1
|
Liu Z, Jing C, Kong F. From clinical management to personalized medicine: novel therapeutic approaches for ovarian clear cell cancer. J Ovarian Res 2024; 17:39. [PMID: 38347608 PMCID: PMC10860311 DOI: 10.1186/s13048-024-01359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
Ovarian clear-cell cancer is a rare subtype of epithelial ovarian cancer with unique clinical and biological features. Despite optimal cytoreductive surgery and platinum-based chemotherapy being the standard of care, most patients experience drug resistance and a poor prognosis. Therefore, novel therapeutic approaches have been developed, including immune checkpoint blockade, angiogenesis-targeted therapy, ARID1A synthetic lethal interactions, targeting hepatocyte nuclear factor 1β, and ferroptosis. Refining predictive biomarkers can lead to more personalized medicine, identifying patients who would benefit from chemotherapy, targeted therapy, or immunotherapy. Collaboration between academic research groups is crucial for developing prognostic outcomes and conducting clinical trials to advance treatment for ovarian clear-cell cancer. Immediate progress is essential, and research efforts should prioritize the development of more effective therapeutic strategies to benefit all patients.
Collapse
Affiliation(s)
- Zesi Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Chunli Jing
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Fandou Kong
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China.
| |
Collapse
|
2
|
Gendrau‐Sanclemente N, Figueras A, Gracova K, Lahiguera Á, Alsina‐Sanchís E, Marín‐Jiménez JA, Vidal A, Matias‐Guiu X, Fernandez‐Gonzalez S, Barahona M, Martí L, Ponce J, Viñals F. Ovarian cancer relies on the PDGFRβ-fibronectin axis for tumorsphere formation and metastatic spread. Mol Oncol 2024; 18:136-155. [PMID: 38010623 PMCID: PMC10766197 DOI: 10.1002/1878-0261.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/10/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the deadliest gynecological malignancy. The most common form of metastatic spread of HGSOC is transcoelomic dissemination. In this process, detached cells from the primary tumor aggregate as tumorspheres and promote the accumulation of peritoneal ascites. This represents an early event in HGSOC development and is indicative of poor prognosis. In this study, based on tumorspheres isolated from ascitic liquid samples from HGSOC patients, ovarian cancer spheroid 3D cultures, and in vivo models, we describe a key signal for tumorsphere formation in HGSOC. We report that platelet-derived growth factor receptor beta (PDGFRβ) is essential for fibronectin-mediated cell clustering of ovarian cancer cells into tumorspheres. This effect is mediated by the kinase NUAK family SNF1-like kinase 1 (NUAK1) and blocked by PDGFRβ pharmacological or genetic inhibition. In the absence of PDGFRβ, ovarian cancer cells can be provided with fibronectin by cancer-associated fibroblasts to generate chimeric spheroids. This work provides new insights that uncover potential targets to prevent peritoneal dissemination, the main cause of advanced disease in HGSOC patients.
Collapse
Affiliation(s)
- Núria Gendrau‐Sanclemente
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Hospital Duran i ReynalsBarcelonaSpain
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Agnès Figueras
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Hospital Duran i ReynalsBarcelonaSpain
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Kristina Gracova
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Hospital Duran i ReynalsBarcelonaSpain
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Álvaro Lahiguera
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Hospital Duran i ReynalsBarcelonaSpain
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Elisenda Alsina‐Sanchís
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Hospital Duran i ReynalsBarcelonaSpain
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Juan A. Marín‐Jiménez
- Cancer Immunotherapy (CIT) Group‐ProCUREBellvitge Biomedical Research Institute (IDIBELL) – OncoBellBarcelonaSpain
- Department of Medical OncologyCatalan Institute of Oncology (ICO)BarcelonaSpain
| | - August Vidal
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
- Department of PathologyUniversity Hospital of Bellvitge (IDIBELL)BarcelonaSpain
- CIBERONCInstituto de Salud Carlos IIIMadridSpain
| | - Xavier Matias‐Guiu
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
- Department of PathologyUniversity Hospital of Bellvitge (IDIBELL)BarcelonaSpain
- CIBERONCInstituto de Salud Carlos IIIMadridSpain
| | | | - Marc Barahona
- Department of GynaecologyUniversity Hospital of Bellvitge (IDIBELL)BarcelonaSpain
| | - Lola Martí
- Department of GynaecologyUniversity Hospital of Bellvitge (IDIBELL)BarcelonaSpain
| | - Jordi Ponce
- Department of GynaecologyUniversity Hospital of Bellvitge (IDIBELL)BarcelonaSpain
| | - Francesc Viñals
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Hospital Duran i ReynalsBarcelonaSpain
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
- Departament de Ciències FisiològiquesUniversitat de BarcelonaSpain
| |
Collapse
|
3
|
Yang S, Fei W, Zhao Y, Wang F, Ye Y, Wang F. Combat Against Gynecological Cancers with Blood Vessels as Entry Point: Anti-Angiogenic Drugs, Clinical Trials and Pre-Clinical Nano-Delivery Platforms. Int J Nanomedicine 2023; 18:3035-3046. [PMID: 37312935 PMCID: PMC10259534 DOI: 10.2147/ijn.s411761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
Angiogenesis is an essential mechanism for the progression of gynecological cancers. Although approved anti-angiogenic drugs have demonstrated clinical efficacy in treating gynecological cancers, the full potential of therapeutic strategies based on tumor blood vessels has not yet been realized. This review summarizes the latest angiogenesis mechanisms involved in the progression of gynecological cancers and discusses the current clinical practice of approved anti-angiogenic drugs and related clinical trials. Given the close relationship between gynecological cancers and blood vessels, we highlight more delicate strategies for regulating tumor vessels, including wise drug combinations and smart nano-delivery platforms to achieve highly efficient drug delivery and overall vessel microenvironment regulation. We also address current challenges and future opportunities in this field. We aim to generate interest in therapeutic strategies that target blood vessels as a key entry point and offer new potential and inspiration for combating gynecological cancers.
Collapse
Affiliation(s)
- Shan Yang
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, Peoples Republic of China
| | - Weidong Fei
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, Peoples Republic of China
| | - Yunchun Zhao
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, Peoples Republic of China
| | - Fengmei Wang
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, Peoples Republic of China
| | - Yiqing Ye
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, Peoples Republic of China
| | - Fenfen Wang
- Department of Gynecology Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, Peoples Republic of China
| |
Collapse
|
4
|
Gaitskell K, Rogozińska E, Platt S, Chen Y, Abd El Aziz M, Tattersall A, Morrison J. Angiogenesis inhibitors for the treatment of epithelial ovarian cancer. Cochrane Database Syst Rev 2023; 4:CD007930. [PMID: 37185961 PMCID: PMC10111509 DOI: 10.1002/14651858.cd007930.pub3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Many women, and other females, with epithelial ovarian cancer (EOC) develop resistance to conventional chemotherapy drugs. Drugs that inhibit angiogenesis (development of new blood vessels), essential for tumour growth, control cancer growth by denying blood supply to tumour nodules. OBJECTIVES To compare the effectiveness and toxicities of angiogenesis inhibitors for treatment of epithelial ovarian cancer (EOC). SEARCH METHODS We identified randomised controlled trials (RCTs) by searching CENTRAL, MEDLINE and Embase (from 1990 to 30 September 2022). We searched clinical trials registers and contacted investigators of completed and ongoing trials for further information. SELECTION CRITERIA RCTs comparing angiogenesis inhibitors with standard chemotherapy, other types of anti-cancer treatment, other angiogenesis inhibitors with or without other treatments, or placebo/no treatment in a maintenance setting, in women with EOC. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. Our outcomes were overall survival (OS), progression-free survival (PFS), quality of life (QoL), adverse events (grade 3 and above) and hypertension (grade 2 and above). MAIN RESULTS We identified 50 studies (14,836 participants) for inclusion (including five studies from the previous version of this review): 13 solely in females with newly-diagnosed EOC and 37 in females with recurrent EOC (nine studies in platinum-sensitive EOC; 19 in platinum-resistant EOC; nine with studies with mixed or unclear platinum sensitivity). The main results are presented below. Newly-diagnosed EOC Bevacizumab, a monoclonal antibody that binds vascular endothelial growth factor (VEGF), given with chemotherapy and continued as maintenance, likely results in little to no difference in OS compared to chemotherapy alone (hazard ratio (HR) 0.97, 95% confidence interval (CI) 0.88 to 1.07; 2 studies, 2776 participants; moderate-certainty evidence). Evidence is very uncertain for PFS (HR 0.82, 95% CI 0.64 to 1.05; 2 studies, 2746 participants; very low-certainty evidence), although the combination results in a slight reduction in global QoL (mean difference (MD) -6.4, 95% CI -8.86 to -3.94; 1 study, 890 participants; high-certainty evidence). The combination likely increases any adverse event (grade ≥ 3) (risk ratio (RR) 1.16, 95% CI 1.07 to 1.26; 1 study, 1485 participants; moderate-certainty evidence) and may result in a large increase in hypertension (grade ≥ 2) (RR 4.27, 95% CI 3.25 to 5.60; 2 studies, 2707 participants; low-certainty evidence). Tyrosine kinase inhibitors (TKIs) to block VEGF receptors (VEGF-R), given with chemotherapy and continued as maintenance, likely result in little to no difference in OS (HR 0.99, 95% CI 0.84 to 1.17; 2 studies, 1451 participants; moderate-certainty evidence) and likely increase PFS slightly (HR 0.88, 95% CI 0.77 to 1.00; 2 studies, 2466 participants; moderate-certainty evidence). The combination likely reduces QoL slightly (MD -1.86, 95% CI -3.46 to -0.26; 1 study, 1340 participants; moderate-certainty evidence), but it increases any adverse event (grade ≥ 3) slightly (RR 1.31, 95% CI 1.11 to 1.55; 1 study, 188 participants; moderate-certainty evidence) and may result in a large increase in hypertension (grade ≥ 3) (RR 6.49, 95% CI 2.02 to 20.87; 1 study, 1352 participants; low-certainty evidence). Recurrent EOC (platinum-sensitive) Moderate-certainty evidence from three studies (with 1564 participants) indicates that bevacizumab with chemotherapy, and continued as maintenance, likely results in little to no difference in OS (HR 0.90, 95% CI 0.79 to 1.02), but likely improves PFS (HR 0.56, 95% CI 0.50 to 0.63) compared to chemotherapy alone. The combination may result in little to no difference in QoL (MD 0.8, 95% CI -2.11 to 3.71; 1 study, 486 participants; low-certainty evidence), but it increases the rate of any adverse event (grade ≥ 3) slightly (RR 1.11, 1.07 to 1.16; 3 studies, 1538 participants; high-certainty evidence). Hypertension (grade ≥ 3) was more common in arms with bevacizumab (RR 5.82, 95% CI 3.84 to 8.83; 3 studies, 1538 participants). TKIs with chemotherapy may result in little to no difference in OS (HR 0.86, 95% CI 0.67 to 1.11; 1 study, 282 participants; low-certainty evidence), likely increase PFS (HR 0.56, 95% CI 0.44 to 0.72; 1 study, 282 participants; moderate-certainty evidence), and may have little to no effect on QoL (MD 6.1, 95% CI -0.96 to 13.16; 1 study, 146 participants; low-certainty evidence). Hypertension (grade ≥ 3) was more common with TKIs (RR 3.32, 95% CI 1.21 to 9.10). Recurrent EOC (platinum-resistant) Bevacizumab with chemotherapy and continued as maintenance increases OS (HR 0.73, 95% CI 0.61 to 0.88; 5 studies, 778 participants; high-certainty evidence) and likely results in a large increase in PFS (HR 0.49, 95% CI 0.42 to 0.58; 5 studies, 778 participants; moderate-certainty evidence). The combination may result in a large increase in hypertension (grade ≥ 2) (RR 3.11, 95% CI 1.83 to 5.27; 2 studies, 436 participants; low-certainty evidence). The rate of bowel fistula/perforation (grade ≥ 2) may be slightly higher with bevacizumab (RR 6.89, 95% CI 0.86 to 55.09; 2 studies, 436 participants). Evidence from eight studies suggest TKIs with chemotherapy likely result in little to no difference in OS (HR 0.85, 95% CI 0.68 to 1.08; 940 participants; moderate-certainty evidence), with low-certainty evidence that it may increase PFS (HR 0.70, 95% CI 0.55 to 0.89; 940 participants), and may result in little to no meaningful difference in QoL (MD ranged from -0.19 at 6 weeks to -3.40 at 4 months). The combination increases any adverse event (grade ≥ 3) slightly (RR 1.23, 95% CI 1.02 to 1.49; 3 studies, 402 participants; high-certainty evidence). The effect on bowel fistula/perforation rates is uncertain (RR 2.74, 95% CI 0.77 to 9.75; 5 studies, 557 participants; very low-certainty evidence). AUTHORS' CONCLUSIONS Bevacizumab likely improves both OS and PFS in platinum-resistant relapsed EOC. In platinum-sensitive relapsed disease, bevacizumab and TKIs probably improve PFS, but may or may not improve OS. The results for TKIs in platinum-resistant relapsed EOC are similar. The effects on OS or PFS in newly-diagnosed EOC are less certain, with a decrease in QoL and increase in adverse events. Overall adverse events and QoL data were more variably reported than were PFS data. There appears to be a role for anti-angiogenesis treatment, but given the additional treatment burden and economic costs of maintenance treatments, benefits and risks of anti-angiogenesis treatments should be carefully considered.
Collapse
Affiliation(s)
- Kezia Gaitskell
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | - Sarah Platt
- Obstetrics and Gynaecology, St Mary's Hospital, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
- Department of Gynaecological Oncology, St. Michael's Hospital, Bristol, UK
| | - Yifan Chen
- Oxford Medical School, University of Oxford, Oxford, UK
| | | | | | - Jo Morrison
- Department of Gynaecological Oncology, Musgrove Park Hospital, Somerset NHS Foundation Trust, Taunton, UK
| |
Collapse
|
5
|
Mei C, Gong W, Wang X, Lv Y, Zhang Y, Wu S, Zhu C. Anti-angiogenic therapy in ovarian cancer: Current understandings and prospects of precision medicine. Front Pharmacol 2023; 14:1147717. [PMID: 36959862 PMCID: PMC10027942 DOI: 10.3389/fphar.2023.1147717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Ovarian cancer (OC) remains the most fatal disease of gynecologic malignant tumors. Angiogenesis refers to the development of new vessels from pre-existing ones, which is responsible for supplying nutrients and removing metabolic waste. Although not yet completely understood, tumor vascularization is orchestrated by multiple secreted factors and signaling pathways. The most central proangiogenic signal, vascular endothelial growth factor (VEGF)/VEGFR signaling, is also the primary target of initial clinical anti-angiogenic effort. However, the efficiency of therapy has so far been modest due to the low response rate and rapidly emerging acquiring resistance. This review focused on the current understanding of the in-depth mechanisms of tumor angiogenesis, together with the newest reports of clinical trial outcomes and resistance mechanism of anti-angiogenic agents in OC. We also emphatically summarized and analyzed previously reported biomarkers and predictive models to describe the prospect of precision therapy of anti-angiogenic drugs in OC.
Collapse
Affiliation(s)
- Chao Mei
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijing Gong
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Xu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongning Lv
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Chunqi Zhu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Torabi M, Aghanejad A, Savadi P, Barzegari A, Omidi Y, Barar J. Targeted Delivery of Sunitinib by MUC-1 Aptamer-Capped Magnetic Mesoporous Silica Nanoparticles. Molecules 2023; 28:molecules28010411. [PMID: 36615606 PMCID: PMC9824472 DOI: 10.3390/molecules28010411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Magnetic mesoporous silica nanoparticles (MMSNPs) are being widely investigated as multifunctional novel drug delivery systems (DDSs) and play an important role in targeted therapy. Here, magnetic cores were synthesized using the thermal decomposition method. Further, to improve the biocompatibility and pharmacokinetic behavior, mesoporous silica was synthesized using the sol-gel process to coat the magnetic cores. Subsequently, sunitinib (SUN) was loaded into the MMSNPs, and the particles were armed with amine-modified mucin 1 (MUC-1) aptamers. The MMSNPs were characterized using FT-IR, TEM, SEM, electrophoresis gel, DLS, and EDX. MTT assay, flow cytometry analysis, ROS assessment, and mitochondrial membrane potential analysis evaluated the nanoparticles' biological impacts. The physicochemical analysis revealed that the engineered MMSNPs have a smooth surface and spherical shape with an average size of 97.6 nm. The biological in vitro analysis confirmed the highest impacts of the targeted MMSNPs in MUC-1 overexpressing cells (OVCAR-3) compared to the MUC-1 negative MDA-MB-231 cells. In conclusion, the synthesized MMSNP-SUN-MUC-1 nanosystem serves as a unique multifunctional targeted delivery system to combat the MUC-1 overexpressing ovarian cancer cells.
