1
|
Wang Y, Yu X, Sun F, Fu Y, Hu T, Shi Q, Man Q. METTL14 Mediates Glut3 m6A methylation to improve osteogenesis under oxidative stress condition. Redox Rep 2025; 30:2435241. [PMID: 39737912 DOI: 10.1080/13510002.2024.2435241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2025] Open
Abstract
OBJECTIVES Bone remodeling imbalance contributes to osteoporosis. Though current medications enhance osteoblast involvement in bone formation, the underlying pathways remain unclear. This study was aimed to explore the pathways involved in bone formation by osteoblasts, we investigate the protective role of glycolysis and N6-methyladenosine methylation (m6A) against oxidative stress-induced impairment of osteogenesis in MC3T3-E1 cells. METHODS We utilized a concentration of 200 μM hydrogen peroxide (H2O2) to establish an oxidative damage model of MC3T3-E1 cells. Subsequently, we examined the alterations in the m6A methyltransferases (METTL3, METTL14), glucose transporter proteins (GLUT1, GLUT3) and validated m6A methyltransferase overexpression in vitro and in an osteoporosis model. The osteoblast differentiation and osteogenesis-related molecules and serum bone resorption markers were measured by biochemical analysis, Alizarin Red S staining, Western blot and ELISA. RESULTS H2O2 treatment inhibited glycolysis and osteoblast differentiation in MC3T3-E1 cells. However, when METTL14 was overexpressed, these changes induced by H2O2 could be mitigated. Our findings indicate that METTL14 promotes GLUT3 expression via YTHDF1, leading to the modulation of various parameters in the H2O2-induced model. Similar positive effects of METTL14 on osteogenesis were observed in an ovariectomized mouse osteoporosis model. DISCUSSION METTL14 could serve as a potential therapeutic approach for enhancing osteoporosis treatment.
Collapse
Affiliation(s)
- Ying Wang
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xueying Yu
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Fenyong Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yan Fu
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Tingting Hu
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Qiqing Shi
- Department of Anesthesiology, Minhang Hospital, Fudan University, Shanghai, People's Republic of China
| | - Qiuhong Man
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Wei N, Lu T, Gu J, Cai H. Lipoxin A4 suppresses neutrophil extracellular traps formation through the FPR2-dependent regulation of METTL3 in ischemic stroke. Brain Res Bull 2025; 220:111178. [PMID: 39706534 DOI: 10.1016/j.brainresbull.2024.111178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND This study aimed to clarify whether the neuroprotective effect of LXA4 is associated with the targeting of neutrophil extracellular traps (NETs) in ischemic stroke (IS). METHODS The MCAO rat model was established to assess cerebral infarction, brain water content and neurological deficits. ELISA was employed to examine the activities of MPO, NE, MMP-9. RT-qPCR and western blot was performed to analyze molecular expressions. A luciferase reporter assay was performed to measure the effect of EGR1 on the METTL3 promoter. The formation of NETs and cell viability were evaluated using immunofluorescence staining and CCK8 assay, respectively. RESULTS LXA4 decreased cerebral infarction and brain water content, improved neurological deficits, and reduced the release of NETs-associated indicators (MPO, NE) in MCAO rats. LXA4 reduced NETs formation, MPO and NE levels in vitro. In addition, LXA4 reduced Fe2 + levels while increasing GPX4, SLC7A11 protein expressions, as well as enhancing cell viability in vitro, suggesting the inhibitory effect of LXA4 on ferroptosis. Notably, METTL3 overexpression produced the opposite effects. Furthermore, the effects of METTL3 overexpression on NETs formation and ferroptosis were partially reversed by LXA4 treatment. The inhibition of METTL3 by LXA4 was found to be dependent on FPR2. In vivo experiments verified that LXA4 inhibited NETs formation through inhibition of METTL3 to alleviate brain injury. CONCLUSION This study demonstrates that LXA4 suppresses NETs formation through the FPR2-dependent regulation of METTL3, thereby alleviating brain injury in IS.
