1
|
Botter E, Caligiuri I, Rizzolio F, Visentin F, Scattolin T. Liposomal Formulations of Metallodrugs for Cancer Therapy. Int J Mol Sci 2024; 25:9337. [PMID: 39273286 PMCID: PMC11394711 DOI: 10.3390/ijms25179337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The search for new antineoplastic agents is imperative, as cancer remains one of the most preeminent causes of death worldwide. Since the discovery of the therapeutic potential of cisplatin, the study of metallodrugs in cancer chemotherapy acquired increasing interest. Starting from cisplatin derivatives, such as oxaliplatin and carboplatin, in the last years, different compounds were explored, employing different metal centers such as iron, ruthenium, gold, and palladium. Nonetheless, metallodrugs face several drawbacks, such as low water solubility, rapid clearance, and possible side toxicity. Encapsulation has emerged as a promising strategy to overcome these issues, providing both improved biocompatibility and protection of the payload from possible degradation in the biological environment. In this respect, liposomes, which are spherical vesicles characterized by an aqueous core surrounded by lipid bilayers, have proven to be ideal candidates due to their versatility. In fact, they can encapsulate both hydrophilic and hydrophobic drugs, are biocompatible, and their properties can be tuned to improve the selective delivery to tumour sites exploiting both passive and active targeting. In this review, we report the most recent findings on liposomal formulations of metallodrugs, with a focus on encapsulation techniques and the obtained biological results.
Collapse
Affiliation(s)
- Eleonora Botter
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Isabella Caligiuri
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Fabiano Visentin
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
2
|
Mohammad-Jafari K, Naghib SM, Mozafari MR. Cisplatin-based Liposomal Nanocarriers for Drug Delivery in Lung Cancer Therapy: Recent Progress and Future Outlooks. Curr Pharm Des 2024; 30:2850-2881. [PMID: 39051580 DOI: 10.2174/0113816128304923240704113319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/23/2024] [Indexed: 07/27/2024]
Abstract
In order to improve the treatment of lung cancer, this paper looks at the development of cisplatinbased liposomal nanocarriers. It focuses on addressing the drawbacks of conventional cisplatin therapy, including systemic toxicity, inadequate tumor targeting, and drug resistance. Liposomes, or spherical lipid vesicles, offer a potentially effective way to encapsulate cisplatin, enhancing its transport and minimizing harmful effects on healthy tissues. The article discusses many liposomal cisplatin formulations, including pH-sensitive liposomes, sterically stabilized liposomes, and liposomes coupled with specific ligands like EGFR antibodies. These novel formulations show promise in reducing cisplatin resistance, optimizing pharmacokinetics, and boosting therapeutic results in the two in vitro and in vivo models. They also take advantage of the Enhanced Permeability and Retention (EPR) effect in the direction of improved tumor accumulation. The study highlights the need for more investigation to move these liposomal formulations from experimental to clinical settings, highlighting their potential to offer less harmful and more effective cancer therapy alternatives.
Collapse
Affiliation(s)
- Kave Mohammad-Jafari
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
3
|
Khan SU, Rayees S, Sharma P, Malik F. Targeting redox regulation and autophagy systems in cancer stem cells. Clin Exp Med 2023; 23:1405-1423. [PMID: 36473988 DOI: 10.1007/s10238-022-00955-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
Cancer is a dysregulated cellular level pathological condition that results in tumor formation followed by metastasis. In the heterogeneous tumor architecture, cancer stem cells (CSCs) are essential to push forward the progression of tumors due to their strong pro-tumor properties such as stemness, self-renewal, plasticity, metastasis, and being poorly responsive to radiotherapy and chemotherapeutic agents. Cancer stem cells have the ability to withstand various stress pressures by modulating transcriptional and translational mechanisms, and adaptable metabolic changes. Owing to CSCs heterogeneity and plasticity, these cells display varied metabolic and redox profiles across different types of cancers. It has been established that there is a disparity in the levels of Reactive Oxygen Species (ROS) generated in CSCs vs Non-CSC and these differential levels are detected across different tumors. CSCs have unique metabolic demands and are known to change plasticity during metastasis by passing through the interchangeable epithelial and mesenchymal-like phenotypes. During the metastatic process, tumor cells undergo epithelial to mesenchymal transition (EMT) thus attaining invasive properties while leaving the primary tumor site, similarly during the course of circulation and extravasation at a distant organ, these cells regain their epithelial characteristics through Mesenchymal to Epithelial Transition (MET) to initiate micrometastasis. It has been evidenced that levels of Reactive Oxygen Species (ROS) and associated metabolic activities vary between the epithelial and mesenchymal states of CSCs. Similarly, the levels of oxidative and metabolic states were observed to get altered in CSCs post-drug treatments. As oxidative and metabolic changes guide the onset of autophagy in cells, its role in self-renewal, quiescence, proliferation and response to drug treatment is well established. This review will highlight the molecular mechanisms useful for expanding therapeutic strategies based on modulating redox regulation and autophagy activation to targets. Specifically, we will account for the mounting data that focus on the role of ROS generated by different metabolic pathways and autophagy regulation in eradicating stem-like cells hereafter referred to as cancer stem cells (CSCs).