Collapse
Affiliation(s)
- Mitra Torabi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 516664-14766, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Correspondence: (A.A.); or (J.B.); Tel./Fax: +98-41-33367929 (A.A.); +1-(954)-262-1878 (J.B.)
| | - Pouria Savadi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (Di.S.T.A.Bi.F.), University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Jaleh Barar
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 516664-14766, Iran
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
- Correspondence: (A.A.); or (J.B.); Tel./Fax: +98-41-33367929 (A.A.); +1-(954)-262-1878 (J.B.)
| |
Collapse
|
7
|
Preclinical Studies of Chiauranib Show It Inhibits Transformed Follicular Lymphoma through the VEGFR2/ERK/STAT3 Signaling Pathway. Pharmaceuticals (Basel) 2022; 16:ph16010015. [PMID: 36678513 PMCID: PMC9865968 DOI: 10.3390/ph16010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Transformed follicular lymphoma (t-FL), for which there is no efficient treatment strategy, has a rapid progression, treatment resistance, and poor prognosis, which are the main reasons for FL treatment failure. In this study, we identified a promising therapeutic approach with chiauranib, a novel orally developed multitarget inhibitor targeting VEGFR/Aurora B/CSF-1R. We first determined the cytotoxicity of chiauranib in t-FL cell lines through CCK-8, EdU staining, flow cytometry, and transwell assays. We also determined the killing effect of chiauranib in a xenograft model. More importantly, we identified the underlying mechanism of chiauranib in t-FL tumorigenesis by immunofluorescence and Western blotting. Treatment with chiauranib significantly inhibited cell growth and migration, promoted apoptosis, induced cell cycle arrest in G2/M phase, and resulted in significant killing in vivo. Mechanistically, chiauranib suppresses the phosphorylation level of VEGFR2, which has an anti-t-FL effect by inhibiting the downstream MEK/ERK/STAT3 signaling cascade. In conclusion, chiauranib may be a potential therapy to treat t-FL, since it inhibits tumor growth and migration and induces apoptosis by altering the VEGFR2/ERK/STAT3 signaling pathway.
Collapse
|
8
|
Antiangiogenic Strategies in Epithelial Ovarian Cancer: Mechanism, Resistance, and Combination Therapy. JOURNAL OF ONCOLOGY 2022; 2022:4880355. [PMID: 35466318 PMCID: PMC9019437 DOI: 10.1155/2022/4880355] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022]
Abstract
Angiogenesis is one of the hallmarks of cancer and plays a crucial role in carcinogenesis and progression of epithelial ovarian cancer. Antiangiogenic agent is the first approved targeted agent in ovarian cancer. Anti-angiogenic agents mainly include agents target VEGF/VEGFR pathway, such as bevacizumab and agents target receptor tyrosine kinase, and non-VEGF/VEGFR targets of angiogenesis. Antiangiogenic agents demonstrate certain effects in ovarian cancer treatment either as monotherapy or combined with chemotherapy. Unfortunately, antiangiogenic agents, such as bevacizumab, integrated into the ovarian cancer treatment paradigm do not increase cures. Thus, the benefits of anti-angiogenic agents must be carefully weighed against the cost and associated toxicities. Antiangiogenic agents drug resistance and short of predictive biomarkers are main obstacles in ovarian cancer treatment. A combination of poly (ADP-ribose) polymerase inhibitors or immune checkpoint inhibitors might be great strategies to overcome resistance as well as enhance anti-tumor activity of anti-angiogenic drugs. Predictive biomarkers of antiangiogenic agents are in urgent need.
Collapse
|
9
|
Marchetti C, De Felice F, Romito A, Iacobelli V, Sassu CM, Corrado G, Ricci C, Scambia G, Fagotti A. Chemotherapy resistance in epithelial ovarian cancer: Mechanisms and emerging treatments. Semin Cancer Biol 2021; 77:144-166. [PMID: 34464704 DOI: 10.1016/j.semcancer.2021.08.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
Ovarian cancer (OC) remains a fatal malignancy because most patients experience recurrent disease, which is resistant to chemotherapy. The outcomes for patients with platinum-resistant OC are poor, response rates to further chemotherapy are low and median survival is lower than 12 months. The complexity of platinum-resistant OC, which comprises a heterogeneous spectrum of diseases, is indeed far from being completely understood. Therefore, comprehending tumors' biological behaviour to identify reliable biomarkers, which may predict responses to therapies, is a demanding challenge to improve OC management. In the age of precision medicine, efforts to overcome platinum resistance in OC represent a dynamic and vast field in which innovative drugs and clinical trials rapidly develop. This review will present the exceptional biochemical environment implicated in OC and highlights mechanisms of chemoresistance. Furthermore, innovative molecules and new therapeutic opportunities are presented, along with currently available therapies and ongoing clinical trials.
Collapse
Affiliation(s)
- Claudia Marchetti
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.
| | - Francesca De Felice
- Division of Radiotherapy and Oncology, Policlinico Umberto I, Roma, Italy; Università La Sapienza, Roma, Italy
| | - Alessia Romito
- Gynecology and Breast Care Center, Mater Olbia Hospital, Olbia, Italy
| | - Valentina Iacobelli
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Department Woman and Child Health Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Carolina Maria Sassu
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Polyclinic Umberto I, Rome, Italy
| | - Giacomo Corrado
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Caterina Ricci
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Giovanni Scambia
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Department Woman and Child Health Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Anna Fagotti
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Department Woman and Child Health Sciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
10
|
Wang Q, Peng H, Qi X, Wu M, Zhao X. Targeted therapies in gynecological cancers: a comprehensive review of clinical evidence. Signal Transduct Target Ther 2020; 5:137. [PMID: 32728057 PMCID: PMC7391668 DOI: 10.1038/s41392-020-0199-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Advanced and recurrent gynecological cancers are associated with poor prognosis and lack of effective treatment. The developments of the molecular mechanisms on cancer progression provide insight into novel targeted therapies, which are emerging as groundbreaking and promising cancer treatment strategies. In gynecologic malignancies, potential therapeutic targeted agents include antiangiogenic agents, poly (ADP-ribose) polymerase (PARP) inhibitors, tumor-intrinsic signaling pathway inhibitors, selective estrogen receptor downregulators, and immune checkpoint inhibitors. In this article, we provide a comprehensive review of the clinical evidence of targeted agents in gynecological cancers and discuss the future implication.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Hongling Peng
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
11
|
Matulonis UA, Sill MW, Makker V, Mutch DG, Carlson JW, Darus CJ, Mannel RS, Bender DP, Crane EK, Aghajanian C. A randomized phase II study of cabozantinib versus weekly paclitaxel in the treatment of persistent or recurrent epithelial ovarian, fallopian tube or primary peritoneal cancer: An NRG Oncology/Gynecologic Oncology Group study. Gynecol Oncol 2018; 152:548-553. [PMID: 30587441 DOI: 10.1016/j.ygyno.2018.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Cabozantinib is a receptor tyrosine kinases inhibitor that targets MET (c-MET), VEGF receptor 2 (VEGFR2), RET, AXL, KIT, FLT-3, and TIE-2 and previously showed promising single agent activity in recurrent ovarian cancer. METHODS This was an open label, 1:1 randomized study of cabozantinib 60 mg orally (PO) daily versus weekly paclitaxel 80 mg/m2 given 3 out of 4 weeks (NCT01716715); 111 patients were enrolled. Eligibility included persistent or recurrent epithelial ovarian, fallopian tube, or primary peritoneal carcinoma and at least one but no >3 prior chemotherapy regimens. RESULTS Median PFS was similar for both treatment groups and was 5.3 months for cabozantinib and 5.5 months for weekly paclitaxel (HR 1.11 (90% CI 0.77-1.61, p = 0.64)). Secondary analyses of overall survival (OS) and event free survival (EFS) showed that cabozantinib did not perform as well as weekly paclitaxel. Median OS for cabozantinib was 19.4 months and was not reached for weekly paclitaxel (HR 2.27 (90% CI 1.17-4.41, p = 0.04). EFS was also worse in the cabozantinib arm, 3.5 months, compared to weekly paclitaxel at 5.0 months (HR 1.81 (90% CI 1.24-2.63, p = 0.01). Overall response rate (ORR) was less for cabozantinib compared to weekly paclitaxel (7% versus 24.1%). Gastrointestinal toxicities, specifically nausea, diarrhea, and abdominal pain were worse in the cabozantinib arm. CONCLUSIONS Median PFS was similar for cabozantinib and weekly paclitaxel. However, OS, EFS, and ORR were worse for cabozantinib compared to weekly paclitaxel. Cabozantinib given at this dose and schedule cannot be recommended as a treatment for recurrent ovarian cancer.
