De Marchi D, Candito P, Pasotti L, Macovei A. Exploring the putative microRNAs cross-kingdom transfer in Solanum lycopersicum-Meloidogyne incognita interactions. FRONTIERS IN PLANT SCIENCE 2024; 15:1383986. [PMID: 38784062 PMCID: PMC11114104 DOI: 10.3389/fpls.2024.1383986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Introduction Plant-pathogen interaction is an inexhaustible source of information on how to sustainably control diseases that negatively affect agricultural production. Meloidogyne incognita is a root-knot nematode (RKN), representing a pest for many crops, including tomato (Solanum lycopersicum). RKNs are a global threat to agriculture, especially under climate change, and RNA technologies offer a potential alternative to chemical nematicides. While endogenous microRNAs have been identified in both S. lycopersicum and M. incognita, and their roles have been related to the regulation of developmental changes, no study has investigated the miRNAs cross-kingdom transfer during this interaction. Methods Here, we propose a bioinformatics pipeline to highlight potential miRNA-dependent cross-kingdom interactions between tomato and M. incognita. Results The obtained data show that nematode miRNAs putatively targeting tomato genes are mostly related to detrimental effects on plant development and defense. Similarly, tomato miRNAs putatively targeting M. incognita biological processes have negative effects on digestion, mobility, and reproduction. To experimentally test this hypothesis, an in vitro feeding assay was carried out using sly-miRNAs selected from the bioinformatics approach. The results show that two tomato miRNAs (sly-miRNA156a, sly-miR169f) soaked by juvenile larvae (J2s) affected their ability to infect plant roots and form galls. This was also coupled with a significant downregulation of predicted target genes (Minc11367, Minc00111), as revealed by a qRT-PCR analysis. Discussions Therefore, the current study expands the knowledge related to the cross-kingdom miRNAs involvement in host-parasite interactions and could pave the way for the application of exogenous plant miRNAs as tools to control nematode infection.
Collapse
Affiliation(s)
- Paola Leonetti
- Institute for Sustainable Plant Protection of the National Research Council, Unit of Bari, Bari, Italy
| | - Debora Dallera
- Laboratory of Bioinformatics, Mathematical Modelling, and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering - Centre for Health Technology, University of Pavia, Pavia, Italy
| | - Davide De Marchi
- Laboratory of Bioinformatics, Mathematical Modelling, and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering - Centre for Health Technology, University of Pavia, Pavia, Italy
| | - Pamela Candito
- Laboratory of Bioinformatics, Mathematical Modelling, and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering - Centre for Health Technology, University of Pavia, Pavia, Italy
| | - Lorenzo Pasotti
- Laboratory of Bioinformatics, Mathematical Modelling, and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering - Centre for Health Technology, University of Pavia, Pavia, Italy
| | - Anca Macovei
- Plant Biotechnology Laboratory, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| |
Collapse
|
3
|
Hamid R, Jacob F, Ghorbanzadeh Z, Jafari L, Alishah O. Dynamic roles of small RNAs and DNA methylation associated with heterosis in allotetraploid cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2023; 23:488. [PMID: 37828433 PMCID: PMC10571366 DOI: 10.1186/s12870-023-04495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Heterosis is a complex phenomenon wherein the hybrids outperform their parents. Understanding the underlying molecular mechanism by which hybridization leads to higher yields in allopolyploid cotton is critical for effective breeding programs. Here, we integrated DNA methylation, transcriptomes, and small RNA profiles to comprehend the genetic and molecular basis of heterosis in allopolyploid cotton at three developmental stages. RESULTS Transcriptome analysis revealed that numerous DEGs responsive to phytohormones (auxin and salicylic acid) were drastically altered in F1 hybrid compared to the parental lines. DEGs involved in energy metabolism and plant growth were upregulated, whereas DEGs related to basal defense were downregulated. Differences in homoeologous gene expression in F1 hybrid were greatly reduced after hybridization, suggesting that higher levels of parental expression have a vital role in heterosis. Small RNAome and methylome studies showed that the degree of DNA methylation in hybrid is higher when compared to the parents. A substantial number of allele-specific expression genes were found to be strongly regulated by CG allele-specific methylation levels. The hybrid exhibited higher 24-nt-small RNA (siRNA) expression levels than the parents. The regions in the genome with increased levels of 24-nt-siRNA were chiefly related to genes and their flanking regulatory regions, demonstrating a possible effect of these molecules on gene expression. The transposable elements correlated with siRNA clusters in the F1 hybrid had higher methylation levels but lower expression levels, which suggest that these non-additively expressed siRNA clusters, reduced the activity of transposable elements through DNA methylation in the hybrid. CONCLUSIONS These multi-omics data provide insights into how changes in epigenetic mechanisms and gene expression patterns can lead to heterosis in allopolyploid cotton. This makes heterosis a viable tool in cotton breeding.