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sheikh Rayees
- PK PD Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Pankaj Sharma
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Yang Y, Zuo S, Li W, Di M, Liu J, Chai J, Wang J, Yuan Y, Li M, Jia Q. TRIM21 promotes tumor progression and cancer stemness in cervical squamous cell carcinoma. Pathol Res Pract 2023; 248:154710. [PMID: 37494805 DOI: 10.1016/j.prp.2023.154710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND The ubiquitin ligase family member triplex motif protein 21 (TRIM21), which is involved in the proliferation, metastasis, and selective death of tumor cells, is crucial in the ubiquitination of a number of tumor marker proteins. As research progresses, more studies demonstrate that TRIM21 expression levels can be used to predict cancer prognosis. However, it is unclear how exactly TRIM21 contributes to cervical squamous carcinoma. METHODS Immunohistochemistry, Western Blot, and q-PCR were utilized to determine the expression level of TRIM21 in 113 patients with CESC removed by stage I surgery at Xijing Hospital from 2018 to 2023 using paraffin-embedded tumor tissues and 12 pairs of fresh tumor tissues and their paracancerous tissues. Log-rank analysis using SPSS 23.0 was performed for prognosis and survival analysis using univariate/multifactorial analysis. CCK-8, wound-healing and Scratch assay verified that TRIM21 promoted cell proliferation, migration and invasion. The effect of overexpression and knockdown of TRIM21 on tumor stemness was examined using sphere-forming assay and Western Blot. Finally, we constructed a xenograft model to observe the effect of TRIM21 on tumorigenesis in Si Ha cell lines in vivo. RESULTS TRIM21 expression is greater in CESC tissues than in paracancerous tissues, according to immunohistochemical data. Similarly, at the protein and mRNA levels, we verified this conclusion using Western-Blotting and q-PCR. Prognostic and OS analysis showed that TRIM21 expression levels are associated with individual prognostic factors. CCK-8, Wound healing, Transwell, and Sphere-forming tests all demonstrated that TRIM21 overexpression enhances Ca Ski cell proliferation, migration, invasion, and stemness. TRIM21 knockdown in Si Ha inhibited tumor cell proliferation, migration, invasion, and stemness. The experimental results of xenograft models demonstrated that TRIM21 knockdown in Si Ha cells inhibited tumor development. CONCLUSION TRIM21 is a poor predictor of prognosis for cervical squamous cell carcinoma and might open up new avenues for investigation into therapeutic targets.
Collapse
Affiliation(s)
- Yanru Yang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Saijie Zuo
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wenqing Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Man Di
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fourth Military Medical University, Xi'an, China
| | - Jin Liu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jia Chai
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jingjing Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fourth Military Medical University, Xi'an, China.
| | - Yuan Yuan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| |
Collapse
|
5
|
Kutle I, Polten R, Hachenberg J, Klapdor R, Morgan M, Schambach A. Tumor Organoid and Spheroid Models for Cervical Cancer. Cancers (Basel) 2023; 15:cancers15092518. [PMID: 37173984 PMCID: PMC10177622 DOI: 10.3390/cancers15092518] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Cervical cancer is one of the most common malignant diseases in women worldwide. Despite the global introduction of a preventive vaccine against the leading cause of cervical cancer, human papillomavirus (HPV) infection, the incidence of this malignant disease is still very high, especially in economically challenged areas. New advances in cancer therapy, especially the rapid development and application of different immunotherapy strategies, have shown promising pre-clinical and clinical results. However, mortality from advanced stages of cervical cancer remains a significant concern. Precise and thorough evaluation of potential novel anti-cancer therapies in pre-clinical phases is indispensable for efficient development of new, more successful treatment options for cancer patients. Recently, 3D tumor models have become the gold standard in pre-clinical cancer research due to their capacity to better mimic the architecture and microenvironment of tumor tissue as compared to standard two-dimensional (2D) cell cultures. This review will focus on the application of spheroids and patient-derived organoids (PDOs) as tumor models to develop novel therapies against cervical cancer, with an emphasis on the immunotherapies that specifically target cancer cells and modulate the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Ivana Kutle
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Robert Polten
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Jens Hachenberg
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
| | - Rüdiger Klapdor
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Hegde YM, Theivendren P, Srinivas G, Palanivel M, Shanmugam N, Kunjiappan S, Vellaichamy S, Gopal M, Dharmalingam SR. A Recent Advancement in Nanotechnology Approaches for the Treatment of Cervical Cancer. Anticancer Agents Med Chem 2023; 23:37-59. [PMID: 35570521 DOI: 10.2174/1871520622666220513160706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/05/2022] [Accepted: 03/17/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cervical cancer is one of the leading causes of female death, with a mortality rate of over 200,000 per year in developing countries. Despite a decrease in cervical cancer occurrences in developed countries over the last decade, the frequency of the disease in developing nations continues to rise at an alarming rate, particularly when it is linked to the human papillomavirus (HPV). With just a few highly invasive conventional therapies available, there is a clear need for novel treatment options such as nanotechnology-based chemotherapeutic drug delivery. METHODS Traditional anticancer therapy is limited by poor drug potency, non-specificity, unwanted side effects, and the development of multiple drug resistance (MDR), leading to a decrease in long-term anticancer therapeutic efficacy. An ideal cancer therapy requires a personalized and specialized medication delivery method capable of eradicating even the last cancer cell responsible for disease recurrence. RESULTS Nanotechnology provides effective drug delivery mechanisms, allowing it to serve both therapeutic and diagnostic purposes. Nanotechnology-based formulations are widely used to accurately target the target organ, maintain drug load bioactivity, preferentially accumulate the drug at the target location, and reduce cytotoxicity. CONCLUSION The key benefits of this drug delivery are that it improves pharmacological activity, solubility, and bioavailability and reduces toxicity in the target tissue by targeting ligands, allowing for new innovative treatment methods in an area that is desperately required. The goal of this review is to highlight possible research on nanotechnologybased delivery systems for cancer detection and treatment.