Collapse
Affiliation(s)
- Ursula A Matulonis
- Dana Farber Cancer Institute, Division of Gynecologic Oncology, Dept. of Medical Oncology, Boston, MA 02215, United States of America.
| | - Michael W Sill
- NRG Oncology, Clinical Trial Development Division, Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America.
| | - Vicky Makker
- Memorial Sloan Kettering Cancer Center, Medical Oncology, New York, NY 10065, United States of America.
| | - David G Mutch
- Washington University School of Medicine, Division of Gynecologic Oncology, Saint Louis, MO 63110, United States of America.
| | - Jay W Carlson
- Cancer Research for the Ozarks, Dept. of Obstetrics and Gynecology, Springfield, MO 65804, United States of America.
| | - Christopher J Darus
- Maine Medical Center, Dept. of Gynecologic Oncology, Scarborough, ME 04074, United States of America.
| | - Robert S Mannel
- University of Oklahoma Health Sciences Center, Dept. of Obstetrics and Gynecology, Oklahoma City, OK 73104, United States of America.
| | - David P Bender
- University of Iowa Hospitals and Clinics, Gyn/Onc Division, Iowa City, IA 52242, United States of America.
| | - Erin K Crane
- Levine Cancer Institute, Division of Gynecologic Oncology, Charlotte, NC 28204, United States of America.
| | - Carol Aghajanian
- Memorial Sloan Kettering Cancer Center, Medical Oncology, New York, NY 10065, United States of America.
| |
Collapse
|
12
|
Chan JK, Brady W, Monk BJ, Brown J, Shahin MS, Rose PG, Kim JH, Secord AA, Walker JL, Gershenson DM. A phase II evaluation of sunitinib in the treatment of persistent or recurrent clear cell ovarian carcinoma: An NRG Oncology/Gynecologic Oncology Group Study (GOG-254). Gynecol Oncol 2018; 150:247-252. [PMID: 29921512 DOI: 10.1016/j.ygyno.2018.05.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To determine the efficacy and tolerability of sunitinib in recurrent or persistent clear cell ovarian cancer patients. METHODS All patients had one or two prior regimens with measurable disease. Tumors were at least 50% clear cell histomorphology and negative for WT-1 antigen and estrogen receptor expression by immunohistochemistry. Sunitinib 50 mg per day for 4 weeks was administered in repeated 6-week cycles until disease progression or prohibitive toxicity. Primary end points were progression-free survival (PFS) at 6 months and clinical response. The study was designed to determine if the drug had a response rate of at least 20% or 6-month PFS of at least 25%. RESULTS Of 35 patients enrolled, 30 were treated and eligible (median age: 51, range: 27-73). Twenty-five (83%) were White, 4 (13%) Asian, and 1 (3%) unknown. The majority 28 (83%) patients, underwent ≤3 but 2 (7%) had 16 courses of study therapy. Five (16.7%) patients had PFS ≥6 months (90% CI: 6.8%-31.9%). Two (6.7%) patients had a partial or complete response (90% CI: 1.2%-19.5%). The median PFS was 2.7 months. The median overall survival was 12.8 months. The most common grade 3 adverse events were fatigue (4), hypertension (4), neutropenia (4), anemia (3), abdominal pain (3), and leukopenia (3). Grade 4-5 adverse events included: thrombocytopenia (5), anemia (2), acute kidney Injury (1), stroke (1), and allergic reaction (1). CONCLUSION Sunitinib demonstrated minimal activity in the second- and third-line treatment of persistent or recurrent clear cell ovarian carcinoma. ClinicalTrials.gov number, NCT00979992.
Collapse
Affiliation(s)
- John K Chan
- Division of Gynecologic Oncology, California Pacific-Palo Alto Medical Foundation, Sutter Research Institute, San Francisco, CA 94115, United States.
| | - William Brady
- NRG Oncology/Gynecologic Oncology Group Statistics & Data Center, Roswell Park Cancer Institute, Buffalo, NY 14263, United States.
| | - Bradley J Monk
- Division of Gynecologic Oncology, Arizona Oncology (US Oncology Network), University of Arizona College of Medicine, Creighton University School of Medicine at St. Joseph's Hospital, Phoenix, AZ 85016, United States.
| | - Jubilee Brown
- Department of Gynecologic Oncology, MD Anderson Cancer Center, Houston, TX 77230, United States.
| | - Mark S Shahin
- Department of Obstetrics & Gynecology, Abington Hospital-Jefferson Health, Abington, PA 19001, United States.
| | - Peter G Rose
- Department of Gynecologic Oncology, Cleveland Clinic, Cleveland, OH 44195, United States.
| | - Jae-Hoon Kim
- Department of Gynecologic Oncology, Gangann Severence Hospital, Seoul 06273, Republic of Korea.
| | - Angeles Alvarez Secord
- Division of Gynecologic Oncology, Duke Cancer Institute, Durham, NC 27710, United States.
| | - Joan L Walker
- Department of Gynecologic Oncology, Oklahoma University, Stephenson Cancer Center, Oklahoma City, OK 73104, United States.
| | - David M Gershenson
- Department of GYN/ONC, Unit 1362, The University of Texas, MD Anderson Cancer Center, Houston, TX 77230, United States.
| |
Collapse
|
13
|
Use of Targeted Therapeutics in Epithelial Ovarian Cancer: A Review of Current Literature and Future Directions. Clin Ther 2018; 40:361-371. [DOI: 10.1016/j.clinthera.2018.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 12/12/2022]
|
14
|
Ramroop JR, Stein MN, Drake JM. Impact of Phosphoproteomics in the Era of Precision Medicine for Prostate Cancer. Front Oncol 2018; 8:28. [PMID: 29503809 PMCID: PMC5820335 DOI: 10.3389/fonc.2018.00028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer is the most common malignancy in men in the United States. While androgen deprivation therapy results in tumor responses initially, there is relapse and progression to metastatic castration-resistant prostate cancer. Currently, all prostate cancer patients receive essentially the same treatment, and there is a need for clinically applicable technologies to provide predictive biomarkers toward personalized therapies. Genomic analyses of tumors are used for clinical applications, but with a paucity of obvious driver mutations in metastatic castration-resistant prostate cancer, other applications, such as phosphoproteomics, may complement this approach. Immunohistochemistry and reverse phase protein arrays are limited by the availability of reliable antibodies and evaluates a preselected number of targets. Mass spectrometry-based phosphoproteomics has been used to profile tumors consisting of thousands of phosphopeptides from individual patients after surgical resection or at autopsy. However, this approach is time consuming, and while a large number of candidate phosphopeptides are obtained for evaluation, limitations are reduced reproducibility, sensitivity, and precision. Targeted mass spectrometry can help eliminate these limitations and is more cost effective and less time consuming making it a practical platform for future clinical testing. In this review, we discuss the use of phosphoproteomics in prostate cancer and other clinical cancer tissues for target identification, hypothesis testing, and possible patient stratification. We highlight the majority of studies that have used phosphoproteomics in prostate cancer tissues and cell lines and propose ways forward to apply this approach in basic and clinical research. Overall, the implementation of phosphoproteomics via targeted mass spectrometry has tremendous potential to aid in the development of more rational, personalized therapies that will result in increased survival and quality of life enhancement in patients suffering from metastatic castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Johnny R. Ramroop
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Mark N. Stein
- Developmental Therapeutics/Phase I Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
- Department of Medicine, Division of Medical Oncology and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Justin M. Drake
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
- Department of Medicine, Division of Medical Oncology and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
15
|
Previs RA, Sood AK, Mills GB, Westin SN. The rise of genomic profiling in ovarian cancer. Expert Rev Mol Diagn 2017; 16:1337-1351. [PMID: 27828713 DOI: 10.1080/14737159.2016.1259069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Next-generation sequencing and advances in 'omics technology have rapidly increased our understanding of the molecular landscape of epithelial ovarian cancers. Areas covered: Once characterized only by histologic appearance and clinical behavior, we now understand many of the molecular phenotypes that underlie the different ovarian cancer subtypes. While the current approach to treatment involves standard cytotoxic therapies after cytoreductive surgery for all ovarian cancers regardless of histologic or molecular characteristics, focus has shifted beyond a 'one size fits all' approach to ovarian cancer. Expert commentary: Genomic profiling offers potentially 'actionable' opportunities for development of targeted therapies and a more individualized approach to treatment with concomitant improved outcomes and decreased toxicity.
Collapse
Affiliation(s)
- Rebecca A Previs
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Anil K Sood
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Gordon B Mills
- b Department of Systems Biology , The University of Texas MD Anderson Cancer , Houston , TX , USA
| | - Shannon N Westin
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
16
|
Tomao F, Marchetti C, Romito A, Di Pinto A, Di Donato V, Capri O, Palaia I, Monti M, Muzii L, Benedetti Panici P. Overcoming platinum resistance in ovarian cancer treatment: from clinical practice to emerging chemical therapies. Expert Opin Pharmacother 2017; 18:1443-1455. [PMID: 28521614 DOI: 10.1080/14656566.2017.1328055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION The objective of this review is to summarize results from clinical trials that tested cytotoxic drugs and target strategies for the treatment of platinum resistant (PR) recurrent ovarian cancer (ROC) with particular attention to Phase III and ongoing trials. Areas covered: Since platinum free interval (PFI) represents the most important predictive factor for response to platinum re-treatment in ROC, non-platinum regimens are conventionally considered the most appropriate approaches. Impressive progress has been made in recent decades, resulting in the identification of most effective cytotoxic agents and in the development of new target strategies. However, the efficacy of most of these drugs for the treatment of PR disease is still limited. Expert opinion: The most favorable benefit for the treatment of PR disease, has been described by the AURELIA trial that showed a 3.3 months increase in progression free survival (PFS) when bevacizumab was combined with non-platinum single agent chemotherapy in bevacizumab-naïve patients. Nevertheless, the use of novel agents is associated to important costs for just little gains in survival. Thus, in our opinion the economic evaluation, such as the incorporation of quality of life into the clinical studies is crucial for the development of future trials for PR-ROC.
