1
|
Song S, Jung S, Kwon M. Expanding roles of centrosome abnormalities in cancers. BMB Rep 2023; 56:216-224. [PMID: 36945828 PMCID: PMC10140484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/23/2023] Open
Abstract
Centrosome abnormalities are hallmarks of human cancers. Structural and numerical centrosome abnormalities correlate with tumor aggressiveness and poor prognosis, implicating that centrosome abnormalities could be a cause of tumorigenesis. Since Boveri made his pioneering recognition of the potential causal link between centrosome abnormalities and cancer more than a century ago, there has been significant progress in the field. Here, we review recent advances in the understanding of the causes and consequences of centrosome abnormalities and their connection to cancers. Centrosome abnormalities can drive the initiation and progression of cancers in multiple ways. For example, they can generate chromosome instability through abnormal mitosis, accelerating cancer genome evolution. Remarkably, it is becoming clear that the mechanisms by which centrosome abnormalities promote several steps of tumorigenesis are far beyond what Boveri had initially envisioned. We highlight various cancer-promoting mechanisms exerted by cells with centrosome abnormalities and how these cells possessing oncogenic potential can be monitored. [BMB Reports 2023; 56(4): 216-224].
Collapse
Affiliation(s)
- Soohyun Song
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Surim Jung
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Mijung Kwon
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
2
|
Chen Y, Li C, Wang N, Wu Z, Zhang J, Yan J, Wei Y, Peng Q, Qi J. Identification of LINC00654-NINL Regulatory Axis in Diffuse Large B-Cell Lymphoma In Silico Analysis. Front Oncol 2022; 12:883301. [PMID: 35719990 PMCID: PMC9204339 DOI: 10.3389/fonc.2022.883301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/22/2022] [Indexed: 12/13/2022] Open
Abstract
Background The long non-coding RNA (lncRNA)-mRNA regulation network plays an important role in the development of diffuse large B-cell lymphoma (DLBCL). This study uses bioinformatics to find an innovative regulation axis in DLBCL that will provide a positive reference for defining the mechanism of disease progression. Methods Batch Cox regression was used to screen prognosis-related lncRNAs, and a random forest model was used to identify hub lncRNA. The clinical value of the lncRNA was evaluated and Spearman correlation analysis was used to predict the candidate target genes. Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were used to define the biological function of the lncRNA. A batch Cox regression model, expression validation, and Spearman correlation analysis were used to select the best downstream target genes. The expression and prognostic value validation of this gene was conducted using public data. Gene Set Enrichment Analysis (GSEA) was performed to explore potential mechanisms for this gene in DLBCL. Results LINC00654 was identified as the hub lncRNA and 1443 mRNAs were selected as downstream target genes of the lncRNA. The target genes were enriched in the regulation of GTPase and Notch signaling pathways. After validation, the ninein-like (NINL) gene was selected as the potential target of LINC00654 and the LINC00654-NINL axis was constructed. Patients with better responses to therapy were shown to have high NINL gene expression (p-value = 0.036). NINL also had high expression in the DB cell line and low expression in the OCILY3 cell line. Survival analysis showed that high NINL expression was a risk factor for overall survival (OS) and disease-specific survival (DSS) within older patients and those with advanced-stage cancer. GSEA results showed that NINL may be involved in neutrophil-mediated immunity and NF-κB signaling. Conclusion This study identified a novel LncRNA00654-NINL regulatory axis in DLBCL, which could provide a favorable reference for exploring the possible mechanisms of disease progression.