Collapse
Affiliation(s)
- Yashoda Mariappa Hegde
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Geetha Srinivas
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Monashilpa Palanivel
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Nivetha Shanmugam
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil-626126, India
| | - Sivakumar Vellaichamy
- Department of Pharmaceutics, Arulmigu Kalasalingam College of Pharmacy, Krishnankoil-626126, India
| | - Murugananthan Gopal
- Department of Pharmacognosy, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Senthil Rajan Dharmalingam
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| |
Collapse
|
7
|
Ren G, Wang Z, Tian Y, Li J, Ma Y, Zhou L, Zhang C, Guo L, Diao H, Li L, Lu L, Ma S, Wu Z, Yan L, Liu W. Targeted chemo-photodynamic therapy toward esophageal cancer by GSH-sensitive theranostic nanoplatform. Biomed Pharmacother 2022; 153:113506. [DOI: 10.1016/j.biopha.2022.113506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 11/28/2022] Open
|
8
|
Himiniuc LM, Toma BF, Popovici R, Grigore AM, Hamod A, Volovat C, Volovat S, Nica I, Vasincu D, Agop M, Tirnovanu M, Ochiuz L, Negura A, Grigore M. Update on the Use of Nanocarriers and Drug Delivery Systems and Future Directions in Cervical Cancer. J Immunol Res 2022; 2022:1636908. [PMID: 35571568 PMCID: PMC9095399 DOI: 10.1155/2022/1636908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/19/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Cervical cancer represents a major health problem among females due to its increased mortality rate. The conventional therapies are very aggressive and unsatisfactory when it comes to survival rate, especially in terminal stages, which requires the development of new treatment alternatives. With the use of nanotechnology, various chemotherapeutic drugs can be transported via nanocarriers directly to cervical cancerous cells, thus skipping the hepatic first-pass effect and decreasing the rate of chemotherapy side effects. This review comprises various drug delivery systems that were applied in cervical cancer, such as lipid-based nanocarriers, polymeric and dendrimeric nanoparticles, carbon-based nanoparticles, metallic nanoparticles, inorganic nanoparticles, micellar nanocarriers, and protein and polysaccharide nanoparticles. Nanoparticles have a great therapeutic potential by increasing the pharmacological activity, drug solubility, and bioavailability. Through their mechanisms, they highly increase the toxicity in the targeted cervical tumor cells or tissues by linking to specific ligands. In addition, a nondifferentiable model is proposed through holographic implementation in the dynamics of drug delivery dynamics. As any hologram functions as a deep learning process, the artificial intelligence can be proposed as a new analyzing method in cervical cancer.
Collapse
Affiliation(s)
| | - Bogdan Florin Toma
- ”Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Razvan Popovici
- Department of Obstetrics and Gynecology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Ana Maria Grigore
- ”Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | | | - Constantin Volovat
- Center of Oncology Euroclinic, 700110 Iasi, Romania
- “Grigore T. Popa” University of Medicine and Pharmacy, Department of Medical Oncology Radiotherapy, 700115 Iași, Romania
| | - Simona Volovat
- Center of Oncology Euroclinic, 700110 Iasi, Romania
- “Grigore T. Popa” University of Medicine and Pharmacy, Department of Medical Oncology Radiotherapy, 700115 Iași, Romania
| | - Irina Nica
- Department of Odontology, Periodontics and Fixed Restoration, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Decebal Vasincu
- Department of Dental and Oro-Maxillo-Facial Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Maricel Agop
- Department of Physics, “Gheorghe Asachi” Technical University of Iasi, Iasi 700050, Romania
- Romanian Scientists Academy, Bucharest 050094, Romania
| | - Mihaela Tirnovanu
- Department of Obstetrics and Gynecology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Lacramioara Ochiuz
- Department of Pharmaceutical and Biotechnological Drug Industry, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Anca Negura
- Oncogenetics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Biology Department, “Alexandru Ioan Cuza” University, 700506 Iaşi, Romania
| | - Mihaela Grigore
- Department of Obstetrics and Gynecology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| |
Collapse
|
9
|
Keyvani V, Riahi E, Yousefi M, Esmaeili SA, Shafabakhsh R, Moradi Hasan-Abad A, Mahjoubin-Tehran M, Hamblin MR, Mollazadeh S, Mirzaei H. Gynecologic Cancer, Cancer Stem Cells, and Possible Targeted Therapies. Front Pharmacol 2022; 13:823572. [PMID: 35250573 PMCID: PMC8888850 DOI: 10.3389/fphar.2022.823572] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Gynecologic cancer is one of the main causes of death in women. In this type of cancer, several molecules (oncogenes or tumor suppressor genes) contribute to the tumorigenic process, invasion, metastasis, and resistance to treatment. Based on recent evidence, the detection of molecular changes in these genes could have clinical importance for the early detection and evaluation of tumor grade, as well as the selection of targeted treatment. Researchers have recently focused on cancer stem cells (CSCs) in the treatment of gynecologic cancer because of their ability to induce progression and recurrence of malignancy. This has highlighted the importance of a better understanding of the molecular basis of CSCs. The purpose of this review is to focus on the molecular mechanism of gynecologic cancer and the role of CSCs to discover more specific therapeutic approaches to gynecologic cancer treatment.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Espanta Riahi
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran; Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Meysam Yousefi
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- *Correspondence: Samaneh Mollazadeh, ; Hamed Mirzaei, ,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Samaneh Mollazadeh, ; Hamed Mirzaei, ,
| |
Collapse
|
10
|
Zhang J, Yu G, Yang Y, Wang Y, Guo M, Yin Q, Yan C, Tian J, Fu F, Wang H. A small-molecule inhibitor of MDMX suppresses cervical cancer cells via the inhibition of E6-E6AP-p53 axis. Pharmacol Res 2022; 177:106128. [PMID: 35150860 DOI: 10.1016/j.phrs.2022.106128] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/24/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023]
Abstract