Collapse
Affiliation(s)
- Federica Tomao
- a Department of Gynaecology and Obstetrics , "Sapienza" University of Rome , Rome , Italy
| | - Claudia Marchetti
- a Department of Gynaecology and Obstetrics , "Sapienza" University of Rome , Rome , Italy
| | - Alessia Romito
- a Department of Gynaecology and Obstetrics , "Sapienza" University of Rome , Rome , Italy
| | - Anna Di Pinto
- a Department of Gynaecology and Obstetrics , "Sapienza" University of Rome , Rome , Italy
| | - Violante Di Donato
- a Department of Gynaecology and Obstetrics , "Sapienza" University of Rome , Rome , Italy
| | - Oriana Capri
- a Department of Gynaecology and Obstetrics , "Sapienza" University of Rome , Rome , Italy
| | - Innocenza Palaia
- a Department of Gynaecology and Obstetrics , "Sapienza" University of Rome , Rome , Italy
| | - Marco Monti
- a Department of Gynaecology and Obstetrics , "Sapienza" University of Rome , Rome , Italy
| | - Ludovico Muzii
- a Department of Gynaecology and Obstetrics , "Sapienza" University of Rome , Rome , Italy
| | | |
Collapse
|
17
|
Previs RA, Sood AK, Mills GB, Westin SN. The rise of genomic profiling in ovarian cancer. Expert Rev Mol Diagn 2016. [PMID: 27828713 DOI: 10.1080/14737159.2016.1259069]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
INTRODUCTION Next-generation sequencing and advances in 'omics technology have rapidly increased our understanding of the molecular landscape of epithelial ovarian cancers. Areas covered: Once characterized only by histologic appearance and clinical behavior, we now understand many of the molecular phenotypes that underlie the different ovarian cancer subtypes. While the current approach to treatment involves standard cytotoxic therapies after cytoreductive surgery for all ovarian cancers regardless of histologic or molecular characteristics, focus has shifted beyond a 'one size fits all' approach to ovarian cancer. Expert commentary: Genomic profiling offers potentially 'actionable' opportunities for development of targeted therapies and a more individualized approach to treatment with concomitant improved outcomes and decreased toxicity.
Collapse
Affiliation(s)
- Rebecca A Previs
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Anil K Sood
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Gordon B Mills
- b Department of Systems Biology , The University of Texas MD Anderson Cancer , Houston , TX , USA
| | - Shannon N Westin
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
18
|
Abstract
INTRODUCTION Next-generation sequencing and advances in 'omics technology have rapidly increased our understanding of the molecular landscape of epithelial ovarian cancers. Areas covered: Once characterized only by histologic appearance and clinical behavior, we now understand many of the molecular phenotypes that underlie the different ovarian cancer subtypes. While the current approach to treatment involves standard cytotoxic therapies after cytoreductive surgery for all ovarian cancers regardless of histologic or molecular characteristics, focus has shifted beyond a 'one size fits all' approach to ovarian cancer. Expert commentary: Genomic profiling offers potentially 'actionable' opportunities for development of targeted therapies and a more individualized approach to treatment with concomitant improved outcomes and decreased toxicity.
Collapse
Affiliation(s)
- Rebecca A Previs
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Anil K Sood
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Gordon B Mills
- b Department of Systems Biology , The University of Texas MD Anderson Cancer , Houston , TX , USA
| | - Shannon N Westin
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
19
|
Ntanasis-Stathopoulos I, Fotopoulos G, Tzanninis IG, Kotteas EA. The Emerging Role of Tyrosine Kinase Inhibitors in Ovarian Cancer Treatment: A Systematic Review. Cancer Invest 2016; 34:313-39. [PMID: 27486869 DOI: 10.1080/07357907.2016.1206117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present systematic review summarizes current evidence regarding the mechanisms of action, the efficacy, and the adverse effects of tyrosine kinase inhibitors (TKIs) in ovarian cancer patients. Phase II and III clinical trials were sought in the PubMed database and in the Clinical Trials.gov registry through September 30, 2015. Seventy-five clinical trials regarding TKIs targeting mainly vascular endothelial growth factor receptor, epidermal growth factor receptor, platelet-derived growth factor receptor, and sarcoma tyrosine kinase (Src) were yielded. The most promising results were noted with cediranib, nintedanib, and pazopanib. However, drawing universal conclusions about the potential integration of TKIs in ovarian cancer therapy remains elusive. Furthermore, emerging challenges and directions for the future research are critically discussed.
Collapse
Affiliation(s)
| | - George Fotopoulos
- a Oncology Unit, Sotiria General Hospital , Athens School of Medicine , Athens , Greece
| | | | - Elias A Kotteas
- a Oncology Unit, Sotiria General Hospital , Athens School of Medicine , Athens , Greece
| |
Collapse
|
20
|
Rodriguez-Freixinos V, Mackay HJ, Karakasis K, Oza AM. Current and emerging treatment options in the management of advanced ovarian cancer. Expert Opin Pharmacother 2016; 17:1063-76. [PMID: 26918413 DOI: 10.1517/14656566.2016.1159295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Epithelial ovarian cancer is the most lethal gynecologic malignancy. Recent advances in understanding the biology and its molecular and histological diversity have led to mechanism based therapeutic strategies such as poly-ADP-ribose polymerase inhibitors (PARP) targeting homologous recombination deficient tumor cells and anti-angiogenic therapies. Clinical trial designs in ovarian cancer have to evolve to incorporate assessment of the genomic complexity and identify predictive biomarkers to improve precision of treatment and outcome. AREAS COVERED This review summarizes present-day strategies used in the management of ovarian cancer and novel promising therapeutic approaches in development. The article is based on English peer-reviewed articles located on MEDLINE and related abstracts presented at major international meetings. EXPERT OPINION Two types of molecular targeted therapies, anti-angiogenics and PARP inhibitors, have been shown to be active in randomized clinical trials and approved by regulatory agencies. Management of ovarian cancer is poised to change with the continued advancement of precision medicine that is founded upon improved understanding of disease biology; separation into histologically and molecularly defined subgroups; and the incorporation of this new knowledge into early phase drug development and novel clinical trial design.
Collapse
Affiliation(s)
- Victor Rodriguez-Freixinos
- a Division of Medical Oncology and Hematology, Princess Margaret Hospital , University of Toronto , Toronto , Ontario , Canada
| | - Helen J Mackay
- b Division of Medical Oncology and Hematology , Sunnybrook Odette Cancer Centre , Toronto , Ontario , Canada
| | - Katherine Karakasis
- a Division of Medical Oncology and Hematology, Princess Margaret Hospital , University of Toronto , Toronto , Ontario , Canada
| | - Amit M Oza
- a Division of Medical Oncology and Hematology, Princess Margaret Hospital , University of Toronto , Toronto , Ontario , Canada
| |
Collapse
|
21
|
McClung EC, Wenham RM. Profile of bevacizumab in the treatment of platinum-resistant ovarian cancer: current perspectives. Int J Womens Health 2016; 8:59-75. [PMID: 27051317 PMCID: PMC4803258 DOI: 10.2147/ijwh.s78101] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Patients with platinum-resistant ovarian cancer have progression of disease within 6 months of completing platinum-based chemotherapy. While several chemotherapeutic options exist for the treatment of platinum-resistant ovarian cancer, the overall response to any of these therapies is ~10%, with a median progression-free survival of 3–4 months and a median overall survival of 9–12 months. Bevacizumab (Avastin), a humanized, monoclonal antivascular endothelial growth factor antibody, has demonstrated antitumor activity in the platinum-resistant setting and was recently approved by US Food and Drug Administration for combination therapy with weekly paclitaxel, pegylated liposomal doxorubicin, or topotecan. This review summarizes key clinical trials investigating bevacizumab for recurrent, platinum-resistant ovarian cancer and provides an overview of efficacy, safety, and quality of life data relevant in this setting. While bevacizumab is currently the most studied and clinically available antiangiogenic therapy, we summarize recent studies highlighting novel alternatives, including vascular endothelial growth factor-trap, tyrosine kinase inhibitors, and angiopoietin inhibitor trebananib, and discuss their application for the treatment of platinum-resistant ovarian cancer.
Collapse
Affiliation(s)
- E Clair McClung
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Robert M Wenham
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
22
|
Abstract
Resistance to chemotherapy is among the most important issues in the management of ovarian cancer. Unlike cancer cells, which are heterogeneous as a result of remarkable genetic instability, stromal cells are considered relatively homogeneous. Thus, targeting the tumor microenvironment is an attractive approach for cancer therapy. Arguably, anti-vascular endothelial growth factor (anti-VEGF) therapies hold great promise, but their efficacy has been modest, likely owing to redundant and complementary angiogenic pathways. Components of platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and other pathways may compensate for VEGF blockade and allow angiogenesis to occur despite anti-VEGF treatment. In addition, hypoxia induced by anti-angiogenesis therapy modifies signaling pathways in tumor and stromal cells, which induces resistance to therapy. Because of tumor cell heterogeneity and angiogenic pathway redundancy, combining cytotoxic and targeted therapies or combining therapies targeting different pathways can potentially overcome resistance. Although targeted therapy is showing promise, much more work is needed to maximize its impact, including the discovery of new targets and identification of individuals most likely to benefit from such therapies.