Collapse
Affiliation(s)
- Rasmieh Hamid
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran.
| | - Feba Jacob
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India
| | - Zahra Ghorbanzadeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Leila Jafari
- Horticultural Science Department, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran
- Research Group of Agroecology in Dryland Areas, University of Hormozgan, Bandar Abbas, Iran
| | - Omran Alishah
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
| |
Collapse
|
4
|
Noureddine Y, da Rocha M, An J, Médina C, Mejias J, Mulet K, Quentin M, Abad P, Zouine M, Favery B, Jaubert-Possamai S. AUXIN RESPONSIVE FACTOR8 regulates development of the feeding site induced by root-knot nematodes in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5752-5766. [PMID: 37310189 DOI: 10.1093/jxb/erad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Root-knot nematodes (RKN) from the genus Meloidogyne induce the dedifferentiation of root vascular cells into giant multinucleate feeding cells. These feeding cells result from an extensive reprogramming of gene expression, and auxin is known to be a key player in their development. However, little is known about how the auxin signal is transmitted during giant cell development. Integrative analyses combining transcriptome and small non-coding RNA datasets with the specific sequencing of cleaved transcripts identified genes targeted by miRNAs in tomato (Solanum lycopersicum) galls. The two auxin-responsive transcription factors ARF8A and ARF8B, and their miRNA167 regulators, were identified as robust gene-miRNA pair candidates to be involved in the tomato response to M. incognita. Spatiotemporal expression analysis using promoter-β-glucuronidase (GUS) fusions showed the up-regulation of ARF8A and ARF8B in RKN-induced feeding cells and surrounding cells. The generation and phenotyping of CRISPR (clustered regularly interspaced palindromic repeats) mutants demonstrated the role of ARF8A and ARF8B in giant cell development and allowed the characterization of their downstream regulated genes.
Collapse
Affiliation(s)
- Yara Noureddine
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Martine da Rocha
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Jing An
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France
| | - Clémence Médina
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Joffrey Mejias
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Karine Mulet
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Michaël Quentin
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Pierre Abad
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Mohamed Zouine
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France
| | - Bruno Favery
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | | |
Collapse
|
5
|
Umer MJ, Zheng J, Yang M, Batool R, Abro AA, Hou Y, Xu Y, Gebremeskel H, Wang Y, Zhou Z, Cai X, Liu F, Zhang B. Insights to Gossypium defense response against Verticillium dahliae: the Cotton Cancer. Funct Integr Genomics 2023; 23:142. [PMID: 37121989 DOI: 10.1007/s10142-023-01065-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
The soil-borne pathogen Verticillium dahliae, also referred as "The Cotton Cancer," is responsible for causing Verticillium wilt in cotton crops, a destructive disease with a global impact. To infect cotton plants, the pathogen employs multiple virulence mechanisms such as releasing enzymes that degrade cell walls, activating genes that contribute to virulence, and using protein effectors. Conversely, cotton plants have developed numerous defense mechanisms to combat the impact of V. dahliae. These include strengthening the cell wall by producing lignin and depositing callose, discharging reactive oxygen species, and amassing hormones related to defense. Despite the efforts to develop resistant cultivars, there is still no permanent solution to Verticillium wilt due to a limited understanding of the underlying molecular mechanisms that drive both resistance and pathogenesis is currently prevalent. To address this challenge, cutting-edge technologies such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), host-induced gene silencing (HIGS), and gene delivery via nano-carriers could be employed as effective alternatives to control the disease. This article intends to present an overview of V. dahliae virulence mechanisms and discuss the different cotton defense mechanisms against Verticillium wilt, including morphophysiological and biochemical responses and signaling pathways including jasmonic acid (JA), salicylic acid (SA), ethylene (ET), and strigolactones (SLs). Additionally, the article highlights the significance of microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) in gene expression regulation, as well as the different methods employed to identify and functionally validate genes to achieve resistance against this disease. Gaining a more profound understanding of these mechanisms could potentially result in the creation of more efficient strategies for combating Verticillium wilt in cotton crops.
