1
|
Ghaly TM, Gillings MR, Rajabal V, Paulsen IT, Tetu SG. Horizontal gene transfer in plant microbiomes: integrons as hotspots for cross-species gene exchange. Front Microbiol 2024; 15:1338026. [PMID: 38741746 PMCID: PMC11089894 DOI: 10.3389/fmicb.2024.1338026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Plant microbiomes play important roles in plant health and fitness. Bacterial horizontal gene transfer (HGT) can influence plant health outcomes, driving the spread of both plant growth-promoting and phytopathogenic traits. However, community dynamics, including the range of genetic elements and bacteria involved in this process are still poorly understood. Integrons are genetic elements recently shown to be abundant in plant microbiomes, and are associated with HGT across broad phylogenetic boundaries. They facilitate the spread of gene cassettes, small mobile elements that collectively confer a diverse suite of adaptive functions. Here, we analysed 5,565 plant-associated bacterial genomes to investigate the prevalence and functional diversity of integrons in this niche. We found that integrons are particularly abundant in the genomes of Pseudomonadales, Burkholderiales, and Xanthomonadales. In total, we detected nearly 9,000 gene cassettes, and found that many could be involved in plant growth promotion or phytopathogenicity, suggesting that integrons might play a role in bacterial mutualistic or pathogenic lifestyles. The rhizosphere was enriched in cassettes involved in the transport and metabolism of diverse substrates, suggesting that they may aid in adaptation to this environment, which is rich in root exudates. We also found that integrons facilitate cross-species HGT, which is particularly enhanced in the phyllosphere. This finding may provide an ideal opportunity to promote plant growth by fostering the spread of genes cassettes relevant to leaf health. Together, our findings suggest that integrons are important elements in plant microbiomes that drive HGT, and have the potential to facilitate plant host adaptation.
Collapse
Affiliation(s)
- Timothy M. Ghaly
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia
| | - Ian T. Paulsen
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia
| | - Sasha G. Tetu
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia
| |
Collapse
|
2
|
Chuang SC, Dobhal S, Alvarez AM, Arif M. Three new species, Xanthomonas hawaiiensis sp. nov., Stenotrophomonas aracearum sp. nov., and Stenotrophomonas oahuensis sp. nov., isolated from the Araceae family. Front Microbiol 2024; 15:1356025. [PMID: 38655077 PMCID: PMC11035887 DOI: 10.3389/fmicb.2024.1356025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Xanthomonas and Stenotrophomonas are closely related genera in the family Lysobacteraceae. In our previous study of aroid-associated bacterial strains, most strains isolated from anthurium and other aroids were reclassified as X. phaseoli and other Xanthomonas species. However, two strains isolated from Spathiphyllum and Colocasia were phylogenetically distant from other strains in the Xanthomonas clade and two strains isolated from Anthurium clustered within the Stenotrophomonas clade. Phylogenetic trees based on 16S rRNA and nine housekeeping genes placed the former strains with the type strain of X. sacchari from sugarcane and the latter strains with the type strain of S. bentonitica from bentonite. In pairwise comparisons with type strains, the overall genomic relatedness indices required delineation of new species; digital DNA-DNA hybridization and average nucleotide identity values were lower than 70 and 95%, respectively. Hence, three new species are proposed: S. aracearum sp. nov. and S. oahuensis sp. nov. for two strains from anthurium and X. hawaiiensis sp. nov. for the strains from spathiphyllum and colocasia, respectively. The genome size of X. hawaiiensis sp. nov. is ~4.88 Mbp and higher than S. aracearum sp. nov. (4.33 Mbp) and S. oahuensis sp. nov. (4.68 Mbp). Gene content analysis revealed 425 and 576 core genes present in 40 xanthomonads and 25 stenotrophomonads, respectively. The average number of unique genes in Stenotrophomonas spp. was higher than in Xanthomonas spp., implying higher genetic diversity in Stenotrophomonas.