Collapse
|
23
|
Carlisle B, Demko N, Freeman G, Hakala A, MacKinnon N, Ramsay T, Hey S, London AJ, Kimmelman J. Benefit, Risk, and Outcomes in Drug Development: A Systematic Review of Sunitinib. J Natl Cancer Inst 2016; 108:djv292. [PMID: 26547927 PMCID: PMC5943825 DOI: 10.1093/jnci/djv292] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 05/19/2015] [Accepted: 09/22/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Little is known about the total patient burden associated with clinical development and where burdens fall most heavily during a drug development program. Our goal was to quantify the total patient burden/benefit in developing a new drug. METHODS We measured risk using drug-related adverse events that were grade 3 or higher, benefit by objective response rate, and trial outcomes by whether studies met their primary endpoint with acceptable safety. The differences in risk (death rate) and benefit (overall response rate) between industry and nonindustry trials were analyzed with an inverse-variance weighted fixed effects meta-analysis implemented as a weighted regression analysis. All statistical tests were two-sided. RESULTS We identified 103 primary publications of sunitinib monotherapy, representing 9092 patients and 3991 patient-years of involvement over 10 years and 32 different malignancies. In total, 1052 patients receiving sunitinib monotherapy experienced objective tumor response (15.7% of intent-to-treat population, 95% confidence interval [CI] = 15.3% to 16.0%), 98 died from drug-related toxicities (1.08%, 95% CI = 1.02% to 1.14%), and at least 1245 experienced grade 3-4 drug-related toxicities (13.7%, 95% CI = 13.3% to 14.1%). Risk/benefit worsened as the development program matured, with several instances of replicated negative studies and almost no positive trials after the first responding malignancies were discovered. CONCLUSIONS Even for a successful drug, the risk/benefit balance of trials was similar to phase I cancer trials in general. Sunitinib monotherapy development showed worsening risk/benefit, and the testing of new indications responded slowly to evidence that sunitinib monotherapy would not extend to new malignancies. Research decision-making should draw on evidence from whole research programs rather than a narrow band of studies in the same indication.
Collapse
Affiliation(s)
- Benjamin Carlisle
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Nadine Demko
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Georgina Freeman
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Amanda Hakala
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Nathalie MacKinnon
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Tim Ramsay
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Spencer Hey
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Alex John London
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Jonathan Kimmelman
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL).
| |
Collapse
|
24
|
Wasserstrum Y, Kornowski R, Raanani P, Leader A, Pasvolsky O, Iakobishvili Z. Hypertension in cancer patients treated with anti-angiogenic based regimens. CARDIO-ONCOLOGY 2015; 1:6. [PMID: 33530150 PMCID: PMC7837153 DOI: 10.1186/s40959-015-0009-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/25/2015] [Indexed: 02/08/2023]
Abstract
New anti-cancer drugs that inhibit the vascular endothelial growth factor (VEGF) signaling pathway are highly effective in the treatment of solid tumors, however concerns remain regarding their cardiovascular safety. The most common side effect of VEGF signaling pathway (VSP) inhibition is the development of systemic hypertension. We review the incidence, possible mechanisms, significance and management of hypertension in patients treated with VSP inhibitors.
Collapse
Affiliation(s)
- Yishay Wasserstrum
- Department of Cardiology, Rabin Medical Center, Petah Tikva, 49100, Israel.,Sackler School of Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ran Kornowski
- Department of Cardiology, Rabin Medical Center, Petah Tikva, 49100, Israel.,Sackler School of Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pia Raanani
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel.,Sackler School of Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avi Leader
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel.,Sackler School of Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Pasvolsky
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel.,Sackler School of Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zaza Iakobishvili
- Department of Cardiology, Rabin Medical Center, Petah Tikva, 49100, Israel. .,Sackler School of Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
25
|
Wang Z, Fu S. An overview of tyrosine kinase inhibitors for the treatment of epithelial ovarian cancer. Expert Opin Investig Drugs 2015; 25:15-30. [PMID: 26560712 DOI: 10.1517/13543784.2016.1117071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy and the fifth most common cause of cancer-related deaths in women. Initial treatment with surgery and chemotherapy has improved survival significantly. However, the disease progresses or recurs in most patients. Thus, there is an urgent need to develop more effective treatment strategies. AREAS COVERED This article provides an overview of tyrosine kinase inhibitors (TKIs) for the treatment of EOC, which is based on English peer-reviewed articles on MEDLINE and related abstracts presented at major conferences. The authors highlight the data from the published clinical trials in EOC patients who were treated with TKIs or TKI-based regimens. EXPERT OPINION EOC is responsive to most chemotherapeutic drugs and/or biological agents and represents an ideal disease model for investigating novel anti-cancer agents. Numerous small-molecule TKIs targeting the VEGFR, PARP, PI3K-AKT-mTOR, MAPK, Src, PKC, Wee1 and HER1/2 signaling pathways are currently being tested in clinical trials. Research is needed for devising regimens combining TKIs with other agents in an optimal timing schedule and for identifying potential biomarkers predictive of response and survival.
Collapse
Affiliation(s)
- Zhijie Wang
- a Department of Investigational Cancer Therapeutics , The University of Texas MD Anderson Cancer Center , 1515 Holcombe Boulevard, Houston , TX 77030 , USA.,b Department of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) , Peking University Cancer Hospital & Beijing Institute for Cancer Research , Beijing , China
| | - Siqing Fu
- a Department of Investigational Cancer Therapeutics , The University of Texas MD Anderson Cancer Center , 1515 Holcombe Boulevard, Houston , TX 77030 , USA
| |
Collapse
|
26
|
Marchetti C, Palaia I, De Felice F, Musella A, Donfracesco C, Vertechy L, Romito A, Piacenti I, Musio D, Muzii L, Tombolini V, Benedetti Panici P. Tyrosine-kinases inhibitors in recurrent platinum-resistant ovarian cancer patients. Cancer Treat Rev 2015; 42:41-6. [PMID: 26559739 DOI: 10.1016/j.ctrv.2015.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
Abstract
For many decades, ovarian cancer (OC) has been one of the most common gynecological cancer. Despite advances in OC diagnosis and treatment, the risk of recurrence is ever present and approximately 85% of patients will experience relapse. Recurrent OC after first-line therapy is almost always incurable. Multiple novel therapies, including tyrosine-kinases inhibitors (TKI), have shown promising results, but their role needs to be clarified. In this review we describe the rationale and the clinical evidence regarding the use of TKI for the treatment of recurrent platinum-resistant OC patients.
Collapse
Affiliation(s)
- C Marchetti
- Department of Gynecological and Obstetrical Sciences and Urological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - I Palaia
- Department of Gynecological and Obstetrical Sciences and Urological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - F De Felice
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy.
| | - A Musella
- Department of Gynecological and Obstetrical Sciences and Urological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - C Donfracesco
- Department of Gynecological and Obstetrical Sciences and Urological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - L Vertechy
- Department of Gynecological and Obstetrical Sciences and Urological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - A Romito
- Department of Gynecological and Obstetrical Sciences and Urological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - I Piacenti
- Department of Gynecological and Obstetrical Sciences and Urological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - D Musio
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy.
| | - L Muzii
- Department of Gynecological and Obstetrical Sciences and Urological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - V Tombolini
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy.
| | - P Benedetti Panici
- Department of Gynecological and Obstetrical Sciences and Urological Sciences, "Sapienza" University of Rome, Rome, Italy.
| |
Collapse
|
27
|
Yeung TL, Leung CS, Yip KP, Au Yeung CL, Wong STC, Mok SC. Cellular and molecular processes in ovarian cancer metastasis. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis. Am J Physiol Cell Physiol 2015. [PMID: 26224579 DOI: 10.1152/ajpcell.00188.2015] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is the most lethal gynecological malignancy. It is usually diagnosed at a late stage, with a 5-yr survival rate of <30%. The majority of ovarian cancer cases are diagnosed after tumors have widely spread within the peritoneal cavity, limiting the effectiveness of debulking surgery and chemotherapy. Owing to a substantially lower survival rate at late stages of disease than at earlier stages, the major cause of ovarian cancer deaths is believed to be therapy-resistant metastasis. Although metastasis plays a crucial role in promoting ovarian tumor progression and decreasing patient survival rates, the underlying mechanisms of ovarian cancer spread have yet to be thoroughly explored. For many years, researchers have believed that ovarian cancer metastasizes via a passive mechanism by which ovarian cancer cells are shed from the primary tumor and carried by the physiological movement of peritoneal fluid to the peritoneum and omentum. However, the recent discovery of hematogenous metastasis of ovarian cancer to the omentum via circulating tumor cells instigated rethinking of the mode of ovarian cancer metastasis and the importance of the "seed-and-soil" hypothesis for ovarian cancer metastasis. In this review we discuss the possible mechanisms by which ovarian cancer cells metastasize from the primary tumor to the omentum, the cross-talk signaling events between ovarian cancer cells and various stromal cells that play crucial roles in ovarian cancer metastasis, and the possible clinical implications of these findings in the management of this deadly, highly metastatic disease.