Collapse
Affiliation(s)
- Yinchu Chen
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College, WuHu, China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| | - Nana Wang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College, WuHu, China
| | - Zhenghao Wu
- Department of Clinical and Surgery, Moscow State First Medical University, Moscow, Russia
| | - Jin Zhang
- Department of Surgery, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jiawei Yan
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College, WuHu, China
| | - Yuanfeng Wei
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College, WuHu, China
| | - Qunlong Peng
- College of Pharmacy, Xiangnan University, Chenzhou, China
| | - Jing Qi
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College, WuHu, China
| |
Collapse
|
3
|
Berkel C, Cacan E. Copy number and expression of CEP89, a protein required for ciliogenesis, are increased and predict poor prognosis in patients with ovarian cancer. Cell Biochem Funct 2022; 40:298-309. [PMID: 35285957 DOI: 10.1002/cbf.3694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 11/10/2022]
Abstract
CEP89 (centrosomal protein 89) is required for ciliogenesis and mitochondrial metabolism, but its role in cancer has yet to be clarified. We report that CEP89 is overexpressed in ovarian cancer (OC) compared to normal ovaries. Likewise, its expression is higher in malignant ovarian tumors than in borderline ovarian tumors with low malignant potential. More than a quarter of patients with OC have copy number gains in the CEP89 gene, and patients with high expression have more than a year shorter overall survival compared to those with low expression. Moreover, we found that CEP89 can be considered as a prognostic marker for poor overall survival in patients with OC, after adjusting for tumor stage and residual tumor. Nine out of the top 10 protein interactors of CEP89 have the highest percentage of total copy number variation (CNV) events in OC among all other cancer types. Furthermore, CEP89 messenger RNA (mRNA) levels are higher in OC patients with disease recurrence compared to those with no recurrence. We also analyzed CEP89 levels in OC cell lines in terms of CNV, mRNA, and protein levels; and observed that the FUOV-1 cell line has the highest levels among cell lines that originated from primary sites. Our study suggests that CEP89 may be a valuable prognostic predictor for the overall survival of patients with OC, and it could also be a novel therapeutic target in this malignancy.
Collapse
Affiliation(s)
- Caglar Berkel
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Ercan Cacan
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
4
|
Zhang Y, Tian J, Qu C, Peng Y, Lei J, Sun L, Zong B, Liu S. A look into the link between centrosome amplification and breast cancer. Biomed Pharmacother 2020; 132:110924. [PMID: 33128942 DOI: 10.1016/j.biopha.2020.110924] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Centrosome amplification (CA) is a common feature of human tumors, but it is not clear whether this is a cause or a consequence of cancer. The centrosome amplification observed in tumor cells may be explained by a series of events, such as failure of cell division, dysregulation of centrosome cycle checkpoints, and de novo centriole biogenesis disorder. The formation and progression of breast cancer are characterized by genomic abnormality. The centrosomes in breast cancer cells show characteristic structural aberrations, caused by centrosome amplification, which include: an increase in the number and volume of centrosomes, excessive increase of pericentriolar material (PCM), inappropriate phosphorylation of centrosomal molecular, and centrosome clustering formation induced by the dysregulation of important genes. The mechanism of intracellular centrosome amplification, the impact of which on breast cancer and the latest breast cancer target treatment options for centrosome amplification are exhaustively elaborated in this review.
Collapse
Affiliation(s)
- Yingzi Zhang
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Jiao Tian
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Chi Qu
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Yang Peng
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Jinwei Lei
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Lu Sun
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Beige Zong
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Shengchun Liu
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
5
|
LoMastro GM, Holland AJ. The Emerging Link between Centrosome Aberrations and Metastasis. Dev Cell 2019; 49:325-331. [PMID: 31063752 PMCID: PMC6506172 DOI: 10.1016/j.devcel.2019.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/14/2019] [Accepted: 03/31/2019] [Indexed: 12/15/2022]
Abstract
Centrosome aberrations are commonly observed in human tumors and correlate with tumor aggressiveness and poor prognosis. Extra centrosomes drive mitotic errors that have been implicated in promoting tumorigenesis in mice. However, centrosome aberrations can also disrupt tissue architecture and confer invasive properties that may facilitate the dissemination of metastatic cells. Recent work has shown that centrosome defects facilitate invasion through cell-autonomous and non-cell-autonomous mechanisms, suggesting cancer cells can benefit from centrosome aberrations present in a subset of the tumor cell population. Here, we discuss how centrosome defects promote invasive behaviors that may contribute to initial steps in the metastatic cascade.