Collapse
Affiliation(s)
| | | | | | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| |
Collapse
|
3
|
McKnight DJE, Wong-Bajracharya J, Okoh EB, Snijders F, Lidbetter F, Webster J, Haughton M, Darling AE, Djordjevic SP, Bogema DR, Chapman TA. Xanthomonas rydalmerensis sp. nov., a non-pathogenic member of Group 1 Xanthomonas. Int J Syst Evol Microbiol 2024; 74:006294. [PMID: 38536071 PMCID: PMC10995728 DOI: 10.1099/ijsem.0.006294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024] Open
Abstract
Five bacterial isolates were isolated from Fragaria × ananassa in 1976 in Rydalmere, Australia, during routine biosecurity surveillance. Initially, the results of biochemical characterisation indicated that these isolates represented members of the genus Xanthomonas. To determine their species, further analysis was conducted using both phenotypic and genotypic approaches. Phenotypic analysis involved using MALDI-TOF MS and BIOLOG GEN III microplates, which confirmed that the isolates represented members of the genus Xanthomonas but did not allow them to be classified with respect to species. Genome relatedness indices and the results of extensive phylogenetic analysis confirmed that the isolates were members of the genus Xanthomonas and represented a novel species. On the basis the minimal presence of virulence-associated factors typically found in genomes of members of the genus Xanthomonas, we suggest that these isolates are non-pathogenic. This conclusion was supported by the results of a pathogenicity assay. On the basis of these findings, we propose the name Xanthomonas rydalmerensis, with DAR 34855T = ICMP 24941 as the type strain.
Collapse
Affiliation(s)
- Daniel J. E. McKnight
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle NSW 2568, Australia
- University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia
| | - Johanna Wong-Bajracharya
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle NSW 2568, Australia
| | - Efenaide B. Okoh
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle NSW 2568, Australia
- Western Sydney University, Penrith, NSW, Australia
| | - Fridtjof Snijders
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle NSW 2568, Australia
| | - Fiona Lidbetter
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle NSW 2568, Australia
| | - John Webster
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle NSW 2568, Australia
| | - Mathew Haughton
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle NSW 2568, Australia
| | - Aaron E. Darling
- University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia
| | | | - Daniel R. Bogema
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle NSW 2568, Australia
- University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia
| | - Toni A. Chapman
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle NSW 2568, Australia
- University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia
| |
Collapse
|
4
|
Singh A, Kumar S, Bansal K, Patil PB. Taxonomic and Phylogenomic Assessment Identifies Phytopathogenicity Potential of Stenotrophomonas maltophilia Complex. PHYTOPATHOLOGY 2023; 113:1833-1838. [PMID: 37202377 DOI: 10.1094/phyto-11-22-0434-sc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stenotrophomonas maltophilia is a versatile bacterium found in plants, water, air, and even hospital settings. Deep taxono phylogenomics studies have revealed that S. maltophilia is a complex of several hidden species that are not differentiated using conventional approaches. In the last two decades, there have been increasing reports of S. maltophilia as a pathogen of diverse plants. Hence, proper taxonogenomic assessment of plant-pathogenic strains and species within the S. maltophilia complex (Smc) is required. In the present study, we formally propose a taxonomic amendment of Pseudomonas hibiscicola and P. beteli, reported as pathogens of Hibiscus rosa-sinensis and Betelvine (Piper betle) plants, respectively, as a misclassified member species of the Smc. Recently, a novel species of the genus, S. cyclobalanopsidis, was reported as a leaf spot pathogen of the oak tree genus Cyclobalanopsis. Interestingly, our investigation also revealed S. cyclobalanopsidis as another plant-pathogenic member species of the Smc lineage. In addition, we provide deep phylo-taxonogenomic evidence that S. maltophilia strain JZL8, reported as a plant pathogen, is a misclassified strain of S. geniculata, making it the fourth member species of the Smc harboring plant-pathogenic strains. Therefore, a proper taxonomic assessment of plant-pathogenic strains and species from the Smc is required for further systematic studies and management.