Dysfunction of p53 is observed in many malignant tumors, which is related to cancer susceptibility. In cervical cancer, p53 is primarily degradated through the complex of high-risk human papillomaviruses (HPV) oncoprotein E6 and E6-associated protein (E6AP) ubiquitin ligase. What is less clear is the mechanism and role of murine double minute X (MDMX) in cervical carcinogenesis due to the inactive status of murine double minute 2 (MDM2). In the current study, XI-011 (NSC146109), a small-molecule inhibitor of MDMX, showed robust anti-proliferation activity against several cervical cancer cell lines. XI-011 promoted apoptosis of cervical cancer cells via stabilizing p53 and activating its transcription activity. Moreover, XI-011 inhibited the growth of xenograft tumor in HeLa tumor-bearing mice, as well as enhanced the cytotoxic activity of cisplatin both in vitro and in vivo. Interestingly, MDMX co-locolized with E6AP and seems to be a novel binding partner of E6AP to promote p53 ubiquitination. In conclusion, this work revealed a novel mechanism of ubiquitin-dependent p53 degredation via MDMX-E6AP axis in cervical carcinogenesis, and offered the first evidence that MDMX could be a viable drug target for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Jingwen Zhang
- Key laboratory of Molecular Pharmacology and Drug Evalution (Yantai University), Ministry of Education; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai university, Yantai, China
| | - Guohua Yu
- Department of Pathology, Affiliated Yantai Yuhuangding Hospital, Medical College of Qingdao University, Yantai, China
| | - Yanting Yang
- Key laboratory of Molecular Pharmacology and Drug Evalution (Yantai University), Ministry of Education; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai university, Yantai, China
| | - Yingjie Wang
- Key laboratory of Molecular Pharmacology and Drug Evalution (Yantai University), Ministry of Education; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai university, Yantai, China
| | - Mengqi Guo
- Key laboratory of Molecular Pharmacology and Drug Evalution (Yantai University), Ministry of Education; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai university, Yantai, China
| | - Qikun Yin
- Key laboratory of Molecular Pharmacology and Drug Evalution (Yantai University), Ministry of Education; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai university, Yantai, China; Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Chunhong Yan
- GRU Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Jingwei Tian
- Key laboratory of Molecular Pharmacology and Drug Evalution (Yantai University), Ministry of Education; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai university, Yantai, China
| | - Fenghua Fu
- Key laboratory of Molecular Pharmacology and Drug Evalution (Yantai University), Ministry of Education; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai university, Yantai, China.
| | - Hongbo Wang
- Key laboratory of Molecular Pharmacology and Drug Evalution (Yantai University), Ministry of Education; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai university, Yantai, China.
| |
Collapse
|
11
|
Boztepe T, Castro GR, León IE. Lipid, polymeric, inorganic-based drug delivery applications for platinum-based anticancer drugs. Int J Pharm 2021; 605:120788. [PMID: 34116182 DOI: 10.1016/j.ijpharm.2021.120788] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/13/2022]
Abstract
The three main FDA-approved platinum drugs in chemotherapy such as carboplatin, cisplatin, and oxaliplatin are extensively applied in cancer treatments. Although the clinical applications of platinum-based drugs are extremely effective, their toxicity profile restricts their extensive application. Therefore, recent studies focus on developing new platinum drug formulations, expanding the therapeutic aspect. In this sense, recent advances in the development of novel drug delivery carriers will help with the increase of drug stability and biodisponibility, concomitantly with the reduction of drug efflux and undesirable secondary toxic effects of platinum compounds. The present review describes the state of the art of platinum drugs with their biological effects, pre- and clinical studies, and novel drug delivery nanodevices based on lipids, polymers, and inorganic.
Collapse
Affiliation(s)
- Tugce Boztepe
- Laboratorio de Nanobiomateriales, CINDEFI - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET (CCT La Plata), Calle 47 y 115, B1900AJL La Plata, Argentina
| | - Guillermo R Castro
- Laboratorio de Nanobiomateriales, CINDEFI - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET (CCT La Plata), Calle 47 y 115, B1900AJL La Plata, Argentina; Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Maipú 1065, S2000 Rosario, Santa Fe, Argentina.
| | - Ignacio E León
- Centro de Química Inorgánica, CEQUINOR (CONICET-UNLP), Bv. 120 1465, La Plata, Argentina.
| |
Collapse
|
12
|
Sharma A, Kaur H, De R, Srinivasan R, Pal A, Bhattacharyya S. Knockdown of E-cadherin induces cancer stem-cell-like phenotype and drug resistance in cervical cancer cells. Biochem Cell Biol 2021; 99:587-595. [PMID: 33677985 DOI: 10.1139/bcb-2020-0592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cervical cancer is one of the leading causes of mortality amongst women in developing countries, and resistance to therapy is the main reason for treatment failure. Recent advances suggest that cancer stem cells (CSCs) are critically involved in regulating the chemo-resistant behavior of cervical cancer cells. In our study, cells with the CSC phenotype were isolated, and we examined the expression levels of stem cell markers and genes associated with epithelial-mesenchymal transition (EMT) using different assays. However, the cells with the CSC phenotype could not be cultured for further cytotoxicity studies, so we established a model of CSC in cervical cancer cells. We performed siRNA-mediated knockdown of E-cadherin in these cells, and studied them for EMT-associated stem-cell-like properties. We also performed dose-dependent cell viability assays using clinically relevant drugs such as cisplatin, cyclopamine, and GANT58 to analyze the drug resistant behavior of these cancer cells. We found that knockdown of E-cadherin induces EMT in cervical cancer cells, imparting stem-cell like characteristics along with enhanced tumorsphere formation, cell migration, invasiveness, and drug resistance. This is the first study to establish a CSC model in cervical cancer cells by knockdown of E-cadherin, which can be used to develop anti-cancer therapies.