Collapse
Affiliation(s)
- Na Wei
- Department of Neurology, Shanghai Tenth People's Hospital Chongming Branch, 2866 Chongming Road, Shanghai 202157, China
| | - Tan Lu
- Department of Orthopaedics, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui, Henan 453100, China.
| | - JianBang Gu
- Department of Neurology, Shanghai Tenth People's Hospital Chongming Branch, 2866 Chongming Road, Shanghai 202157, China
| | - Huan Cai
- Department of Neurology, Shanghai Tenth People's Hospital Chongming Branch, 2866 Chongming Road, Shanghai 202157, China
| |
Collapse
|
3
|
Liu D, Hu X, Ding X, Li M, Ding L. Inflammatory Effects and Regulatory Mechanisms of Chitinase-3-like-1 in Multiple Human Body Systems: A Comprehensive Review. Int J Mol Sci 2024; 25:13437. [PMID: 39769202 PMCID: PMC11678640 DOI: 10.3390/ijms252413437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
Chitinase-3-like-1 (Chi3l1), also known as YKL-40 or BRP-39, is a highly conserved mammalian chitinase with a chitin-binding ability but no chitinase enzymatic activity. Chi3l1 is secreted by various cell types and induced by several inflammatory cytokines. It can mediate a series of cell biological processes, such as proliferation, apoptosis, migration, differentiation, and polarization. Accumulating evidence has verified that Chi3l1 is involved in diverse inflammatory conditions; however, a systematic and comprehensive understanding of the roles and mechanisms of Chi3l1 in almost all human body system-related inflammatory diseases is still lacking. The human body consists of ten organ systems, which are combinations of multiple organs that perform one or more physiological functions. Abnormalities in these human systems can trigger a series of inflammatory environments, posing serious threats to the quality of life and lifespan of humans. Therefore, exploring novel and reliable biomarkers for these diseases is highly important, with Chi3l1 being one such parameter because of its physiological and pathophysiological roles in the development of multiple inflammatory diseases. Reportedly, Chi3l1 plays an important role in diagnosing and determining disease activity/severity/prognosis related to multiple human body system inflammation disorders. Additionally, many studies have revealed the influencing factors and regulatory mechanisms (e.g., the ERK and MAPK pathways) of Chi3l1 in these inflammatory conditions, identifying potential novel therapeutic targets for these diseases. In this review, we comprehensively summarize the potential roles and underlying mechanisms of Chi3l1 in inflammatory disorders of the respiratory, digestive, circulatory, nervous, urinary, endocrine, skeletal, muscular, and reproductive systems, which provides a more systematic understanding of Chi3l1 in multiple human body system-related inflammatory diseases. Moreover, this article summarizes potential therapeutic strategies for inflammatory diseases in these systems on the basis of the revealed roles and mechanisms mediated by Chi3l1.
Collapse
Affiliation(s)
- Dong Liu
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| | - Xin Hu
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Ecosecurity, Yunnan University, Kunming 650500, China;
| | - Xiao Ding
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Ming Li
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| | - Lei Ding
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| |
Collapse
|
4
|
Wu ZL, Wang KP, Chen YJ, Song W, Liu Y, Zhou KS, Mao P, Ma Z, Zhang HH. Knocking down EGR1 inhibits nucleus pulposus cell senescence and mitochondrial damage through activation of PINK1-Parkin dependent mitophagy, thereby delaying intervertebral disc degeneration. Free Radic Biol Med 2024; 224:9-22. [PMID: 39151834 DOI: 10.1016/j.freeradbiomed.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Mitophagy plays a crucial role in maintaining the homeostasis of intervertebral disc (IVD). Early Growth Response 1 (EGR1), a conservative transcription factor, is commonly upregulated under oxidative stress conditions and participates in regulating cellular senescence, apoptosis, and inflammatory responses. However, the specific role of EGR1 in nucleus pulposus (NP) cell senescence and mitophagy remains unclear. In this study, through bioinformatics analysis and validation using human tissue specimens, we found that EGR1 is significantly upregulated in IVD degeneration (IDD). Further experimental results demonstrate that knockdown of EGR1 inhibits TBHP-induced NP cell senescence and mitochondrial dysfunction while promoting the activation of mitophagy. The protective effect of EGR1 knockdown on NP cell senescence and mitochondrion disappears upon inhibition of mitophagy with mdivi1. Mechanistic studies reveal that EGR1 suppresses NP cell senescence and mitochondrial dysfunction by modulating the PINK1-Parkin dependent mitophagy pathway. Additionally, EGR1 knockdown delays acupuncture-induced IDD in rats. In conclusion, our study demonstrates that under TBHP-induced oxidative stress, EGR1 knockdown mitigates NP cell senescence and mitochondrial dysfunction through the PINK1-Parkin dependent mitophagy pathway, thereby alleviating IDD.