Collapse
Affiliation(s)
- Anu Singh
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sanjeet Kumar
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Kanika Bansal
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Prabhu B Patil
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
5
|
Kumar A, Rithesh L, Kumar V, Raghuvanshi N, Chaudhary K, Abhineet, Pandey AK. Stenotrophomonas in diversified cropping systems: friend or foe? Front Microbiol 2023; 14:1214680. [PMID: 37601357 PMCID: PMC10437078 DOI: 10.3389/fmicb.2023.1214680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
In the current scenario, the use of synthetic fertilizers is at its peak, which is an expensive affair, possesses harmful effects to the environment, negatively affecting soil fertility and beneficial soil microfauna as well as human health. Because of this, the demand for natural, chemical-free, and organic foods is increasing day by day. Therefore, in the present circumstances use of biofertilizers for plant growth-promotion and microbe-based biopesticides against biotic stresses are alternative options to reduce the risk of both synthetic fertilizers and pesticides. The plant growth promoting rhizobacteria (PGPR) and microbial biocontrol agents are ecologically safe and effective. Owning their beneficial properties on plant systems without harming the ecosystem, they are catching the widespread interest of researchers, agriculturists, and industrialists. In this context, the genus Stenotrophomonas is an emerging potential source of both biofertilizer and biopesticide. This genus is particularly known for producing osmoprotective substances which play a key role in cellular functions, i.e., DNA replication, DNA-protein interactions, and cellular metabolism to regulate the osmotic balance, and also acts as effective stabilizers of enzymes. Moreover, few species of this genus are disease causing agents in humans that is why; it has become an emerging field of research in the present scenario. In the past, many studies were conducted on exploring the different applications of Stenotrophomonas in various fields, however, further researches are required to explore the various functions of Stenotrophomonas in plant growth promotion and management of pests and diseases under diverse growth conditions and to demonstrate its interaction with plant and soil systems. The present review discusses various plant growth and biocontrol attributes of the genus Stenotrophomonas in various food crops along with knowledge gaps. Additionally, the potential risks and challenges associated with the use of Stenotrophomonas in agriculture systems have also been discussed along with a call for further research in this area.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Plant Pathology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
- Department of Agriculture, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Lellapalli Rithesh
- Department of Plant Pathology, Kerala Agricultural University, Thiruvananthapuram, Kerala, India
| | - Vikash Kumar
- Faculty of Agricultural Sciences, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Nikhil Raghuvanshi
- Department of Agronomy, Institute of Agriculture and Natural Science, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Kautilya Chaudhary
- Department of Agronomy, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| | - Abhineet
- Department of Agriculture, Integral Institute of Agricultural Sciences & Technology, Integral University, Lucknow, Uttar Pradesh, India
| | - Abhay K. Pandey
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R&D Center, Nagrakata, West Bengal, India
| |
Collapse
|
6
|
Ortmann S, Marx J, Lampe C, Handrick V, Ehnert TM, Zinecker S, Reimers M, Bonas U, Erickson JL. A conserved microtubule-binding region in Xanthomonas XopL is indispensable for induced plant cell death reactions. PLoS Pathog 2023; 19:e1011263. [PMID: 37578981 PMCID: PMC10449215 DOI: 10.1371/journal.ppat.1011263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/24/2023] [Accepted: 07/17/2023] [Indexed: 08/16/2023] Open
Abstract
Pathogenic Xanthomonas bacteria cause disease on more than 400 plant species. These Gram-negative bacteria utilize the type III secretion system to inject type III effector proteins (T3Es) directly into the plant cell cytosol where they can manipulate plant pathways to promote virulence. The host range of a given Xanthomonas species is limited, and T3E repertoires are specialized during interactions with specific plant species. Some effectors, however, are retained across most strains, such as Xanthomonas Outer Protein L (XopL). As an 'ancestral' effector, XopL contributes to the virulence of multiple xanthomonads, infecting diverse plant species. XopL homologs harbor a combination of a leucine-rich-repeat (LRR) domain and an XL-box which has E3 ligase activity. Despite similar domain structure there is evidence to suggest that XopL function has diverged, exemplified by the finding that XopLs expressed in plants often display bacterial species-dependent differences in their sub-cellular localization and plant cell death reactions. We found that XopL from X. euvesicatoria (XopLXe) directly associates with plant microtubules (MTs) and causes strong cell death in agroinfection assays in N. benthamiana. Localization of XopLXe homologs from three additional Xanthomonas species, of diverse infection strategy and plant host, revealed that the distantly related X. campestris pv. campestris harbors a XopL (XopLXcc) that fails to localize to MTs and to cause plant cell death. Comparative sequence analyses of MT-binding XopLs and XopLXcc identified a proline-rich-region (PRR)/α-helical region important for MT localization. Functional analyses of XopLXe truncations and amino acid exchanges within the PRR suggest that MT-localized XopL activity is required for plant cell death reactions. This study exemplifies how the study of a T3E within the context of a genus rather than a single species can shed light on how effector localization is linked to biochemical activity.