Collapse
Affiliation(s)
- Anuka Sharma
- Department of Biophysics, PGIMER, Chandigarh, India
| | | | - Renaissa De
- Department of Biophysics, PGIMER, Chandigarh, India
| | - Radhika Srinivasan
- Department of Cytology and Gynecologic Pathology, PGIMER, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, PGIMER, Chandigarh, India
| | | |
Collapse
|
13
|
Kuznetsova DA, Gabdrakhmanov DR, Gaynanova GA, Vasileva LA, Kuznetsov DM, Lukashenko SS, Voloshina AD, Sapunova AS, Nizameev IR, Sibgatullina GV, Samigullin DV, Kadirov MK, Petrov KA, Zakharova LY. Novel biocompatible liposomal formulations for encapsulation of hydrophilic drugs – Chloramphenicol and cisplatin. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125673] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Omondi RO, Sibuyi NRS, Fadaka AO, Meyer M, Jaganyi D, Ojwach SO. Role of π-conjugation on the coordination behaviour, substitution kinetics, DNA/BSA interactions, and in vitro cytotoxicity of carboxamide palladium(II) complexes. Dalton Trans 2021; 50:8127-8143. [PMID: 34027534 DOI: 10.1039/d1dt00412c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Treatments of N-(pyridin-2-ylmethyl)pyrazine-2-carboxamide (L1), N-(quinolin-8-yl)pyrazine-2-carboxamide (L2), N-(quinolin-8-yl)picolinamide (L3) and N-(quinolin-8-yl)quinoline-2-carboxamide (L4) with [PdCl2(NCMe)]2 afforded the corresponding Pd(ii) complexes, [Pd(L1)Cl] (PdL1); [Pd(L2)Cl] (PdL2); [Pd(L3)Cl] (PdL3); and [Pd(L4)Cl] (PdL4) in moderate yields. Structural characterisation of the compounds was achieved by NMR and FT-IR spectroscopies, elemental analyses and single crystal X-ray crystallography. The solid-state structures of complexes PdL2-PdL4 established the presence of one tridentate carboxamide and Cl ligands around the Pd(ii) coordination sphere, to give distorted square planar complexes. Electrochemical investigations of PdL1-PdL4 showed irreversible one-electron oxidation reactions. Kinetics reactivity of the complexes towards bio-molecules, thiourea (Tu), l-methionine (L-Met) and guanosine 5'-diphosphate disodium salt (5'-GMP) decreased in the order: PdL1 > PdL2 > PdL3 > PdL4, in tandem with the density functional theory (DFT) data. The complexes bind favourably to calf thymus (CT-DNA), and bovine serum albumin (BSA), and the order of their interactions agrees with the substitution kinetics trends. The in vitro cytotoxic activities of PdL1-PdL4 were examined in cancer cell lines A549, PC-3, HT-29, Caco-2, and HeLa, and a normal cell line, KMST-6. Overall, PdL1 and PdL3 displayed potent cytotoxic effects on A549, PC-3 HT-29 and Caco-2 comparable to cisplatin. All the investigated complexes exhibited lower toxicity on normal cells than cisplatin.
Collapse
Affiliation(s)
- Reinner O Omondi
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa.
| | - Nicole R S Sibuyi
- Department of Biotechnology, University of the Western Cape, Bag X17, Bellville, 7535, Cape Town, South Africa
| | - Adewale O Fadaka
- Department of Biotechnology, University of the Western Cape, Bag X17, Bellville, 7535, Cape Town, South Africa
| | - Mervin Meyer
- Department of Biotechnology, University of the Western Cape, Bag X17, Bellville, 7535, Cape Town, South Africa
| | - Deogratius Jaganyi
- School of Pure and Applied Sciences, Mount Kenya University, P.O. Box 342-01000, Thika, Kenya and Department of Chemistry, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Stephen O Ojwach
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa.
| |
Collapse
|
15
|
Zhou Y, Liu F, Xu Q, Yang B, Li X, Jiang S, Hu L, Zhang X, Zhu L, Li Q, Zhu X, Shao H, Dai M, Shen Y, Ni B, Wang S, Zhang Z, Teng Y. Inhibiting Importin 4-mediated nuclear import of CEBPD enhances chemosensitivity by repression of PRKDC-driven DNA damage repair in cervical cancer. Oncogene 2020; 39:5633-5648. [PMID: 32661323 PMCID: PMC7441007 DOI: 10.1038/s41388-020-1384-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022]
Abstract
Cervical cancer (CC) remains highest in the mortality of female reproductive system cancers, while cisplatin (CDDP) resistance is the one of main reasons for the lethality. Preceding evidence has supported that karyopherins are associated with chemoresistance. In this study, we simultaneously compared CDDP-incomplete responders with CDDP-complete responders of CC patients and CDDP‐insensitive CC cell lines with CDDP‐sensitive group. We finally identified that DNA-PKcs (PRKDC) was related to CDDP sensitivity after overlapping in CC sample tissues and CC cell lines. Further functional assay revealed that targeting PRKDC by shRNA and NU7026 (specific PRKDC inhibitor) could enhance CDDP sensitivity in vitro and in vivo, which was mediated by impairing DNA damage repair pathway in CC. Mechanistically, we found that PRKDC was transcriptionally upregulated by CCAAT/enhancer-binding protein delta (CEBPD), while intriguingly, CDDP treatment strengthened the transcriptional activity of CEBPD to PRKDC. We further disclosed that Importin 4 (IPO4) augmented the nuclear translocation of CEBPD through nuclear localization signals (NLS) to activate PRKDC-mediated DNA damage repair in response to CDDP. Moreover, we demonstrated that IPO4 and CEBPD knockdown improved CDDP-induced cytotoxicity in vitro and in vivo. Together, we shed the novel insight into the role of IPO4 in chemosensitivity and provide a clinical translational potential to enhance CC chemosensitivity since the IPO4-CEBPD-PRKDC axis is actionable via NU7026 (PRKDC inhibitor) or targeting IPO4 in combination with CDDP.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China.,Department of Gynecology and Obstetrics, Shanghai Eighth People's Hospital, Affiliated to Jiangsu University, Shanghai, 200233, PR China
| | - Fei Liu
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China.,Global Clinical Medical Affairs (GCMA), Shanghai Henlius Biotech, Inc. 7/F, Innov Tower, Zone A, No.1801 HongMei Rd. Xuhui District, Shanghai, 200233, PR China
| | - Qinyang Xu
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Bikang Yang
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Xiao Li
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Shuheng Jiang
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lipeng Hu
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xueli Zhang
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lili Zhu
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Qing Li
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xiaolu Zhu
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Hongfang Shao
- Center of Reproductive Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Miao Dai
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Yifei Shen
- Department of Orthopedics, Shanghai East Hospital, School of Medicine, Shanghai Tongji University, Shanghai, 200120, PR China
| | - Bo Ni
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200217, PR China
| | - Shuai Wang
- Jacobi medical center, bronx, New York, NY, 10461, USA
| | - Zhigang Zhang
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Yincheng Teng
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China. .,Department of Gynecology and Obstetrics, Shanghai Eighth People's Hospital, Affiliated to Jiangsu University, Shanghai, 200233, PR China.