Collapse
Affiliation(s)
- Zuo-Long Wu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Ke-Ping Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China.
| | - Ya-Jun Chen
- Lanzhou Maternal and Child Health Hospital, Lanzhou, China
| | - Wei Song
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yong Liu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Kai-Sheng Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Peng Mao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhong Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Hai-Hong Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
5
|
Sumague TS, Niazy AA, Lambarte RNA, Nafisah IA, Gusnanto A. Influence of budesonide and fluticasone propionate in the anti-osteoporotic potential in human bone marrow-derived mesenchymal stem cells via stimulation of osteogenic differentiation. Heliyon 2024; 10:e39475. [PMID: 39497989 PMCID: PMC11532851 DOI: 10.1016/j.heliyon.2024.e39475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/24/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024] Open
Abstract
Osteoporosis is a prevalent bone condition with adverse effects observed in patients undergoing long-term glucocorticoid therapy, resulting in bone demineralization and tissue loss. There has been limited studies on the global response to dexamethasone in terms of comparing its expression profile to other common glucocorticoids during osteogenic differentiation. This study focused on the downregulated gene expression profile of glucocorticoid compounds; dexamethasone, budesonide, and fluticasone propionate, during osteogenic differentiation to elucidate the related target genes and pathways associated with the anti-osteoporotic potential of telomerase-immortalized human bone marrow-derived mesenchymal stem cells using a bioinformatics approach. Based on gene expression microarrays experiments and bioinformatics analysis, several key genes involved in the regulation of osteogenic differentiation and osteoporosis development in mesenchymal stem cells that were targeted by these specific glucocorticoids were determined. Network analysis using GeneCards, OMIM, and CTD databases were performed and osteoporosis-related genes were identified. LIMMA and moderated Welch test R packages were performed to determine significant downregulated differentially expressed genes for each glucocorticoid treatment. A total of 479 (dexamethasone), 84 (budesonide), and 889 (fluticasone propionate) differentially expressed genes were identified for each glucocorticoid, of which 35 common genes overlapped. Enrichment pathway analysis was conducted using Metascape, and protein-protein interaction networks were constructed using the STRING database and Cytoscape software to determine potential target genes involved with osteoporosis. Enrichment pathway analysis revealed genes involved in 3 Reactome pathways namely cytokine signaling in immune system, immune system and the interferon alpha/beta signaling pathways and identified 10 hub genes based on the PPI network to determine potential target pathways associated with osteoporosis. These findings provide preliminary insights into the relationship between the key target genes of dexamethasone, budesonide, and fluticasone propionate, and the pathways associated with regulated osteoporosis metabolism during osteogenic differentiation.
Collapse
Affiliation(s)
- Terrence Suministrado Sumague
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, King Saud University Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Abdurahman A. Niazy
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, King Saud University Medical City, Riyadh, Kingdom of Saudi Arabia
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Rhodanne Nicole A. Lambarte
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, King Saud University Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Ibrahim A. Nafisah
- Department of Statistics and Operations Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
6
|
Liu W, Xiong Z, Fu T, Yang J, Zou J, Wu Y, Kuang L, Wang Q, Li S, Le A. Regulation of renal ischemia-reperfusion injury and tubular epithelial cell ferroptosis by pparγ m6a methylation: mechanisms and therapeutic implications. Biol Direct 2024; 19:99. [PMID: 39444036 PMCID: PMC11515743 DOI: 10.1186/s13062-024-00515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/08/2024] [Indexed: 10/25/2024] Open
Abstract
This study aimed to elucidate the role and underlying mechanisms of Peroxisome proliferator-activated receptor gamma (PPARγ) and its m6A methylation in renal ischemia-reperfusion (I/R) injury and ferroptosis of tubular epithelial cells (TECs). High-throughput transcriptome sequencing was performed on renal tissue samples from I/R injury models and sham-operated mice, complemented by in vivo and in vitro experiments focusing on the PPARγ activator Rosiglitazone and the manipulation of METTL14 and IGF2BP2 expression. Key evaluations included renal injury assessment, ferroptosis indicator measurement, and m6A methylation analysis of PPARγ. Our findings highlight the critical role of the PPARγ pathway and ferroptosis in renal I/R injury, with Rosiglitazone ameliorating renal damage and TEC ferroptosis. METTL14-mediated m6A methylation of PPARγ, dependent on IGF2BP2, emerged as a pivotal regulator of PPARγ expression, renal injury, and ferroptosis. This study reveals that PPARγ m6A methylation, orchestrated by METTL14 through an IGF2BP2-dependent mechanism, plays a crucial role in mitigating renal I/R injury and TEC ferroptosis. These insights offer promising avenues for therapeutic strategies targeting acute kidney injury.
