1
|
Fu C, Jiang W, Wang C, Song SJ, Tao H, Zhang XG, Li WT, Jin X, Yu BB, Hao JJ, Sun WJ, Bai J, Shi ZZ. AP001885.4 promotes the proliferation of esophageal squamous cell carcinoma cells by histone lactylation- and NF-κB (p65)-dependent transcription activation and METTL3-mediated mRNA stability of c-myc. Anim Cells Syst (Seoul) 2024; 28:536-550. [PMID: 39502790 PMCID: PMC11536669 DOI: 10.1080/19768354.2024.2417458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/02/2024] [Accepted: 10/06/2024] [Indexed: 11/08/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is an aggressive malignant neoplasm, and up to now, the role of long non-coding RNA (lncRNA) AP001885.4 in cancer, including ESCC, is absolutely unclear. The GEPIA database was applied to identify differentially expressed and prognosis-associated genes in esophageal cancer (ESCA). CCK-8, colony formation, Western blot, and qRT-PCR methods were harnessed to investigate the role and mechanism of AP001885.4 in esophageal carcinogenesis. By analyzing TCGA data in the GEPIA database, two lncRNAs were selected. AP001885.4 was overexpressed and positively associated with the unfavorable outcome of ESCC patients, and LINC001786 was under-expressed and negatively linked with the poor prognosis. Knockdown of AP001885.4 suppressed the proliferation and colony formation of ESCC cells. Importantly, the silence of AP001885.4 downregulated c-myc. Mechanically, the knockdown of AP001885.4 reduced METTL3 expression and m6A modification in c-myc mRNA, and METTL3 positively regulated c-myc. Furthermore, the knockdown of AP001885.4 diminished histone lactylation and NF-κB (p65) expression, and the protein lactylation inhibitors (2-DG, 2-deoxy-D-glucose and oxamate) and the NF-κB inhibitor (JSH-23) also lessened c-myc expression. Consequently, our findings suggested that AP001885.4 promoted the proliferation of esophageal squamous cell carcinoma cells by histone lactylation- and NF-κB (p65)-dependent transcription activation and METTL3-mediated mRNA stability of c-myc.
Collapse
Affiliation(s)
- Chuang Fu
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Wen Jiang
- Department of Thoracic Surgery, the Affiliated Hospital of Kunming University of Science and Technology and First People's Hospital of Yunnan Province, Kunming, People’s Republic of China
| | - Chong Wang
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Sheng-Jie Song
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Hao Tao
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Xin-Guo Zhang
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Wen-Ting Li
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Xin Jin
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Bin-Bing Yu
- Department of Anus & Intestine Surgery, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, People’s Republic of China
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, People’s Republic of China
| | - Wen-Juan Sun
- Nephrology Division, Pu'er People’s Hospital, Pu'er, People’s Republic of China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Zhi-Zhou Shi
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| |
Collapse
|
2
|
Li SN, Yang S, Wang HQ, Hui TL, Cheng M, Zhang X, Li BK, Wang GY. Upregulated lncRNA PRNT promotes progression and oxaliplatin resistance of colorectal cancer cells by regulating HIPK2 transcription. World J Gastrointest Oncol 2024; 16:1564-1577. [PMID: 38660648 PMCID: PMC11037075 DOI: 10.4251/wjgo.v16.i4.1564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 02/18/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer and a significant cause of cancer-related mortality globally. Resistance to chemotherapy, especially during CRC treatment, leads to reduced effectiveness of drugs and poor patient outcomes. Long noncoding RNAs (lncRNAs) have been implicated in various pathophysiological processes of tumor cells, including chemotherapy resistance, yet the roles of many lncRNAs in CRC remain unclear. AIM To identify and analyze the lncRNAs involved in oxaliplatin resistance in CRC and to understand the underlying molecular mechanisms influencing this resistance. METHODS Gene Expression Omnibus datasets GSE42387 and GSE30011 were reanalyzed to identify lncRNAs and mRNAs associated with oxaliplatin resistance. Various bioinformatics tools were employed to elucidate molecular mechanisms. The expression levels of lncRNAs and mRNAs were assessed via quantitative reverse transcription-polymerase chain reaction. Functional assays, including MTT, wound healing, and Transwell, were conducted to investigate the functional implications of lncRNA alterations. Interactions between lncRNAs and transcription factors were examined using RIP and luciferase reporter assays, while Western blotting was used to confirm downstream pathways. Additionally, a xenograft mouse model was utilized to study the in vivo effects of lncRNAs on chemotherapy resistance. RESULTS LncRNA prion protein testis specific (PRNT) was found to be upregulated in oxaliplatin-resistant CRC cell lines and negatively correlated with homeodomain interacting protein kinase 2 (HIPK2) expression. PRNT was demonstrated to sponge transcription factor zinc finger protein 184 (ZNF184), which in turn could regulate HIPK2 expression. Altered expression of PRNT influenced CRC cell sensitivity to oxaliplatin, with overexpression leading to decreased sensitivity and decreased expression reducing resistance. Both RIP and luciferase reporter assays indicated that ZNF184 and HIPK2 are targets of PRNT. The PRNT/ZNF184/HIPK2 axis was implicated in promoting CRC progression and oxaliplatin resistance both in vitro and in vivo. CONCLUSION The study concludes that PRNT is upregulated in oxaliplatin-resistant CRC cells and modulates the expression of HIPK2 by sponging ZNF184. This regulatory mechanism enhances CRC progression and resistance to oxaliplatin, positioning PRNT as a promising therapeutic target for CRC patients undergoing oxaliplatin-based chemotherapy.