| |
Collapse
|
16
|
Borghese C, Casagrande N, Corona G, Aldinucci D. Adipose-Derived Stem Cells Primed with Paclitaxel Inhibit Ovarian Cancer Spheroid Growth and Overcome Paclitaxel Resistance. Pharmaceutics 2020; 12:pharmaceutics12050401. [PMID: 32349462 PMCID: PMC7284978 DOI: 10.3390/pharmaceutics12050401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) primed with paclitaxel (PTX) are now hypothesized to represent a potential Trojan horse to vehicle and deliver PTX into tumors. We analyzed the anticancer activity of PTX released by ADSCs primed with PTX (PTX-ADSCs) (~20 ng/mL) in a panel of ovarian cancer (OvCa) cells sensitive or resistant to PTX. We used two (2D) and three dimensional (3D) in vitro models (multicellular tumor spheroids, MCTSs, and heterospheroids) to mimic tumor growth in ascites. The coculture of OvCa cells with PTX-ADSCs inhibited cell viability in 2D models and in 3D heterospheroids (SKOV3-MCTSs plus PTX-ADSCs) and counteracted PTX-resistance in Kuramochi cells. The cytotoxic effects of free PTX and of equivalent amounts of PTX secreted in PTX-ADSC-conditioned medium (CM) were compared. PTX-ADSC-CM decreased OvCa cell proliferation, was more active than free PTX and counteracted PTX-resistance in Kuramochi cells (6.0-fold decrease in the IC50 values). Cells cultivated as 3D aggregated MCTSs were more resistant to PTX than 2D cultivation. PTX-ADSC-CM (equivalent-PTX) was more active than PTX in MCTSs and counteracted PTX-resistance in all cell lines. PTX-ADSC-CM also inhibited OvCa-MCTS dissemination on collagen-coated wells. In conclusion, PTX-ADSCs and PTX-MSCs-CM may represent a new option with which to overcome PTX-resistance in OvCa.
Collapse
Affiliation(s)
- Cinzia Borghese
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081 Pordenone, Italy; (C.B.); (N.C.)
| | - Naike Casagrande
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081 Pordenone, Italy; (C.B.); (N.C.)
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
| | - Donatella Aldinucci
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081 Pordenone, Italy; (C.B.); (N.C.)
- Correspondence:
| |
Collapse
|
17
|
Antineoplastic Biogenic Silver Nanomaterials to Combat Cervical Cancer: A Novel Approach in Cancer Therapeutics. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01697-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Zhang Y, Chen C, Zhang J. Effects and significance of formononetin on expression levels of HIF-1α and VEGF in mouse cervical cancer tissue. Oncol Lett 2019; 18:2248-2253. [PMID: 31452725 PMCID: PMC6676657 DOI: 10.3892/ol.2019.10567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
Effects and significance of formononetin on the expression levels of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in mouse cervical cancer tissue were investigated. The animal models of Balb/c nude mice with cervical cancer were established by the inoculation of HeLa cells, and randomly divided into positive control (n=10), cisplatin (n=15) and formononetin group (n=15). Mice were all sacrificed on the 31st day after administration, and their tumors were excised and weighed to calculate tumor inhibition rate. At the same time, their cancer tissues were obtained. RT-qPCR was used for detecting the mRNA expression levels of HIF-1α and VEGF, and western blotting for detecting the protein expression levels. During the medication intervention, mice in the formononetin group had no obvious adverse reactions, and were in good condition, whereas mice in the cisplatin group had poor appetite, drooping spirits and decreased activity. Mice in the cisplatin and the formononetin groups had significantly lower tumor mass and volume than those in the positive control group (P<0.05). The tumor inhibition rate of mice was 56.24% in the cisplatin group, and 50.17% in the formononetin group. Cervical cancer mice in the formononetin and the cisplatin groups had significantly lower mRNA and protein expression levels of HIF-1α and VEGF in tissues than those in the positive control group (P<0.05). Formononetin can inhibit the growth of cervical cancer and reduce the mRNA and protein expression levels of HIF-1α and VEGF in mouse cervical cancer. Formononetin has an inhibitory effect on cervical cancer tumors similar to that of cisplatin, but the former has smaller side effects, providing data for the clinical use in cervical cancer.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Gynaecology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Chen Chen
- Department of Gynaecology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Jun Zhang
- Department of Gynaecology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| |
Collapse
|
19
|
Chen X, Xiong D, Ye L, Yang H, Mei S, Wu J, Chen S, Mi R. SPP1 inhibition improves the cisplatin chemo-sensitivity of cervical cancer cell lines. Cancer Chemother Pharmacol 2019; 83:603-613. [PMID: 30627777 DOI: 10.1007/s00280-018-3759-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/15/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE Cisplatin (DDP)-based chemotherapy is a standard strategy for cervical cancer, while chemoresistance remains a huge challenge. In the present study, we aimed to explore the effects of SPP1 on the proliferation and apoptosis rate of the HeLa cervical cancer cell line with cisplatin (DDP) resistance. METHODS Microarray analysis was employed to select differentially expressed genes in cervical cancer tissues and adjacent tissues. Then, we established a DDP-resistant HeLa cell line (res-HeLa). Western blotting was used to detect SPP1 expression in both tissue and cells. After the transfection with si-SPP1 and pcDNA3.1-SPP1, colony formation and MTT assays were applied to detect cell proliferation changes. Flow cytometry was employed to detect the cell apoptosis rate. Western blotting was performed to verify the activation of PI3K/Akt signal pathway proteins related to DDP resistance. RESULTS SPP1 was overexpressed in cervical cancer tissues and cell lines. Compared to normal HeLa cells, expression of SPP1 was significantly enhanced in res-HeLa cells. SPP1 knockdown resulted in repressed proliferation and enhanced apoptosis of res-HeLa cells, which could be reversed by SPP1 overexpression in HeLa cells. Additionally, downregulation of SPP1 improved the DDP sensitivity of HeLa by inhibiting the PI3K/Akt signaling pathway. CONCLUSION SPP1 inhibition could suppress proliferation, induce apoptosis and increase the DDP chemo-sensitivity of HeLa cells.