Collapse
Affiliation(s)
- Wei Liu
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Ziqing Xiong
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Tianmei Fu
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Juan Yang
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Juan Zou
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Yize Wu
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Linju Kuang
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Qian Wang
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Song Li
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Aiping Le
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
7
|
Yao J, Xu L, Zhao Z, Dai D, Zhan S, Cao J, Guo J, Zhong T, Wang L, Li L, Zhang H. Fat Mass- and Obesity-Associated Protein (FTO) Promotes the Proliferation of Goat Skeletal Muscle Satellite Cells by Stabilizing DAG1 mRNA in an IGF2BP1-Related m 6A Manner. Int J Mol Sci 2024; 25:9804. [PMID: 39337293 PMCID: PMC11432635 DOI: 10.3390/ijms25189804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Skeletal muscle development is spotlighted in mammals since it closely relates to animal health and economic benefits to the breeding industry. Researchers have successfully unveiled many regulatory factors and mechanisms involving myogenesis. However, the effect of N6-methyladenosine (m6A) modification, especially demethylase and its regulated genes, on muscle development remains to be further explored. Here, we found that the typical demethylase FTO (fat mass- and obesity-associated protein) was highly enriched in goats' longissimus dorsi (LD) muscles. In addition, the level of m6A modification on transcripts was negatively regulated by FTO during the proliferation of goat skeletal muscle satellite cells (MuSCs). Moreover, a deficiency of FTO in MuSCs significantly retarded their proliferation and promoted the expression of dystrophin-associated protein 1 (DAG1). m6A modifications of DAG1 mRNA were efficiently altered by FTO. Intriguingly, the results of DAG1 levels and its m6A enrichment from FB23-2 (FTO demethylase inhibitor)-treated cells were consistent with those of the FTO knockdown, indicating that the regulation of FTO on DAG1 depended on m6A modification. Further experiments showed that interfering FTO improved m6A modification at site DAG1-122, recognized by Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) and consequently stabilized DAG1 transcripts. Our study suggests that FTO promotes the proliferation of MuSCs by regulating the expression of DAG1 through m6A modification. This will extend our knowledge of the m6A-related mechanism of skeletal muscle development in animals.
Collapse
Affiliation(s)
- Jiangzhen Yao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (L.X.); (Z.Z.); (D.D.); (S.Z.); (J.C.); (J.G.); (T.Z.); (L.W.)
| | - Liang Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (L.X.); (Z.Z.); (D.D.); (S.Z.); (J.C.); (J.G.); (T.Z.); (L.W.)
| | - Zihao Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (L.X.); (Z.Z.); (D.D.); (S.Z.); (J.C.); (J.G.); (T.Z.); (L.W.)
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (L.X.); (Z.Z.); (D.D.); (S.Z.); (J.C.); (J.G.); (T.Z.); (L.W.)
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (L.X.); (Z.Z.); (D.D.); (S.Z.); (J.C.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (L.X.); (Z.Z.); (D.D.); (S.Z.); (J.C.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (L.X.); (Z.Z.); (D.D.); (S.Z.); (J.C.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (L.X.); (Z.Z.); (D.D.); (S.Z.); (J.C.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (L.X.); (Z.Z.); (D.D.); (S.Z.); (J.C.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (L.X.); (Z.Z.); (D.D.); (S.Z.); (J.C.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (L.X.); (Z.Z.); (D.D.); (S.Z.); (J.C.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Li F, Xie X, Xu X, Zou X. Water-soluble biopolymers calcium polymalate derived from fermentation broth of Aureobasidium pullulans markedly alleviates osteoporosis and fatigue. Int J Biol Macromol 2024; 268:132013. [PMID: 38697412 DOI: 10.1016/j.ijbiomac.2024.132013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/02/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Osteoporosis is a prevalent condition characterized by bone loss and decreased skeletal strength, resulting in an elevated risk of fractures. Calcium plays a crucial role in preventing and managing osteoporosis. However, traditional calcium supplements have limited bioavailability, poor solubility, and adverse effects. In this study, we isolated a natural soluble biopolymer, calcium polymalate (PMACa), from the fermentation broth of the fungus Aureobasidium pullulans, to investigate its potential as an anti-osteoporosis therapeutic agent. Characterization revealed that linear PMA-Ca chains juxtaposed to form a porous, rod-like state, in the presence of Ca2+. In vivo mouse models demonstrated that PMA-Ca significantly promoted the conversion of serum calcium into bone calcium, and stimulated bone growth and osteogenesis. Additionally, PMA-Ca alleviated exercise fatigue in mice by facilitating the removal of essential metabolites, such as serum lactate (BLA) and blood urea nitrogen (BUN), from their bloodstream. In vitro studies further showed that PMA-Ca strengthened osteoblast cell activity, proliferation, and mineralization. And PMA-Ca upregulated the expression of some genes involved in osteoblast differentiation, indicating a potential correlation between bone formation and PMACa. These findings indicate that soluble PMA-Ca has the potential to be a novel biopolymer-based calcium supplement with sustainable production sourced from the fermentation industry.