Collapse
Affiliation(s)
- Simon Ortmann
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Department of Biochemistry of Plant Interactions, Leibniz Institute for Plant Biochemistry, Halle, Germany
| | - Jolina Marx
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Christina Lampe
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Vinzenz Handrick
- Department of Biochemistry of Plant Interactions, Leibniz Institute for Plant Biochemistry, Halle, Germany
| | - Tim-Martin Ehnert
- Department of Biochemistry of Plant Interactions, Leibniz Institute for Plant Biochemistry, Halle, Germany
| | - Sarah Zinecker
- Department of Plant Physiology, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Matthias Reimers
- Department of Plant Physiology, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ulla Bonas
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jessica Lee Erickson
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Department of Biochemistry of Plant Interactions, Leibniz Institute for Plant Biochemistry, Halle, Germany
| |
Collapse
|
7
|
Harrison J, Hussain RMF, Greer SF, Ntoukakis V, Aspin A, Vicente JG, Grant M, Studholme DJ. Draft genome sequences for ten strains of Xanthomonas species that have phylogenomic importance. Access Microbiol 2023; 5:acmi000532.v3. [PMID: 37601434 PMCID: PMC10436009 DOI: 10.1099/acmi.0.000532.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/25/2023] [Indexed: 08/22/2023] Open
Abstract
Here we report draft-quality genome sequences for pathotype strains of eight plant-pathogenic bacterial pathovars: Xanthomonas campestris pv. asclepiadis, X. campestris pv. cannae, X. campestris pv. esculenti, X. campestris pv. nigromaculans, X. campestris pv. parthenii, X. campestris pv. phormiicola, X. campestris pv. zinniae and X. dyei pv. eucalypti (= X. campestris pv. eucalypti). We also sequenced the type strain of species X. melonis and the unclassified Xanthomonas strain NCPPB 1067. These data will be useful for phylogenomic and taxonomic studies, filling some important gaps in sequence coverage of Xanthomonas phylogenetic diversity. We include representatives of previously under-sequenced pathovars and species-level clades. Furthermore, these genome sequences may be useful in elucidating the molecular basis for important phenotypes, such as biosynthesis of coronatine-related toxins and degradation of fungal toxin cercosporin.
Collapse
Affiliation(s)
| | - Rana Muhammad Fraz Hussain
- Gibbet Hill Campus, School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Wellesbourne Campus, School of Life Sciences, University of Warwick, Coventry, CV35 9EF, UK
| | - Shannon F. Greer
- Gibbet Hill Campus, School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Wellesbourne Campus, School of Life Sciences, University of Warwick, Coventry, CV35 9EF, UK
| | - Vardis Ntoukakis
- Gibbet Hill Campus, School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Andrew Aspin
- Fera Science Ltd., York Biotech Campus, Sand Hutton, York, YO41 1LZ, UK
| | - Joana G. Vicente
- Wellesbourne Campus, School of Life Sciences, University of Warwick, Coventry, CV35 9EF, UK
- Fera Science Ltd., York Biotech Campus, Sand Hutton, York, YO41 1LZ, UK
| | - Murray Grant
- Gibbet Hill Campus, School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
8
|
Deng Y, Han XF, Jiang ZM, Yu LY, Li Y, Zhang YQ. Characterization of three Stenotrophomonas strains isolated from different ecosystems and proposal of Stenotrophomonas mori sp. nov. and Stenotrophomonas lacuserhaii sp. nov. Front Microbiol 2022; 13:1056762. [PMID: 36590414 PMCID: PMC9797726 DOI: 10.3389/fmicb.2022.1056762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Stenotrophomonas spp. have primarily been reported as non-pathogenic, plant-probiotic bacteria, despite the presence of some opportunistic human pathogens in the genus. Here, three Gram-stain negative, rod-shaped, non-spore-forming bacteria, designated as strains CPCC 101365T, CPCC 101269T, and CPCC 101426 were isolated from surface-sterilized medicinal plant roots of a mulberry plant in Chuxiong of the Yunnan Province, freshwater from Erhai Lake in the Yunnan Province, and sandy soils in the Badain Jaran desert in Inner Mongolia Autonomous Region, China, respectively. The 16S rRNA gene sequences analysis of these isolates in comparison with sequences from the GenBank database indicated that they belong to the genus Stenotrophomonas, with nucleotide similarities of 96.52-99.92% to identified Stenotrophomonas members. Phylogenetic analysis based on 16S rRNA gene and genome sequences confirmed that the isolates are members of the genus Stenotrophomonas. Values for genomic average nucleotide identity (ANI; <95%) and digital DNA-DNA hybridization (dDDH; < 70%) indicated that strains CPCC 101365T and CPCC 101269T were well-differentiated from validly described Stenotrophomonas species, while strain CPCC 101426 shared high ANI (97.7%) and dDDH (78.3%) identity with its closest phylogenetic neighbor, Stenotrophomonas koreensis JCM 13256T. The three genomes were approximately 3.1-4.0 Mbp in size and their G + C content ranged in 66.2-70.2%, with values slightly differing between CPCC 101365T (3.4 Mbp; 70.2%), CPCC 101269T (4.0 Mbp; 66.4%), and CPCC 101426 (3.1 Mbp; 66.2%). Genes encoding enzymes involved in the biosynthesis of indole-3-acetic acid (IAA) and siderophores were identified in the genomes of the three isolates, suggesting that these strains might serve roles as plant-growth promoting microorganisms. The polar lipid fractions of the three isolates primarily comprised diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), and phosphatidylethanolamine (PE). The predominant cellular fatty acid was iso-C15: 0, with moderate amounts of antesio-C15: 0, iso-C11: 0, iso C17: 1 ɷ9c/C16: 0 10-methyl, iso-C14: 0, and C16: 1 ɷ7c/C16: 1 ɷ6c. These results indicated that polyphasic characteristics of strains CPCC 101365T and CPCC 101269T differed from other identified Stenotrophomonas species and that strain CPCC 101426 was affiliated with the species Stenotrophomonas koreensis. Accordingly, two novel species of the genus Stenotrophomonas were consequently proposed, corresponding to Stenotrophomonas mori sp. nov. (type strain CPCC 101365T = DY006T = KCTC 82900T) and Stenotrophomonas lacuserhaii sp. nov. (type strain CPCC 101269T = K32T = KCTC 82901T). Highlights Members of the genus Stenotrophomonas, and particularly Stenotrophomonas maltophilia, are opportunistic human pathogens, but not enough research has evaluated the identification of environmental Stenotrophomonas spp. However, most Stenotrophomonas spp. serves as plant-probiotic bacteria.In this study, we obtained and characterized three Stenotrophomonas strains from different ecosystems. Based on phenotypic differences, chemotaxonomic properties, ANI and dDDH identity values, and phylogenetic analyses, two novel Stenotrophomonas species are proposed for the strains identified here. The encoding genes related to plant-growth promotion in the genomes of the newly recovered Stenotrophomonas spp. were retrieved. Follow-on experiments confirmed that these strains produced the important plant hormone IAA. Thus, these Stenotrophomonas spp. could considerably contribute to shaping and maintaining ecological stability in plant-associated environments, particularly while acting as plant-probiotic microorganisms.
Collapse
Affiliation(s)
- Yang Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,State Key Laboratory of Dao-di Herb, Beijing, China
| | - Xue-Fei Han
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,State Key Laboratory of Dao-di Herb, Beijing, China
| | - Zhu-Ming Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,State Key Laboratory of Dao-di Herb, Beijing, China
| | - Li-Yan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yu-Qin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,State Key Laboratory of Dao-di Herb, Beijing, China,*Correspondence: Yu-Qin Zhang,
| |
Collapse
|
9
|
Diwan D, Rashid MM, Vaishnav A. Current understanding of plant-microbe interaction through the lenses of multi-omics approaches and their benefits in sustainable agriculture. Microbiol Res 2022; 265:127180. [PMID: 36126490 DOI: 10.1016/j.micres.2022.127180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/28/2022]
Abstract
The success of sustainable agricultural practices has now become heavily dependent on the interactions between crop plants and their associated microbiome. Continuous advancement in high throughput sequencing platforms, omics-based approaches, and gene editing technologies has remarkably accelerated this area of research. It has enabled us to characterize the interactions of plants with associated microbial communities more comprehensively and accurately. Furthermore, the genomic and post-genomic era has significantly refined our perspective toward the complex mechanisms involved in those interactions, opening new avenues for efficiently deploying the knowledge in developing sustainable agricultural practices. This review focuses on our fundamental understanding of plant-microbe interactions and the contribution of existing multi-omics approaches, including those under active development and their tremendous success in unraveling different aspects of the complex network between plant hosts and microbes. In addition, we have also discussed the importance of sustainable and eco-friendly agriculture and the associated outstanding challenges ahead.