Collapse
Affiliation(s)
- Gina M LoMastro
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Jusino S, Fernández-Padín FM, Saavedra HI. Centrosome aberrations and chromosome instability contribute to tumorigenesis and intra-tumor heterogeneity. ACTA ACUST UNITED AC 2018; 4. [PMID: 30381801 PMCID: PMC6205736 DOI: 10.20517/2394-4722.2018.24] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Centrosomes serve as the major microtubule organizing centers in cells and thereby contribute to cell shape, polarity, and motility. Also, centrosomes ensure equal chromosome segregation during mitosis. Centrosome aberrations arise when the centrosome cycle is deregulated, or as a result of cytokinesis failure. A long-standing postulate is that centrosome aberrations are involved in the initiation and progression of cancer. However, this notion has been a subject of controversy because until recently the relationship has been correlative. Recently, it was shown that numerical or structural centrosome aberrations can initiate tumors in certain tissues in mice, as well as invasion. Particularly, we will focus on centrosome amplification and chromosome instability as drivers of intra-tumor heterogeneity and their consequences in cancer. We will also discuss briefly the controversies surrounding this theory to highlight the fact that the role of both centrosome amplification and chromosome instability in cancer is highly context-dependent. Further, we will discuss single-cell sequencing as a novel technique to understand intra-tumor heterogeneity and some therapeutic approaches to target chromosome instability.
Collapse
Affiliation(s)
- Shirley Jusino
- Basic Sciences Department, Division of Pharmacology and Toxicology, Ponce Health Sciences University, Ponce Research Institute, Ponce, PR 00732, USA
| | - Fabiola M Fernández-Padín
- Basic Sciences Department, Division of Pharmacology and Toxicology, Ponce Health Sciences University, Ponce Research Institute, Ponce, PR 00732, USA
| | - Harold I Saavedra
- Basic Sciences Department, Division of Pharmacology and Toxicology, Ponce Health Sciences University, Ponce Research Institute, Ponce, PR 00732, USA
| |
Collapse
|
7
|
Ganier O, Schnerch D, Oertle P, Lim RY, Plodinec M, Nigg EA. Structural centrosome aberrations promote non-cell-autonomous invasiveness. EMBO J 2018; 37:embj.201798576. [PMID: 29567643 PMCID: PMC5920242 DOI: 10.15252/embj.201798576] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/14/2018] [Accepted: 02/27/2018] [Indexed: 12/12/2022] Open
Abstract
Centrosomes are the main microtubule‐organizing centers of animal cells. Although centrosome aberrations are common in tumors, their consequences remain subject to debate. Here, we studied the impact of structural centrosome aberrations, induced by deregulated expression of ninein‐like protein (NLP), on epithelial spheres grown in Matrigel matrices. We demonstrate that NLP‐induced structural centrosome aberrations trigger the escape (“budding”) of living cells from epithelia. Remarkably, all cells disseminating into the matrix were undergoing mitosis. This invasive behavior reflects a novel mechanism that depends on the acquisition of two distinct properties. First, NLP‐induced centrosome aberrations trigger a re‐organization of the cytoskeleton, which stabilizes microtubules and weakens E‐cadherin junctions during mitosis. Second, atomic force microscopy reveals that cells harboring these centrosome aberrations display increased stiffness. As a consequence, mitotic cells are pushed out of mosaic epithelia, particularly if they lack centrosome aberrations. We conclude that centrosome aberrations can trigger cell dissemination through a novel, non‐cell‐autonomous mechanism, raising the prospect that centrosome aberrations contribute to the dissemination of metastatic cells harboring normal centrosomes.
Collapse
Affiliation(s)
| | | | - Philipp Oertle
- Biozentrum, University of Basel, Basel, Switzerland.,Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Roderick Yh Lim
- Biozentrum, University of Basel, Basel, Switzerland.,Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Marija Plodinec
- Biozentrum, University of Basel, Basel, Switzerland.,Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Erich A Nigg
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Shi X, Sun X. Regulation of paclitaxel activity by microtubule-associated proteins in cancer chemotherapy. Cancer Chemother Pharmacol 2017; 80:909-917. [PMID: 28741098 DOI: 10.1007/s00280-017-3398-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/17/2017] [Indexed: 11/30/2022]
Abstract
Microtubules, highly dynamic components of the cytoskeleton, participate in diverse cellular activities such as mitosis, cell migration, and intracellular trafficking. Dysregulation of microtubule dynamics contributes to the development of serious diseases, including cancer. The dynamic properties and functions of microtubule network are regulated by microtubule-associated proteins. Paclitaxel, an anti-microtubule agent of the taxane family, has shown a success in clinical treatment of many cancer patients. However, the variable response activity of patients and acquired resistance to paclitaxel limit the clinical use of the drug. Accumulating studies show that microtubule-associated proteins can regulate paclitaxel sensitivity in a wide range of cancer types. In this review, we will describe the roles of various microtubule-associated proteins in the regulation of paclitaxel in cancers. Particularly, we will focus on the modulation of centrosomal proteins in paclitaxel resistance. Improved understandings of how these proteins act might predict treatment responses and provide insights into more rational chemotherapeutic regimens in clinical practice.