Collapse
Affiliation(s)
- Muhammad Jawad Umer
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jie Zheng
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China
| | - Mengying Yang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Raufa Batool
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aamir Ali Abro
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Haileslassie Gebremeskel
- Mehoni Agricultural Research Center, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Yuhong Wang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - ZhongLi Zhou
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.
| | - Baohong Zhang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
6
|
Integrated Analysis of Transcriptome and Small RNAome Reveals the Regulatory Network for Rapid Growth in Mikania micrantha. Int J Mol Sci 2022; 23:ijms231810596. [PMID: 36142547 PMCID: PMC9501215 DOI: 10.3390/ijms231810596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
M. micrantha has caused huge ecological damage and economic losses worldwide due to its rapid growth and serious invasion. However, the underlying molecular mechanisms of its rapid growth and environmental adaption remain unclear. Here, we performed transcriptome and small RNA sequencing with five tissues of M. micrantha to dissect miRNA-mediated regulation in M. micrantha. WGCNA and GO enrichment analysis of transcriptome identified the gene association patterns and potential key regulatory genes for plant growth in each tissue. The genes highly correlated with leaf and stem tissues were mainly involved in the chlorophyll synthesis, response to auxin, the CAM pathway and other photosynthesis-related processes, which promoted the fast growth of M. micrantha. Importantly, we identified 350 conserved and 192 novel miRNAs, many of which displayed differential expression patterns among tissues. PsRNA target prediction analysis uncovered target genes of both conserved and novel miRNAs, including GRFs and TCPs, which were essential for plant growth and development. Further analysis revealed that miRNAs contributed to the regulation of tissue-specific gene expression in M. micrantha, such as mmi-miR396 and mmi-miR319. Taken together, our study uncovered the miRNA-mRNA regulatory networks and the potential vital roles of miRNAs in modulating the rapid growth of M. micrantha.
Collapse
|
7
|
Conservation and Divergence of Phosphoenolpyruvate Carboxylase Gene Family in Cotton. PLANTS 2022; 11:plants11111482. [PMID: 35684256 PMCID: PMC9182757 DOI: 10.3390/plants11111482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is an important enzyme in plants, which regulates carbon flow through the TCA cycle and controls protein and oil biosynthesis. Although it is important, there is little research on PEPC in cotton, the most important fiber crop in the world. In this study, a total of 125 PEPCs were identified in 15 Gossypium genomes. All PEPC genes in cotton are divided into six groups and each group generally contains one PEPC member in each diploid cotton and two in each tetraploid cotton. This suggests that PEPC genes already existed in cotton before their divergence. There are additional PEPC sub-groups in other plant species, suggesting the different evolution and natural selection during different plant evolution. PEPC genes were independently evolved in each cotton sub-genome. During cotton domestication and evolution, certain PEPC genes were lost and new ones were born to face the new environmental changes and human being needs. The comprehensive analysis of collinearity events and selection pressure shows that genome-wide duplication and fragment duplication are the main methods for the expansion of the PEPC family, and they continue to undergo purification selection during the evolutionary process. PEPC genes were widely expressed with temporal and spatial patterns. The expression patterns of PEPC genes were similar in G. hirsutum and G. barbadense with a slight difference. PEPC2A and 2D were highly expressed in cotton reproductive tissues, including ovule and fiber at all tested developmental stages in both cultivated cottons. However, PEPC1A and 1D were dominantly expressed in vegetative tissues. Abiotic stress also induced the aberrant expression of PEPC genes, in which PEPC1 was induced by both chilling and salinity stresses while PEPC5 was induced by chilling and drought stresses. Each pair (A and D) of PEPC genes showed the similar response to cotton development and different abiotic stress, suggesting the similar function of these PEPCs no matter their origination from A or D sub-genome. However, some divergence was also observed among their origination, such as PEPC5D was induced but PEPC5A was inhibited in G. barbadense during drought treatment, suggesting that a different organized PEPC gene may evolve different functions during cotton evolution. During cotton polyploidization, the homologues genes may refunction and play different roles in different situations.