Collapse
Affiliation(s)
- Deepti Diwan
- Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Md Mahtab Rashid
- Department of Plant Pathology, Bihar Agricultural University, Sabour, Bhagalpur, Bihar 813210, India; Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Anukool Vaishnav
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh 281121, India; Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, Zürich CH-8008, Switzerland; Plant-Soil Interaction Group, Agroscope (Reckenholz), Reckenholzstrasse 191, Zürich 8046, Switzerland
| |
Collapse
|
10
|
Singh A, Bansal K, Kumar S, Patil PB. Deep Population Genomics Reveals Systematic and Parallel Evolution at a Lipopolysaccharide Biosynthetic Locus in Xanthomonas Pathogens That Infect Rice and Sugarcane. Appl Environ Microbiol 2022; 88:e0055022. [PMID: 35916503 PMCID: PMC9397109 DOI: 10.1128/aem.00550-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
The advent of high-throughput sequencing and population genomics has enabled researchers to investigate selection pressure at hypervariable genomic loci encoding pathogen-associated molecular pattern (PAMP) molecules like lipopolysaccharide (LPS). Xanthomonas is a model and a major group of phytopathogenic bacteria that infect hosts in tissue-specific manner. Our in-depth population-based genomic investigation revealed the emergence of major lineages in two Xanthomonas pathogens that infect xylem of rice and sugarcane is associated with the acquisition and later large-scale replacement by distinct type of LPS cassettes. In the population of the rice xylem pathogen, Xanthomonas oryzae pv. oryzae (Xoo) and sugarcane pathogens Xanthomonas sacchari (Xsac) and Xanthomonas vasicola (Xvv), the BXO8 type of LPS cassette is replaced by a BXO1 type of cassette in Xoo and by Xvv type LPS cassette in Xsac and Xvv. These findings suggest a wave of parallel evolution at an LPS locus mediated by horizontal gene transfer (HGT) events during its adaptation and emergence. Aside from xylem pathogens, two closely related lineages of Xoo that infect parenchyma of rice and Leersia hexandra grass have acquired an LPS cassette from Xanthomonas pathogens that infect parenchyma of citrus, walnut, and strawberries, indicating yet another instance of parallel evolution mediated by HGT at an LPS locus. Our targeted and megapopulation-based genome dynamic studies revealed the acquisition and dominance of specific types of LPS cassettes in adaptation and success of a major group of phytopathogenic bacteria. IMPORTANCE Lipopolysaccharide (LPS) is a major microbe associated molecular pattern and hence a major immunomodulator. As a major and outer member component, it is expected that LPS is a frontline defense mechanism to deal with different host responses. Limited studies have indicated that LPS loci are also highly variable at strain and species level in plant-pathogenic bacteria, suggesting strong selection pressure from plants and associated niches. The advent of high-throughput genomics has led to the availability of a large set of genomic resources at taxonomic and population levels. This provides an exciting and important opportunity to carryout megascale targeted and population-based comparative genomic/association studies at important loci like those encoding LPS biosynthesis to understand their role in the evolution of the host, tissue specificity, and also predominant lineages. Such studies will also fill major gap in understanding host and tissue specificity in pathogenic bacteria. Our pioneering study uses the Xanthomonas group of phytopathogens that are known for their characteristic host and tissue specificity. The present deep phylogenomics of diverse Xanthomonas species and its members revealed lineage association and dominance of distinct types of LPS in accordance with their origin, host, tissue specificity, and evolutionary success.