Collapse
Affiliation(s)
- Xingjuan Shi
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, 210096, China.
| | - Xiaoou Sun
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Kowanda M, Bergalet J, Wieczorek M, Brouhard G, Lécuyer É, Lasko P. Loss of function of the Drosophila Ninein-related centrosomal protein Bsg25D causes mitotic defects and impairs embryonic development. Biol Open 2016; 5:1040-51. [PMID: 27422905 PMCID: PMC5004617 DOI: 10.1242/bio.019638] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The centrosome-associated proteins Ninein (Nin) and Ninein-like protein (Nlp) play significant roles in microtubule stability, nucleation and anchoring at the centrosome in mammalian cells. Here, we investigate Blastoderm specific gene 25D (Bsg25D), which encodes the only Drosophila protein that is closely related to Nin and Nlp. In early embryos, we find that Bsg25D mRNA and Bsg25D protein are closely associated with centrosomes and astral microtubules. We show that sequences within the coding region and 3′UTR of Bsg25D mRNAs are important for proper localization of this transcript in oogenesis and embryogenesis. Ectopic expression of eGFP-Bsg25D from an unlocalized mRNA disrupts microtubule polarity in mid-oogenesis and compromises the distribution of the axis polarity determinant Gurken. Using total internal reflection fluorescence microscopy, we show that an N-terminal fragment of Bsg25D can bind microtubules in vitro and can move along them, predominantly toward minus-ends. While flies homozygous for a Bsg25D null mutation are viable and fertile, 70% of embryos lacking maternal and zygotic Bsg25D do not hatch and exhibit chromosome segregation defects, as well as detachment of centrosomes from mitotic spindles. We conclude that Bsg25D is a centrosomal protein that, while dispensable for viability, nevertheless helps ensure the integrity of mitotic divisions in Drosophila. Summary: In humans, mutations in Ninein or Ninein-like protein result in microcephaly and other severe diseases. We show that while flies lacking the Ninein orthologue can survive, many die as embryos with defects in mitosis.
Collapse
Affiliation(s)
- Michelle Kowanda
- Department of Biology, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Julie Bergalet
- RNA Biology Unit, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Michal Wieczorek
- Department of Biology, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Gary Brouhard
- Department of Biology, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Éric Lécuyer
- RNA Biology Unit, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada Département de Biochimie, Université de Montréal, Montréal, Québec H3T 1J4, Canada Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Paul Lasko
- Department of Biology, McGill University, Montréal, Québec H3G 0B1, Canada
| |
Collapse
|
10
|
Mitotic regulator Nlp interacts with XPA/ERCC1 complexes and regulates nucleotide excision repair (NER) in response to UV radiation. Cancer Lett 2016; 373:214-21. [PMID: 26805762 DOI: 10.1016/j.canlet.2016.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/10/2016] [Accepted: 01/11/2016] [Indexed: 11/22/2022]
Abstract
Cellular response to DNA damage, including ionizing radiation (IR) and UV radiation, is critical for the maintenance of genomic fidelity. Defects of DNA repair often result in genomic instability and malignant cell transformation. Centrosomal protein Nlp (ninein-like protein) has been characterized as an important cell cycle regulator that is required for proper mitotic progression. In this study, we demonstrate that Nlp is able to improve nucleotide excision repair (NER) activity and protects cells against UV radiation. Upon exposure of cells to UVC, Nlp is translocated into the nucleus. The C-terminus (1030-1382) of Nlp is necessary and sufficient for its nuclear import. Upon UVC radiation, Nlp interacts with XPA and ERCC1, and enhances their association. Interestingly, down-regulated expression of Nlp is found to be associated with human skin cancers, indicating that dysregulated Nlp might be related to the development of human skin cancers. Taken together, this study identifies mitotic protein Nlp as a new and important member of NER pathway and thus provides novel insights into understanding of regulatory machinery involved in NER.