Collapse
|
8
|
MicroRNA-mediated post-transcriptional regulation of Pinus pinaster response and resistance to pinewood nematode. Sci Rep 2022; 12:5160. [PMID: 35338210 PMCID: PMC8956650 DOI: 10.1038/s41598-022-09163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
Pine wilt disease (PWD), caused by the parasitic nematode Bursaphelenchus xylophilus, or pinewood nematode (PWN), is a serious threat to pine forests in Europe. Pinus pinaster is highly susceptible to the disease and it is currently the most affected European pine species. In this work, we investigated the role of small RNAs (sRNAs) in regulating P. pinaster–PWN interaction in an early stage of infection. After performing an artificial PWN inoculation assay, we have identified 105 plant microRNAs (miRNAs) responsive to PWN. Based on their predicted targets, part of these miRNAs was associated with roles in jasmonate-response pathway, ROS detoxification, and terpenoid biosynthesis. Furthermore, by comparing resistant and susceptible plants, eight miRNAs with putative functions in plant defence and resistance to PWN have been identified. Finally, we explored the possibility of bidirectional trans-kingdom RNA silencing, identifying several P. pinaster genes putatively targeted by PWN miRNAs, which was supported by degradome analysis. Targets for P. pinaster miRNAs were also predicted in PWN, suggesting a role for trans-kingdom miRNA transfer and gene silencing both in PWN parasitism as in P. pinaster resistance to PWD. Our results provide new insights into previously unexplored roles of sRNA post-transcriptional regulation in P. pinaster response and resistance to PWN.
Collapse
|
9
|
Integration of Small RNA and Degradome Sequencing Reveals the Regulatory Network of Al-Induced Programmed Cell Death in Peanut. Int J Mol Sci 2021; 23:ijms23010246. [PMID: 35008672 PMCID: PMC8745729 DOI: 10.3390/ijms23010246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
Peanut is one of the most important oil crops in the world. In China, the peanut is highly produced in its southern part, in which the arable land is dominated by acid soil. At present, miRNAs have been identified in stress response, but their roles and mechanisms are not clear, and no miRNA studies have been found related to aluminum (Al)-induced programmed cell death (PCD). In the present study, transcriptomics, sRNAs, and degradome analysis in the root tips of two peanut cultivars ZH2 (Al-sensitive, S) and 99-1507 (Al-tolerant, T) were carried out. Here, we generated a comprehensive resource focused on identifying key regulatory miRNA-target circuits that regulate PCD under Al stress. Through deep sequencing, 2284 miRNAs were identified and 147 miRNAs were differentially expressed under Al stress. Furthermore, 19237 target genes of 749 miRNAs were validated by degradome sequencing. GO and KEGG analyses of differential miRNA targets showed that the pathways of synthesis and degradation of ketone bodies, citrate cycle (TCA cycle), and peroxisome were responded to Al stress. The combined analysis of the degradome data sets revealed 89 miRNA-mRNA interactions that may regulate PCD under Al stress. Ubiquitination may be involved in Al-induced PCD in peanut. The regulatory networks were constructed based on the differentially expressed miRNAs and their targets related to PCD. Our results will provide a useful platform to research on PCD induced by Al and new insights into the genetic engineering for plant stress response.