Collapse
Affiliation(s)
- Anu Singh
- Bacterial Genomics and Evolution Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Kanika Bansal
- Bacterial Genomics and Evolution Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Sanjeet Kumar
- Bacterial Genomics and Evolution Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Prabhu B. Patil
- Bacterial Genomics and Evolution Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
11
|
Isolation and Characterization of the Lytic Pseudoxanthomonas kaohsiungensi Phage PW916. Viruses 2022; 14:v14081709. [PMID: 36016331 PMCID: PMC9414467 DOI: 10.3390/v14081709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
The emergence of multidrug-resistant bacterial pathogens poses a serious global health threat. While patient infections by the opportunistic human pathogen Pseudoxanthomonas spp. have been increasingly reported worldwide, no phage associated with this bacterial genus has yet been isolated and reported. In this study, we isolated and characterized the novel phage PW916 to subsequently be used to lyse the multidrug-resistant Pseudoxanthomonas kaohsiungensi which was isolated from soil samples obtained from Chongqing, China. We studied the morphological features, thermal stability, pH stability, optimal multiplicity of infection, and genomic sequence of phage PW916. Transmission electron microscopy revealed the morphology of PW916 and indicated it to belong to the Siphoviridae family, with the morphological characteristics of a rounded head and a long noncontractile tail. The optimal multiplicity of infection of PW916 was 0.1. Moreover, PW916 was found to be stable under a wide range of temperatures (4–60 °C), pH (4–11) as well as treatment with 1% (v/w) chloroform. The genome of PW916 was determined to be a circular double-stranded structure with a length of 47,760 bp, containing 64 open reading frames that encoded functional and structural proteins, while no antibiotic resistance nor virulence factor genes were detected. The genomic sequencing and phylogenetic tree analysis showed that PW916 was a novel phage belonging to the Siphoviridae family that was closely related to the Stenotrophomonas phage. This is the first study to identify a novel phage infecting the multidrug-resistant P. kaohsiungensi and the findings provide insight into the potential application of PW916 in future phage therapies.
Collapse
|
12
|
Kumar S, Sethi SK. Genome-based reclassification of Streptococcus ursoris as a later heterotypic synonym of Streptococcus ratti. Arch Microbiol 2022; 204:405. [PMID: 35723755 DOI: 10.1007/s00203-022-03012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Among the species of genus Streptococcus two members namely Streptococcus ratti and Streptococcus ursoris were isolated from oral cavity of rat and bear, respectively. Type strain of these members shows a 16S rRNA gene sequence similarity of 98.9%. Based on systematic phylo-taxonogenomics investigations, we could deduce the taxonomic assignment of the members of these species. Genome similarity assessment among the type strain of these members using average nucleotide identity (orthoANI and fastANI), digital DNA-DNA hybridization and average amino acid identity (AAI) were 98.5, 98.3, 88, and 98.3% respectively. All these values exceed the species delineation cutoffs suggesting a unified species. Phylogenetic tree obtained using 16S rRNA gene sequence also indicates the monophyletic nature of the member strains. Such monophyletic taxonomic positioning of the strains was further complemented with the whole genome-based phylogenomic tree. Based on these evidences, we propose S. ursoris should be reclassified as a later heterotypic synonym of S. ratti.
Collapse
Affiliation(s)
- Sanjeet Kumar
- School of Biotechnology, Gangadhar Meher University, Sambalpur, Odisha, 768004, India
| | - Santosh K Sethi
- School of Biotechnology, Gangadhar Meher University, Sambalpur, Odisha, 768004, India.
| |
Collapse
|
13
|
Bansal K, Kumar S, Patil PB. Phylo-Taxonogenomics Supports Revision of Taxonomic Status of 20 Xanthomonas Pathovars to Xanthomonas citri. PHYTOPATHOLOGY 2022; 112:1201-1207. [PMID: 34844415 DOI: 10.1094/phyto-08-21-0342-sc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Based on phylo-taxonogenomics criteria, we present amended descriptions for 20 pathovars to Xanthomonas citri. Incidentally, 18 were first reported from India. Seven out of twenty are classified as X. axonopodis, 12 out of 20 as X. campestris, and one as X. cissicola. In this study, we have generated genome sequence data of four pathovars, and the genomes of the remaining 16 were used from the published data. Comprehensive genome-based phylogenomic and taxonogenomic analyses reveal that all these pathovars belong to X. citri and need to reconcile their taxonomic status. This proposal will aid in systematic studies of a major species and its constitutent members that infect economically important plants.