Collapse
|
11
|
Structural centrosome aberrations favor proliferation by abrogating microtubule-dependent tissue integrity of breast epithelial mammospheres. Oncogene 2015; 35:2711-22. [PMID: 26364601 PMCID: PMC4893635 DOI: 10.1038/onc.2015.332] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/09/2015] [Accepted: 07/17/2015] [Indexed: 12/25/2022]
Abstract
Structural centrosome aberrations are frequently observed in early stage carcinomas, but their role in malignant transformation is poorly understood. Here, we examined the impact of overexpression of Ninein-like protein (Nlp) on the architecture of polarized epithelia in three-dimensional mammospheres. When Nlp was overexpressed to levels resembling those seen in human tumors, it formed striking centrosome-related bodies (CRBs), which sequestered Ninein and affected the kinetics of microtubule (MT) nucleation and release. In turn, the profound reorganization of the MT cytoskeleton resulted in mislocalization of several adhesion and junction proteins as well as the tumor suppressor Scribble, resulting in the disruption of epithelial polarity, cell-cell interactions and mammosphere architecture. Remarkably, cells harboring Nlp-CRBs displayed an enhanced proliferative response to epidermal growth factor. These results demonstrate that structural centrosome aberrations cause not only the disruption of epithelial polarity but also favor overproliferation, two phenotypes typically associated with human carcinomas.
Collapse
|
12
|
Liu Q, Wang X, Lv M, Mu D, Wang L, Zuo W, Yu Z. Effects of the ninein-like protein centrosomal protein on breast cancer cell invasion and migration. Mol Med Rep 2015; 12:1659-64. [PMID: 25901761 PMCID: PMC4464297 DOI: 10.3892/mmr.2015.3650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 02/17/2015] [Indexed: 12/19/2022] Open
Abstract
To investigate the effects of the centrosomal protein, ninein-like protein (Nlp), on the proliferation, invasion and metastasis of MCF-7 breast cancer cells, the present study established green fluorescent protein (GFP)-containing MCF7 plasmids with steady and overexpression of Nlp (MCG7-GFP-N1p) and blank plasmids (MCF7-GFP) using lentiviral transfection technology in MCF7 the breast cancer cell line. The expression of Nlp was determined by reverse transcription-quantitative polymerase chain reaction and western blott analysis. Differences in levels of proliferation, invasion and metastasis between the MCF7-GFP-Nlp group and MCF-GFP group were compared using MTT, plate colony formation and Transwell migration assays. The cell growth was more rapid and the colony forming rate was markedly increased in the MCF7-GFP-Nlp group (P<0.05) compared with the MCF7-GFP group. The number of cells in the MCF-GFP-Nlp and MCF7-GFP groups transferred across membranes were 878±18.22 and 398±8.02, respectively, in the migration assay. The invasive capacity was significantly increased in the MCF7-GFP-Nlp group (P<0.05) compared with the MCF7-GFP group. The western blotting results demonstrated high expression levels of C-X-C chemokine receptor type 4 in the MCF7-GFP-Nlp group. The increased expression of Nlp was associated with an increase in MCF7 cell proliferation, invasion and metastasis, which indicated that Nlp promoted breast tumorigenesis and may be used as a potent biological index to predict breast cancer metastasis and develop therapeutic regimes.