Collapse
Affiliation(s)
- Tsz-Lun Yeung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cecilia S Leung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Kay-Pong Yip
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Chi Lam Au Yeung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas; NCI Center for Modeling Cancer Development, Houston Methodist Research Institute, Houston, Texas
| | - Samuel C Mok
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas;
| |
Collapse
|
28
|
Marchetti C, Ledermann JA, Benedetti Panici P. An overview of early investigational therapies for chemoresistant ovarian cancer. Expert Opin Investig Drugs 2015. [DOI: 10.1517/13543784.2015.1072168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Hirte H, Lheureux S, Fleming G, Sugimoto A, Morgan R, Biagi J, Wang L, McGill S, Ivy S, Oza A. A phase 2 study of cediranib in recurrent or persistent ovarian, peritoneal or fallopian tube cancer: A trial of the Princess Margaret, Chicago and California Phase II Consortia. Gynecol Oncol 2015; 138:55-61. [DOI: 10.1016/j.ygyno.2015.04.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/10/2015] [Indexed: 12/27/2022]
|
30
|
Gadducci A, Lanfredini N, Sergiampietri C. Antiangiogenic agents in gynecological cancer: State of art and perspectives of clinical research. Crit Rev Oncol Hematol 2015; 96:113-28. [PMID: 26126494 DOI: 10.1016/j.critrevonc.2015.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/08/2015] [Accepted: 05/12/2015] [Indexed: 12/27/2022] Open
Abstract
Vascular endothelial growth factor [VEGF] pathway, which plays a key role in angiogenesis, may be blocked by either extracellular interference with VEGF itself (bevacizumab [BEV] or aflibercept), or intracytoplasmic inhibition of VEGF receptor (pazopanib, nintedanib, cediranid, sunitinib and sorafenib). An alternative approach is represented by trebananib, a fusion protein that prevents the interaction of angiopoietin [Ang]-1 and Ang-2 with Tie2 receptor on vascular endothelium. The combination of antiangiogenic agents, especially BEV, and chemotherapy is a rational therapeutic option for primary or recurrent ovarian carcinoma. However, it will be difficult to accept that it represents the new standard treatment, until biological characterization of ovarian carcinoma has not identified subsets of tumors with different responsiveness to BEV. Anti-angiogenesis is an interesting target also for recurrent cervical or endometrial cancer, but nowadays the use of anti-angiogenic agents in these malignancies should be reserved to patients enrolled in clinical trials.
Collapse
Affiliation(s)
- Angiolo Gadducci
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Italy.
| | - Nora Lanfredini
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Italy
| | - Claudia Sergiampietri
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Italy
| |
Collapse
|
31
|
Coward JIG, Middleton K, Murphy F. New perspectives on targeted therapy in ovarian cancer. Int J Womens Health 2015; 7:189-203. [PMID: 25678824 PMCID: PMC4324539 DOI: 10.2147/ijwh.s52379] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epithelial ovarian cancer remains the most lethal gynecologic malignancy. During the last 15 years, there has been only marginal improvement in 5 year overall survival. These daunting statistics are compounded by the fact that despite all subtypes exhibiting striking heterogeneity, their systemic management remains identical. Although changes to the scheduling and administration of chemotherapy have improved outcomes to a degree, a therapeutic ceiling is being reached with this approach, resulting in a number of trials investigating the efficacy of targeted therapies alongside standard treatment algorithms. Furthermore, there is an urge to develop subtype-specific studies in an attempt to improve outcomes, which currently remain poor. This review summarizes the key studies with antiangiogenic agents, poly(adenosine diphosphate [ADP]-ribose) inhibitors, and epidermal growth factor receptor/human epidermal growth factor receptor family targeting, in addition to folate receptor antagonists and insulin growth factor receptor inhibitors. The efficacy of treatment paradigms used in non-ovarian malignancies for type I tumors is also highlighted, in addition to recent advances in appropriate patient stratification for targeted therapies in epithelial ovarian cancer.
Collapse
Affiliation(s)
- Jermaine IG Coward
- Mater Health Services, Raymond Terrace, South Brisbane, QLD, Australia
- Inflammtion and Cancer Therapeutics Group, Mater Research, University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Kathryn Middleton
- Mater Health Services, Raymond Terrace, South Brisbane, QLD, Australia
| | - Felicity Murphy
- Mater Health Services, Raymond Terrace, South Brisbane, QLD, Australia
| |
Collapse
|
32
|
Selle F, Sevin E, Ray-Coquard I, Mari V, Berton-Rigaud D, Favier L, Fabbro M, Lesoin A, Lortholary A, Pujade-Lauraine E. A phase II study of lenalidomide in platinum-sensitive recurrent ovarian carcinoma. Ann Oncol 2014; 25:2191-2196. [DOI: 10.1093/annonc/mdu392] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
33
|
Ko SY, Naora H. Therapeutic strategies for targeting the ovarian tumor stroma. World J Clin Cases 2014; 2:194-200. [PMID: 24945005 PMCID: PMC4061307 DOI: 10.12998/wjcc.v2.i6.194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/23/2014] [Accepted: 05/13/2014] [Indexed: 02/05/2023] Open
Abstract
Epithelial ovarian cancer is the most lethal type of gynecologic malignancy. Sixty percent of women who are diagnosed with ovarian cancer present with advanced-stage disease that involves the peritoneal cavity and these patients have a 5-year survival rate of less than 30%. For more than two decades, tumor-debulking surgery followed by platinum-taxane combination chemotherapy has remained the conventional first-line treatment of ovarian cancer. Although the initial response rate is 70%-80%, most patients with advanced-stage ovarian cancer eventually relapse and succumb to recurrent chemoresistant disease. A number of molecular aberrations that drive tumor progression have been identified in ovarian cancer cells and intensive efforts have focused on developing therapeutic agents that target these aberrations. However, increasing evidence indicates that reciprocal interactions between tumor cells and various types of stromal cells also play important roles in driving ovarian tumor progression and that these stromal cells represent attractive therapeutic targets. Unlike tumor cells, stromal cells within the tumor microenvironment are in general genetically stable and are therefore less likely to become resistant to therapy. This concise review discusses the biological significance of the cross-talk between ovarian cancer cells and three major types of stromal cells (endothelial cells, fibroblasts, macrophages) and the development of new-generation therapies that target the ovarian tumor microenvironment.
Collapse
|
34
|
Aravantinos G, Pectasides D. Bevacizumab in combination with chemotherapy for the treatment of advanced ovarian cancer: a systematic review. J Ovarian Res 2014; 7:57. [PMID: 24864163 PMCID: PMC4033616 DOI: 10.1186/1757-2215-7-57] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/12/2014] [Indexed: 01/01/2023] Open
Abstract
As increased angiogenesis has been linked with the progression of ovarian cancer, a number of anti-angiogenic agents have been investigated, or are currently in development, as potential treatment options for patients with advanced disease. Bevacizumab, a recombinant monoclonal antibody against vascular endothelial growth factor, has gained European Medicines Agency approval for the front-line treatment of advanced epithelial ovarian cancer, fallopian tube cancer or primary peritoneal cancer in combination with carboplatin and paclitaxel, and for the treatment of first recurrence of platinum-sensitive ovarian cancer in combination with carboplatin and gemcitabine. We conducted a systematic literature review to identify available efficacy and safety data for bevacizumab in ovarian cancer as well as for newer anti-angiogenic agents in development. We analyzed published data from randomized, controlled phase II/III clinical trials enrolling women with ovarian cancer to receive treatment with bevacizumab. We also reviewed available data for emerging anti-angiogenic agents currently in phase II/III development, including trebananib, aflibercept, nintedanib, cediranib, imatinib, pazopanib, sorafenib and sunitinib. Significant efficacy gains were achieved with the addition of bevacizumab to standard chemotherapy in four randomized, double-blind, phase III trials, both as front-line treatment (GOG-0218 and ICON7) and in patients with recurrent disease (OCEANS and AURELIA). The type and frequency of bevacizumab-related adverse events was as expected in these studies based on published data. Promising efficacy data have been published for a number of emerging anti-angiogenic agents in phase III development for advanced ovarian cancer. Further research is needed to identify predictive or prognostic markers of response to bevacizumab in order to optimize patient selection and treatment benefit. Data from phase III trials of newer anti-angiogenic agents in ovarian cancer are awaited.
Collapse
Affiliation(s)
- Gerasimos Aravantinos
- Second Department of Medical Oncology, Agioi Anargiroi Cancer Hospital, Κifisia, Athens, Greece
| | - Dimitrios Pectasides
- Second Department of Internal Medicine, Hippokration Hospital, University of Athens School of Medicine, Athens, Greece
| |
Collapse
|
35
|
Sama AR, Schilder RJ. Refractory fallopian tube carcinoma - current perspectives in pathogenesis and management. Int J Womens Health 2014; 6:149-57. [PMID: 24511245 PMCID: PMC3913505 DOI: 10.2147/ijwh.s40889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fallopian tube carcinoma (FTC) is considered a rare malignancy, but recent evidence shows that its incidence may have been underestimated. Risk-reducing salpingo-oophorectomy (RRSO) in breast cancer susceptibility gene (BRCA)-positive women has provided a unique opportunity to study the pathogenesis of FTC and ovarian carcinomas. Newer data now suggest that most high-grade serous cancers of the ovary originate in the fimbrial end of the fallopian tube. Due to the presumed rarity of FTC, most current and more recent ovarian cancer clinical trials have now included patients with FTC. The treatment guidelines recommend similar overall management and that the same chemotherapy regimens be used for epithelial ovarian cancers and FTC.