Collapse
Affiliation(s)
- Kanika Bansal
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Sanjeet Kumar
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Prabhu B Patil
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, 160036, India
| |
Collapse
|
14
|
Bansal K, Kumar S, Patil PP, Sharma S, Patil PB. Genomic data resource of type strains of genus Pseudoxanthomonas. Data Brief 2022; 42:108145. [PMID: 35515983 PMCID: PMC9065704 DOI: 10.1016/j.dib.2022.108145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Genus Pseudoxanthomonas represents a relatively newly characterized group of gamma-proteobacterium of environmental origin. Species of the genus have very similar morphology to strains belonging to Xanthomonas, Xylella and Stenotrophomonas. However, the genome resource of this genus was largely unexplored. The species belonging to the genus are from a wide range of environmental sites including hydrocarbon polluted fields. Here, we have provided the whole genome sequence of all available type strains of the genus of Pseudoxanthomonas. In order to deduce the differences with closely related genera, we have employed the whole genome-based investigation of the type species of genus Pseudoxanthomonas.
Collapse
|
15
|
de Oliveira ACP, Ferreira RM, Ferro MIT, Ferro JA, Zamuner C, Ferreira H, Varani AM. XAC4296 Is a Multifunctional and Exclusive Xanthomonadaceae Gene Containing a Fusion of Lytic Transglycosylase and Epimerase Domains. Microorganisms 2022; 10:1008. [PMID: 35630451 PMCID: PMC9143381 DOI: 10.3390/microorganisms10051008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023] Open
Abstract
Microorganisms have a limited and highly adaptable repertoire of genes capable of encoding proteins containing single or variable multidomains. The phytopathogenic bacteria Xanthomonas citri subsp. citri (X. citri) (Xanthomonadaceae family), the etiological agent of Citrus Canker (CC), presents a collection of multidomain and multifunctional enzymes (MFEs) that remains to be explored. Recent studies have shown that multidomain enzymes that act on the metabolism of the peptidoglycan and bacterial cell wall, belonging to the Lytic Transglycosylases (LTs) superfamily, play an essential role in X. citri biology. One of these LTs, named XAC4296, apart from the Transglycosylase SLT_2 and Peptidoglycan binding-like domains, contains an unexpected aldose 1-epimerase domain linked to the central metabolism; therefore, resembling a canonical MFE. In this work, we experimentally characterized XAC4296 revealing its role as an MFE and demonstrating its probable gene fusion origin and evolutionary history. The XAC4296 is expressed during plant-pathogen interaction, and the Δ4296 mutant impacts CC progression. Moreover, Δ4296 exhibited chromosome segregation and cell division errors, and sensitivity to ampicillin, suggesting not only LT activity but also that the XAC4296 may also contribute to resistance to β-lactams. However, both Δ4296 phenotypes can be restored when the mutant is supplemented with sucrose or glutamic acid as a carbon and nitrogen source, respectively; therefore, supporting the epimerase domain's functional relationship with the central carbon and cell wall metabolism. Taken together, these results elucidate the role of XAC4296 as an MFE in X. citri, also bringing new insights into the evolution of multidomain proteins and antimicrobial resistance in the Xanthomonadaceae family.
Collapse
Affiliation(s)
- Amanda C. P. de Oliveira
- Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil;
- Department of Agricultural and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (R.M.F.); (M.I.T.F.); (J.A.F.)
| | - Rafael M. Ferreira
- Department of Agricultural and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (R.M.F.); (M.I.T.F.); (J.A.F.)
- Graduate Program in Genetics and Plant Breeding, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
| | - Maria Inês T. Ferro
- Department of Agricultural and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (R.M.F.); (M.I.T.F.); (J.A.F.)
| | - Jesus A. Ferro
- Department of Agricultural and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (R.M.F.); (M.I.T.F.); (J.A.F.)
| | - Caio Zamuner
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (C.Z.); (H.F.)
| | - Henrique Ferreira
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (C.Z.); (H.F.)
| | - Alessandro M. Varani
- Department of Agricultural and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (R.M.F.); (M.I.T.F.); (J.A.F.)
| |
Collapse
|
16
|
Kumar S, Bansal K, Sethi SK. Comparative genomics analysis of genus Leuconostoc resolves its taxonomy and elucidates its biotechnological importance. Food Microbiol 2022; 106:104039. [DOI: 10.1016/j.fm.2022.104039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 11/27/2022]
|