Collapse
Affiliation(s)
- Xing Chen
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Dongsheng Xiong
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Liya Ye
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Huichun Yang
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Shuangshuang Mei
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Jinhong Wu
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Shanshan Chen
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Ruoran Mi
- Department of Obstetrics and Gynecology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
20
|
Abstract
PURPOSE Cancer remains a significant cause of morbidity and mortality across the globe. A recent report suggests around 14.1 million new cases and 8.2 million cancer-related deaths, which are expected to reach 21.7 million and 13 million by 2030 worldwide, respectively. MATERIALS AND METHODS Because of highly complex mechanisms of cancer progression, it is important to explore and develop new innovative technologies which are more efficient compared with presently available treatment options. RESULTS Currently, chemotherapy, radiation and surgery are the most commonly used cancer treatment methods. In the last decade, nanomedicine emerged as an alternative treatment option that uses specific drug-delivery systems, improves efficacy of drugs and reduces detrimental side effects to normal tissues. CONCLUSION In this review, we have summarized cancer nanomedicines (active and passive drug delivery) available in the market. We have also discussed other nanomedicines that are at different stages of clinical trials.
Collapse
Affiliation(s)
- Nasimudeen R Jabir
- a King Fahd Medical Research Center , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Khalid Anwar
- b School of Life Sciences , Jawaharlal Nehru University , New Delhi , India
| | - Chelapram K Firoz
- a King Fahd Medical Research Center , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Mohammad Oves
- c Center of Excellence in Environmental Studies , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Mohammad Amjad Kamal
- a King Fahd Medical Research Center , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Shams Tabrez
- a King Fahd Medical Research Center , King Abdulaziz University , Jeddah , Saudi Arabia
| |
Collapse
|
21
|
Huang R, Rofstad EK. Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget 2018; 8:35351-35367. [PMID: 27343550 PMCID: PMC5471060 DOI: 10.18632/oncotarget.10169] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/12/2016] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has shown that cancer stem cells (CSCs) have a tumour-initiating capacity and play crucial roles in tumour metastasis, relapse and chemo/radio-resistance. As tumour propagation initiators, CSCs are considered to be promising targets for obtaining a better therapeutic outcome. Cervical carcinoma is the most common gynaecological malignancy and has a high cancer mortality rate among females. As a result, the investigation of cervical cancer stem cells (CCSCs) is of great value. However, the numbers of cancer cells and corresponding CSCs in malignancy are dynamically balanced, and CSCs may reside in the CSC niche, about which little is known to date. Therefore, due to their complicated molecular phenotypes and biological behaviours, it remains challenging to obtain “purified” CSCs and continuously culture CSCs for further in vitro studies without the cells losing their stem properties. At present, CSC-related markers and functional assays are used to purify, identify and therapeutically target CSCs both in vitro and in vivo. Nevertheless, CSC-related markers are not universal to all tumour types, although some markers may be valid in multiple tumour types. Additionally, functional identifications based on CSC-specific properties are usually limited in in vivo studies. Furthermore, an optimal method for identifying potential CCSCs in CCSC studies has not been previously published, and these techniques are currently of great importance. This article updates our knowledge on CSCs and CCSCs, reviews potential stem cell markers and functional assays for identifying CCSCs, and describes the potential of targeting CCSCs in the treatment of cervical carcinoma.
Collapse
Affiliation(s)
- Ruixia Huang
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Einar K Rofstad
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
22
|
de Campos RP, Schultz IC, de Andrade Mello P, Davies S, Gasparin MS, Bertoni APS, Buffon A, Wink MR. Cervical cancer stem-like cells: systematic review and identification of reference genes for gene expression. Cell Biol Int 2018; 42:139-152. [PMID: 28949053 DOI: 10.1002/cbin.10878] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/24/2017] [Indexed: 12/21/2022]
Abstract
Cervical cancer is the fourth most common cancer affecting women worldwide. Among many factors, the presence of cancer stem cells, a subpopulation of cells inside the tumor, has been associated with a worse prognosis. Considering the importance of gene expression studies to understand the biology of cervical cancer stem cells (CCSC), this work identifies stable reference genes for cervical cancer cell lines SiHa, HeLa, and ME180 as well as their respective cancer stem-like cells. A literature review was performed to identify validated reference genes currently used to normalize RT-qPCR data in cervical cancer cell lines. Then, cell lines were cultured in regular monolayer or in a condition that favors tumor sphere formation. RT-qPCR was performed using five reference genes: ACTB, B2M, GAPDH, HPRT1, and TBP. Stability was assessed to validate the selected genes as suitable reference genes. The evaluation validated B2M, GAPDH, HPRT1, and TBP in these experimental conditions. Among them, GAPDH and TBP presented the lowest variability according to the analysis by Normfinder, Bestkeeper, and ΔCq methods, being therefore the most adequate genes to normalize the combination of all samples. These results suggest that B2M, GAPDH, HPRT1, and TBP are suitable reference genes to normalize RT-qPCR data of established cervical cancer cell lines SiHa, HeLa, and ME180 as well as their derived cancer stem-like cells. Indeed, GAPDH and TBP seem to be the most convenient choices for studying gene expression in these cells in monolayers or spheres.