Collapse
Affiliation(s)
- Fulin Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xin Xie
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xingran Xu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Xiang Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; Dongguan Juwei Biotechnology Co., Dongguan 523808, China.
| |
Collapse
|
9
|
Liang J, Yi Q, Liu Y, Li J, Yang Z, Sun W, Sun W. Recent advances of m6A methylation in skeletal system disease. J Transl Med 2024; 22:153. [PMID: 38355483 PMCID: PMC10868056 DOI: 10.1186/s12967-024-04944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Skeletal system disease (SSD) is defined as a class of chronic disorders of skeletal system with poor prognosis and causes heavy economic burden. m6A, methylation at the N6 position of adenosine in RNA, is a reversible and dynamic modification in posttranscriptional mRNA. Evidences suggest that m6A modifications play a crucial role in regulating biological processes of all kinds of diseases, such as malignancy. Recently studies have revealed that as the most abundant epigentic modification, m6A is involved in the progression of SSD. However, the function of m6A modification in SSD is not fully illustrated. Therefore, make clear the relationship between m6A modification and SSD pathogenesis might provide novel sights for prevention and targeted treatment of SSD. This article will summarize the recent advances of m6A regulation in the biological processes of SSD, including osteoporosis, osteosarcoma, rheumatoid arthritis and osteoarthritis, and discuss the potential clinical value, research challenge and future prospect of m6A modification in SSD.
Collapse
Affiliation(s)
- Jianhui Liang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646099, Sichuan, China
| | - Yang Liu
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Jiachen Li
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Zecheng Yang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
10
|
Zheng H, Liu Y, Deng Y, Li Y, Liu S, Yang Y, Qiu Y, Li B, Sheng W, Liu J, Peng C, Wang W, Yu H. Recent advances of NFATc1 in rheumatoid arthritis-related bone destruction: mechanisms and potential therapeutic targets. Mol Med 2024; 30:20. [PMID: 38310228 PMCID: PMC10838448 DOI: 10.1186/s10020-024-00788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by inflammation of the synovial tissue and joint bone destruction, often leading to significant disability. The main pathological manifestation of joint deformity in RA patients is bone destruction, which occurs due to the differentiation and proliferation of osteoclasts. The transcription factor nuclear factor-activated T cell 1 (NFATc1) plays a crucial role in this process. The regulation of NFATc1 in osteoclast differentiation is influenced by three main factors. Firstly, NFATc1 is activated through the upstream nuclear factor kappa-B ligand (RANKL)/RANK signaling pathway. Secondly, the Ca2+-related co-stimulatory signaling pathway amplifies NFATc1 activity. Finally, negative regulation of NFATc1 occurs through the action of cytokines such as B-cell Lymphoma 6 (Bcl-6), interferon regulatory factor 8 (IRF8), MAF basic leucine zipper transcription factor B (MafB), and LIM homeobox 2 (Lhx2). These three phases collectively govern NFATc1 transcription and subsequently affect the expression of downstream target genes including TRAF6 and NF-κB. Ultimately, this intricate regulatory network mediates osteoclast differentiation, fusion, and the degradation of both organic and inorganic components of the bone matrix. This review provides a comprehensive summary of recent advances in understanding the mechanism of NFATc1 in the context of RA-related bone destruction and discusses potential therapeutic agents that target NFATc1, with the aim of offering valuable insights for future research in the field of RA. To assess their potential as therapeutic agents for RA, we conducted a drug-like analysis of potential drugs with precise structures.
Collapse
Affiliation(s)
- Hao Zheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuexuan Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yasi Deng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yunzhe Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shiqi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yong Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yun Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jinzhi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Huanghe Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|