Collapse
|
10
|
Patil S, Joshi S, Jamla M, Zhou X, Taherzadeh MJ, Suprasanna P, Kumar V. MicroRNA-mediated bioengineering for climate-resilience in crops. Bioengineered 2021; 12:10430-10456. [PMID: 34747296 PMCID: PMC8815627 DOI: 10.1080/21655979.2021.1997244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
Global projections on the climate change and the dynamic environmental perturbations indicate severe impacts on food security in general, and crop yield, vigor and the quality of produce in particular. Sessile plants respond to environmental challenges such as salt, drought, temperature, heavy metals at transcriptional and/or post-transcriptional levels through the stress-regulated network of pathways including transcription factors, proteins and the small non-coding endogenous RNAs. Amongs these, the miRNAs have gained unprecedented attention in recent years as key regulators for modulating gene expression in plants under stress. Hence, tailoring of miRNAs and their target pathways presents a promising strategy for developing multiple stress-tolerant crops. Plant stress tolerance has been successfully achieved through the over expression of microRNAs such as Os-miR408, Hv-miR82 for drought tolerance; OsmiR535A and artificial DST miRNA for salinity tolerance; and OsmiR535 and miR156 for combined drought and salt stress. Examples of miR408 overexpression also showed improved efficiency of irradiation utilization and carbon dioxide fixation in crop plants. Through this review, we present the current understanding about plant miRNAs, their roles in plant growth and stress-responses, the modern toolbox for identification, characterization and validation of miRNAs and their target genes including in silico tools, machine learning and artificial intelligence. Various approaches for up-regulation or knock-out of miRNAs have been discussed. The main emphasis has been given to the exploration of miRNAs for development of bioengineered climate-smart crops that can withstand changing climates and stressful environments, including combination of stresses, with very less or no yield penalties.
Collapse
Affiliation(s)
- Suraj Patil
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, India
| | - Shrushti Joshi
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, India
| | - Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, India
| | - Xianrong Zhou
- School of Life Science and Biotechnology, Yangtze Normal University, Ch-ongqing, China
| | | | - Penna Suprasanna
- Bhabha Atomic Research Centre, Homi Bhabha National Institute, Mumbai, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
11
|
Genome-Wide Identification of ARF Transcription Factor Gene Family and Their Expression Analysis in Sweet Potato. Int J Mol Sci 2021; 22:ijms22179391. [PMID: 34502298 PMCID: PMC8431151 DOI: 10.3390/ijms22179391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/08/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
Auxin response factors (ARFs) are a family of transcription factors that play an important role of auxin regulation through their binding with auxin response elements. ARF genes are represented by a large multigene family in plants; however, to our knowledge, the ARF gene family has not been well studied and characterized in sweet potatoes. In this study, a total of 25 ARF genes were identified in Ipomea trifida. The identified ItrARF genes’ conserved motifs, chromosomal locations, phylogenetic relationships, and their protein characteristics were systemically investigated using different bioinformatics tools. The expression patterns of ItfARF genes were analyzed within the storage roots and normal roots at an early stage of development. ItfARF16b and ItfARF16c were both highly expressed in the storage root, with minimal to no expression in the normal root. ItfARF6a and ItfARF10a exhibited higher expression in the normal root but not in the storage root. Subsequently, ItfARF1a, ItfARF2b, ItfARF3a, ItfARF6b, ItfARF8a, ItfARF8b, and ItfARF10b were expressed in both root types with moderate to high expression for each. All ten of these ARF genes and their prominent expression signify their importance within the development of each respective root type. This study provides comprehensive information regarding the ARF family in sweet potatoes, which will be useful for future research to discover further functional verification of these ItfARF genes.
Collapse
|