Collapse
Affiliation(s)
- Qi Liu
- Department of II, Shandong Breast Center of Prevention and Treatment, Shandong Cancer Hospital, Jinan, Shandong 250117, P.R. China
| | - Xinzhao Wang
- Department of II, Shandong Breast Center of Prevention and Treatment, Shandong Cancer Hospital, Jinan, Shandong 250117, P.R. China
| | - Minlin Lv
- Clinical Laboratory, Haiyang People's Hospital, Yantai, Shandong 265100, P.R. China
| | - Dianbin Mu
- Department of II, Shandong Breast Center of Prevention and Treatment, Shandong Cancer Hospital, Jinan, Shandong 250117, P.R. China
| | - Leilei Wang
- Department of II, Shandong Breast Center of Prevention and Treatment, Shandong Cancer Hospital, Jinan, Shandong 250117, P.R. China
| | - Wensu Zuo
- Department of II, Shandong Breast Center of Prevention and Treatment, Shandong Cancer Hospital, Jinan, Shandong 250117, P.R. China
| | - Zhiyong Yu
- Department of II, Shandong Breast Center of Prevention and Treatment, Shandong Cancer Hospital, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
13
|
Oncogenes associated with drug resistance in ovarian cancer. J Cancer Res Clin Oncol 2014; 141:381-95. [DOI: 10.1007/s00432-014-1765-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/26/2014] [Indexed: 12/20/2022]
|
14
|
Zhao W, Song Y, Xu B, Zhan Q. Overexpression of centrosomal protein Nlp confers breast carcinoma resistance to paclitaxel. Cancer Biol Ther 2012; 13:156-63. [PMID: 22353935 DOI: 10.4161/cbt.13.3.18697] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nlp (ninein-like protein), an important molecule involved in centrosome maturation and spindle formation, plays an important role in tumorigenesis and its abnormal expression was recently observed in human breast and lung cancers. In this study, the correlation between overexpression of Nlp and paclitaxel chemosensitivity was investigated to explore the mechanisms of resistance to paclitaxel and to understand the effect of Nlp upon apoptosis induced by chemotherapeutic agents. Nlp expression vector was stably transfected into breast cancer MCF-7 cells. With Nlp overexpression, the survival rates, cell cycle distributions and apoptosis were analyzed in transfected MCF-7 cells by MTT test and FCM approach. The immunofluorescent assay was employed to detect the changes of microtubule after paclitaxel treatment. Immunoblotting analysis was used to examine expression of centrosomal proteins and apoptosis associated proteins. Subsequently, Nlp expression was retrospectively examined with 55 breast cancer samples derived from paclitaxel treated patients. Interestingly, the survival rates of MCF-7 cells with Nlp overexpressing were higher than that of control after paclitaxel treatment. Nlp overexpression promoted G2-M arrest and attenuated apoptosis induced by paclitaxel, which was coupled with elevated Bcl-2 protein. Nlp expression significantly lessened the microtubule polymerization and bundling elicited by paclitaxel attributing to alteration on the structure or dynamics of β-tubulin but not on its expression. The breast cancer patients with high expression of Nlp were likely resistant to the treatment of paclitaxel, as the response rate in Nlp negative patients was 62.5%, whereas was 58.3 and 15.8% in Nlp (+) and Nlp (++) patients respectively (p = 0.015). Nlp expression was positive correlated with those of Plk1 and PCNA. These findings provide insights into more rational chemotherapeutic regimens in clinical practice, and more effective approaches might be developed through targeting Nlp to increase chemotherapeutic sensitivity.
Collapse
Affiliation(s)
- Weihong Zhao
- Department of Medical Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | |
Collapse
|
15
|
Li J, Zhan Q. The role of centrosomal Nlp in the control of mitotic progression and tumourigenesis. Br J Cancer 2011; 104:1523-8. [PMID: 21505454 PMCID: PMC3101908 DOI: 10.1038/bjc.2011.130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The human centrosomal ninein-like protein (Nlp) is a new member of the γ-tubulin complexes binding proteins (GTBPs) that is essential for proper execution of various mitotic events. The primary function of Nlp is to promote microtubule nucleation that contributes to centrosome maturation, spindle formation and chromosome segregation. Its subcellular localisation and protein stability are regulated by several crucial mitotic kinases, such as Plk1, Nek2, Cdc2 and Aurora B. Several lines of evidence have linked Nlp to human cancer. Deregulation of Nlp in cell models results in aberrant spindle, chromosomal missegregation and multinulei, and induces chromosomal instability and renders cells tumourigenic. Overexpression of Nlp induces anchorage-independent growth and immortalised primary cell transformation. In addition, we first demonstrate that the expression of Nlp is elevated primarily due to NLP gene amplification in human breast cancer and lung carcinoma. Consistently, transgenic mice overexpressing Nlp display spontaneous tumours in breast, ovary and testicle, and show rapid onset of radiation-induced lymphoma, indicating that Nlp is involved in tumourigenesis. This review summarises our current knowledge of physiological roles of Nlp, with an emphasis on its potentials in tumourigenesis.