Collapse
Affiliation(s)
- Ashwin R Sama
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Russell J Schilder
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
36
|
Daniele G, Di Maio M, Piccirillo MC, Giordano P, Capuano I, Cecere SC, Bryce JC, Pignata S, Perrone F. New biological treatments for gynecological tumors: focus on angiogenesis. Expert Opin Biol Ther 2014; 14:337-46. [DOI: 10.1517/14712598.2014.873401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Leone Roberti Maggiore U, Valenzano Menada M, Venturini PL, Ferrero S. The potential of sunitinib as a therapy in ovarian cancer. Expert Opin Investig Drugs 2013; 22:1671-86. [PMID: 24070205 DOI: 10.1517/13543784.2013.841138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Sunitinib malate (SU11248; Sutent®; Pfizer, Inc., New York) is a multi-kinase inhibitor currently approved for use in advanced renal cell carcinoma (RCC), imatinib-resistant/-intolerant gastrointestinal stromal tumours and progressive, well-differentiated pancreatic neuroendocrine tumours in patients with unresectable, locally advanced or metastatic disease. AREAS COVERED This article describes the mechanism of action and of the pharmacokinetics of sunitinib; further, it summarizes Phase I and II trials on the clinical efficacy, tolerability and safety of this agent in the setting of ovarian cancer (OC) treatment. EXPERT OPINION On the basis of the current literature, sunitinib has shown modest antitumour activity and acceptable toxicity. Studies investigating the impact of horizontal and vertical combinations should represent a priority of future research. Although clinical Phase II trials on the use of sunitinib in the treatment of OC demonstrated an acceptable profile of AEs, a greater comprehension of the toxicity of this compound is recommended.
Collapse
Affiliation(s)
- Umberto Leone Roberti Maggiore
- University of Genoa, San Martino Hospital and National Institute for Cancer Research, Department of Obstetrics and Gynecology , Largo R. Benzi 1, 16132 Genoa , Italy +01139 010511525 ; +01139 010511525 ;
| | | | | | | |
Collapse
|
38
|
Gavalas NG, Liontos M, Trachana SP, Bagratuni T, Arapinis C, Liacos C, Dimopoulos MA, Bamias A. Angiogenesis-related pathways in the pathogenesis of ovarian cancer. Int J Mol Sci 2013; 14:15885-909. [PMID: 23903048 PMCID: PMC3759892 DOI: 10.3390/ijms140815885] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/13/2013] [Accepted: 06/27/2013] [Indexed: 12/29/2022] Open
Abstract
Ovarian Cancer represents the most fatal type of gynecological malignancies. A number of processes are involved in the pathogenesis of ovarian cancer, especially within the tumor microenvironment. Angiogenesis represents a hallmark phenomenon in cancer, and it is responsible for tumor spread and metastasis in ovarian cancer, among other tumor types, as it leads to new blood vessel formation. In recent years angiogenesis has been given considerable attention in order to identify targets for developing effective anti-tumor therapies. Growth factors have been identified to play key roles in driving angiogenesis and, thus, the formation of new blood vessels that assist in "feeding" cancer. Such molecules include the vascular endothelial growth factor (VEGF), the platelet derived growth factor (PDGF), the fibroblast growth factor (FGF), and the angiopoietin/Tie2 receptor complex. These proteins are key players in complex molecular pathways within the tumor cell and they have been in the spotlight of the development of anti-angiogenic molecules that may act as stand-alone therapeutics, or in concert with standard treatment regimes such as chemotherapy. The pathways involved in angiogenesis and molecules that have been developed in order to combat angiogenesis are described in this paper.
Collapse
Affiliation(s)
- Nikos G. Gavalas
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vas. Sofias Avenue, Athens 115 28, Greece; E-Mails: (N.G.G.); (L.M.); (S.-P.T.); (T.B.); (C.A.); (C.L.); (M.A.G.)
| | - Michalis Liontos
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vas. Sofias Avenue, Athens 115 28, Greece; E-Mails: (N.G.G.); (L.M.); (S.-P.T.); (T.B.); (C.A.); (C.L.); (M.A.G.)
| | - Sofia-Paraskevi Trachana
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vas. Sofias Avenue, Athens 115 28, Greece; E-Mails: (N.G.G.); (L.M.); (S.-P.T.); (T.B.); (C.A.); (C.L.); (M.A.G.)
| | - Tina Bagratuni
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vas. Sofias Avenue, Athens 115 28, Greece; E-Mails: (N.G.G.); (L.M.); (S.-P.T.); (T.B.); (C.A.); (C.L.); (M.A.G.)
| | - Calliope Arapinis
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vas. Sofias Avenue, Athens 115 28, Greece; E-Mails: (N.G.G.); (L.M.); (S.-P.T.); (T.B.); (C.A.); (C.L.); (M.A.G.)
| | - Christine Liacos
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vas. Sofias Avenue, Athens 115 28, Greece; E-Mails: (N.G.G.); (L.M.); (S.-P.T.); (T.B.); (C.A.); (C.L.); (M.A.G.)
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vas. Sofias Avenue, Athens 115 28, Greece; E-Mails: (N.G.G.); (L.M.); (S.-P.T.); (T.B.); (C.A.); (C.L.); (M.A.G.)
| | - Aristotle Bamias
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vas. Sofias Avenue, Athens 115 28, Greece; E-Mails: (N.G.G.); (L.M.); (S.-P.T.); (T.B.); (C.A.); (C.L.); (M.A.G.)
| |
Collapse
|
39
|
Morotti M, Becker CM, Menada MV, Ferrero S. Targeting tyrosine-kinases in ovarian cancer. Expert Opin Investig Drugs 2013; 22:1265-79. [PMID: 23815710 DOI: 10.1517/13543784.2013.816282] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Epithelial ovarian cancer (EOC) is the leading cause of gynaecologic cancer death. Although in some cases initial treatment is effective, most of the women diagnosed with EOC will probably need medical treatment for their disease. There is a critical need to develop effective new strategies for the management of patients with advanced or recurrent EOC, and targeted therapy with tyrosine kinase inhibitors (TKIs) has continued to be an area of active research and development in this setting. AREAS COVERED This review summarises the available evidence on the use of TKIs in the clinical management of women with EOC. This article consists of material obtained via Medline, PubMed and EMBASE literature searches up to March 2013. EXPERT OPINION Several Phase I/II and III trials evaluated TKIs in EOC; however, it is difficult to draw conclusions on the efficacy of TKI regimens in these patients. TKIs seem to be better tolerated than conventional chemotherapy with a different toxicity profile. A better understanding of the signalling pathways, the toxicity profiles, the potential pharmacokinetic interactions as well as the identification of predictive biomarkers are needed to better identify a targeted patient population before these agents become part of routine treatment.
Collapse
Affiliation(s)
- Matteo Morotti
- University of Genoa, San Martino Hospital, Department of Obstetrics and Gynaecology , Largo R. Benzi 1, 16132 Genoa , Italy +01139010511525 ; +01139010511525 ;
| | | | | | | |
Collapse
|
40
|
Elit L, Hirte H. Palliative systemic therapy for women with recurrent epithelial ovarian cancer: current options. Onco Targets Ther 2013; 6:107-18. [PMID: 23459506 PMCID: PMC3585576 DOI: 10.2147/ott.s30238] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES To review the available systemic treatments for women with recurrent ovarian cancer. METHODS A literature review was conducted for recurrent ovarian cancer articles in English, including randomized trials, Phase II trials, or reviews. RESULTS We discuss the efficacy and toxicity outcomes associated with systemic therapy for platinum-sensitive and platinum-resistant ovarian cancer. Clearly, platinum-based combination systemic therapy shows a prolonged progression-free interval compared with single-agent chemotherapy with a low toxicity profile. No clear superior management strategy exists for platinum-resistant/refractory disease. Novel targeted antiangiogenic agents (eg, bevacizumab), angiopoeitin inhibitors (eg, AMG 386), and poly ADP ribose polymerase inhibitors (eg, olaparib) are reviewed. CONCLUSION Although combination platinum-based chemotherapy has shown benefits for women with platinum-sensitive recurrent ovarian cancer, the optimal treatment strategy for those with platinum-resistant or platinum-refractory disease is not clear. Molecular and genetic targeted therapies may provide opportunities for those women with tumor profiles that show sensitivity for specific agents.
Collapse
Affiliation(s)
- Laurie Elit
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada ; Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|