Collapse
Affiliation(s)
- Sai-Nan Li
- The First Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Shan Yang
- The First Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Hao-Qi Wang
- The First Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Tian-Li Hui
- The First Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Meng Cheng
- The First Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Xi Zhang
- The First Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Bao-Kun Li
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Gui-Ying Wang
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
3
|
Li P, Ding H, Han S, Ding S, Yang Y. Long noncoding RNA LINC00858 aggravates the progression of esophageal squamous cell carcinoma via regulating the miR-425-5p/ABL2 axis. Heliyon 2024; 10:e27337. [PMID: 38496838 PMCID: PMC10944188 DOI: 10.1016/j.heliyon.2024.e27337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most fatal cancers with high morbidity and mortality, which severely affects people's lives. Long intergenic non-protein coding RNA 858 (LINC00858) was confirmed to promote the progression of colorectal cancer and lung cancer. However, the role of lncRNA LINC00858 is still unknown in ESCC. Herein, the main purpose of research was to explore LINC00858 function and its impact on ESCC cell biological behaviors. RT-qPCR was used to test the expression of LINC00858, miR-425-5p and ABL proto-oncogene 2 (ABL2) in ESCC cells. Functional experiments such as EdU assay, CCK-8 assay, transwell assay and Western blot assay were conducted to investigate the biological behaviors of ESCC cells. Luciferase reporter assay and RIP assay were implemented to determine the binding situation among RNAs. LINC00858 expression was abnormally high in ESCC cells and down-regulation of LINC00858 could restrain the proliferation, invasion, migration and EMT process of ESCC cells. Furthermore, miR-425-5p was proved to be sponged by LINC00858 and was down-regulated in ESCC cells. Besides, we discovered that miR-425-5p could target ABL2. Moreover, knockdown of ABL2 reversed the promoting function of miR-425-5p inhibitor on ESCC progression. LINC00858 aggravated ESCC progression via regulating the miR-425-5p/ABL2 axis.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Hui Ding
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Shuangyin Han
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Songze Ding
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Yuxiu Yang
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| |
Collapse
|
4
|
Qiao Z, Li Y, Cheng Y, Li S, Liu S. SHMT2 regulates esophageal cancer cell progression and immune Escape by mediating m6A modification of c-myc. Cell Biosci 2023; 13:203. [PMID: 37932821 PMCID: PMC10629073 DOI: 10.1186/s13578-023-01148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND In recent years, the role of altered cellular metabolism in tumor progression has attracted widespread attention. Related metabolic enzymes have also been considered as potential cancer therapeutic targets. Serine hydroxymethyltransferase 2 (SHMT2) has been reported to be upregulated in several cancers and associated with poor prognosis. However, there are few studies of SHMT2 in esophageal cancer (EC), and the related functions and mechanisms also need to be further explored. METHODS In this study, we first analyzed SHMT2 expression in EC by online database and clinical samples. Then, the biological functions of SHMT2 in EC were investigated by cell and animal experiments. The intracellular m6A methylation modification levels were also evaluated by MeRIP. Linked genes and mechanisms of SHMT2 were analyzed by bioinformatics and rescue experiments. RESULTS We found that SHMT2 expression was abnormally upregulated in EC and associated with poor prognosis. Functionally, SHMT2 silencing suppressed c-myc expression in an m6A-dependent manner, thereby blocking the proliferation, migration, invasion and immune escape abilities of EC cells. Mechanistically, SHMT2 encouraged the accumulation of methyl donor SAM through a one-carbon metabolic network, thereby regulating the m6A modification and stability of c-myc mRNA in a METTL3/FTO/ALKBH5/IGF2BP2-dependent way. In vivo animal experiments also demonstrated that SHMT2 mediated MYC expression by m6A-methylation modification, thus boosting EC tumorigenesis. CONCLUSION In conclusion, our data illustrated that SHMT2 regulated malignant progression and immune escape of EC cell through c-myc m6A modification. These revealed mechanisms related to SHMT2 in EC and maybe offer promise for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Zhe Qiao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, 710004, Xi'an, Shaanxi, China
| | - Yu Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, 710004, Xi'an, Shaanxi, China
| | - Yao Cheng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, 710004, Xi'an, Shaanxi, China
| | - Shaomin Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, 710004, Xi'an, Shaanxi, China
| | - Shiyuan Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, 710004, Xi'an, Shaanxi, China.
| |
Collapse
|