Collapse
Affiliation(s)
- J Li
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | | |
Collapse
|
16
|
Yan J, Jin S, Li J, Zhan Q. Aurora B interaction of centrosomal Nlp regulates cytokinesis. J Biol Chem 2010; 285:40230-9. [PMID: 20864540 PMCID: PMC3001004 DOI: 10.1074/jbc.m110.140541] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 09/22/2010] [Indexed: 11/06/2022] Open
Abstract
Cytokinesis is a fundamental cellular process, which ensures equal abscission and fosters diploid progenies. Aberrant cytokinesis may result in genomic instability and cell transformation. However, the underlying regulatory machinery of cytokinesis is largely undefined. Here, we demonstrate that Nlp (Ninein-like protein), a recently identified BRCA1-associated centrosomal protein that is required for centrosomes maturation at interphase and spindle formation in mitosis, also contributes to the accomplishment of cytokinesis. Through immunofluorescent analysis, Nlp is found to localize at midbody during cytokinesis. Depletion of endogenous Nlp triggers aborted division and subsequently leads to multinucleated phenotypes. Nlp can be recruited by Aurora B to the midbody apparatus via their physical association at the late stage of mitosis. Disruption of their interaction induces aborted cytokinesis. Importantly, Nlp is characterized as a novel substrate of Aurora B and can be phosphorylated by Aurora B. The specific phosphorylation sites are mapped at Ser-185, Ser-448, and Ser-585. The phosphorylation at Ser-448 and Ser-585 is likely required for Nlp association with Aurora B and localization at midbody. Meanwhile, the phosphorylation at Ser-185 is vital to Nlp protein stability. Disruptions of these phosphorylation sites abolish cytokinesis and lead to chromosomal instability. Collectively, these observations demonstrate that regulation of Nlp by Aurora B is critical for the completion of cytokinesis, providing novel insights into understanding the machinery of cell cycle progression.
Collapse
Affiliation(s)
- Jie Yan
- From the State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China and
| | - Shunqian Jin
- From the State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China and
- the Department of Radiation Oncology, Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Jia Li
- From the State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China and
| | - Qimin Zhan
- From the State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China and
| |
Collapse
|
17
|
Shao S, Liu R, Wang Y, Song Y, Zuo L, Xue L, Lu N, Hou N, Wang M, Yang X, Zhan Q. Centrosomal Nlp is an oncogenic protein that is gene-amplified in human tumors and causes spontaneous tumorigenesis in transgenic mice. J Clin Invest 2010; 120:498-507. [PMID: 20093778 DOI: 10.1172/jci39447] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 12/02/2009] [Indexed: 12/22/2022] Open
Abstract
Disruption of mitotic events contributes greatly to genomic instability and results in mutator phenotypes. Indeed, abnormalities of mitotic components are closely associated with malignant transformation and tumorigenesis. Here we show that ninein-like protein (Nlp), a recently identified BRCA1-associated centrosomal protein involved in microtubule nucleation and spindle formation, is an oncogenic protein. Nlp was found to be overexpressed in approximately 80% of human breast and lung carcinomas analyzed. In human lung cancers, this deregulated expression was associated with NLP gene amplification. Further analysis revealed that Nlp exhibited strong oncogenic properties; for example, it conferred to NIH3T3 rodent fibroblasts the capacity for anchorage-independent growth in vitro and tumor formation in nude mice. Consistent with these data, transgenic mice overexpressing Nlp displayed spontaneous tumorigenesis in the breast, ovary, and testicle within 60 weeks. In addition, Nlp overexpression induced more rapid onset of radiation-induced lymphoma. Furthermore, mouse embryonic fibroblasts (MEFs) derived from Nlp transgenic mice showed centrosome amplification, suggesting that Nlp overexpression mimics BRCA1 loss. These findings demonstrate that Nlp abnormalities may contribute to genomic instability and tumorigenesis and suggest that Nlp might serve as a potential biomarker for clinical diagnosis and therapeutic target.
Collapse
Affiliation(s)
- Shujuan Shao
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|