Collapse
Affiliation(s)
- Rafael P de Campos
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Rio Grande do Sul, Brazil
| | - Iago C Schultz
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Rio Grande do Sul, Brazil
| | - Paola de Andrade Mello
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Rio Grande do Sul, Brazil
- Laboratório de Análises Bioquímicas e Citológicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Rio Grande do Sul, Brazil
| | - Samuel Davies
- Laboratório de Análises Bioquímicas e Citológicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Rio Grande do Sul, Brazil
| | - Manuela S Gasparin
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Rio Grande do Sul, Brazil
- Laboratório de Análises Bioquímicas e Citológicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Rio Grande do Sul, Brazil
| | - Ana P S Bertoni
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Rio Grande do Sul, Brazil
| | - Andréia Buffon
- Laboratório de Análises Bioquímicas e Citológicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Rio Grande do Sul, Brazil
| | - Márcia R Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Rio Grande do Sul, Brazil
| |
Collapse
|
23
|
Gupta S, Gupta MK. Possible role of nanocarriers in drug delivery against cervical cancer. NANO REVIEWS & EXPERIMENTS 2017; 8:1335567. [PMID: 30410707 PMCID: PMC6167030 DOI: 10.1080/20022727.2017.1335567] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/20/2017] [Indexed: 02/08/2023]
Abstract
Introduction: Cervical cancer is the second most common cancer and the largest cancer killer among women in most developing countries including India. Although, various drugs have been developed for cervical cancer, treatment with these drugs often results in a number of undesirable side effects, toxicity and multidrug resistance (MDR). Also, the outcomes for cervical cancer patients remain poor after surgery and chemo radiation. Methods: A literature search (for drugs and delivery systems against cervical cancer) was performed on PubMed and through Google. The present review discuss about various methods including its current conventional treatment with special reference to recent advances in delivery systems encapsulating various anticancer drugs and natural plant products for targeting towards cervical cancer. The role of photothermal therapy, gene therapy and radiation therapy against cervical cancer is also discussed. Results: Systemic/targeted drug delivery systems including liposomes, nanoparticles, hydrogels, dendrimers etc. and localized drug delivery systems like cervical patches, films, rings etc. are safer than the conventional chemotherapy which has further been proved by the several drug delivery systems undergoing clinical trials. Conclusion: Novel approaches for the aggressive treatment of cervical cancer will optimistically result in decreased side effects as well as toxicity, frequency of administration of existing drugs, to overcome MDR and to increase the survival rates.
Collapse
Affiliation(s)
- Swati Gupta
- B. S. Anangpuria Institute of Pharmacy, Pt B. D. Sharma University of Health Sciences, Faridabad, India
| | - Manish K. Gupta
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, Gurugram, India
| |
Collapse
|
24
|
de Groot JS, van Diest PJ, van Amersfoort M, Vlug EJ, Pan X, Ter Hoeve ND, Rosing H, Beijnen JH, Youssef SA, de Bruin A, Jonkers J, van der Wall E, Derksen PWB. Intraductal cisplatin treatment in a BRCA-associated breast cancer mouse model attenuates tumor development but leads to systemic tumors in aged female mice. Oncotarget 2017; 8:60750-60763. [PMID: 28977823 PMCID: PMC5617383 DOI: 10.18632/oncotarget.18490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/06/2017] [Indexed: 11/28/2022] Open
Abstract
BRCA deficiency predisposes to the development of invasive breast cancer. In BRCA mutation carriers this risk can increase up to 80%. Currently, bilateral prophylactic mastectomy and prophylactic bilateral salpingo-oophorectomy are the only preventive, albeit radical invasive strategies to prevent breast cancer in BRCA mutation carriers. An alternative non-invasive way to prevent BRCA1-associated breast cancer may be local prophylactic treatment via the nipple. Using a non-invasive intraductal (ID) preclinical intervention strategy, we explored the use of combined cisplatin and poly (ADP)-ribose polymerase 1 (PARP1) inhibition to prevent the development of hereditary breast cancer. We show that ID cisplatin and PARP-inhibition can successfully ablate mammary epithelial cells, and this approach attenuated tumor onset in a mouse model of Brca1-associated breast cancer from 153 to 239 days. Long-term carcinogenicity studies in 150 syngeneic wild-type mice demonstrated that tumor incidence was increased in the ID treated mammary glands by 6.3% due to systemic exposure to cisplatin. Although this was only evident in aged mice (median age = 649 days), we conclude that ID cisplatin treatment only presents a safe and feasible local prevention option if systemic exposure to the chemotherapy used can be avoided.
Collapse
Affiliation(s)
- Jolien S de Groot
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Eva J Vlug
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Xiaojuan Pan
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Natalie D Ter Hoeve
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy and Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Sameh A Youssef
- Department of Pathobiology, Dutch Molecular Pathology Center, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alain de Bruin
- Department of Pathobiology, Dutch Molecular Pathology Center, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Pediatrics, Division of Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jos Jonkers
- Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Elsken van der Wall
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
25
|
Ye H, Zhang Y, Wang Y, Xia J, Mao X, Yu X. The restraining effect of baicalein and U0126 on human cervical cancer cell line HeLa. Mol Med Rep 2017; 16:957-963. [DOI: 10.3892/mmr.2017.6648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/07/2017] [Indexed: 11/06/2022] Open
|
26
|
Song J, Ren W, Xu T, Zhang Y, Guo H, Zhu S, Yang L. Reversal of multidrug resistance in human lung cancer cells by delivery of 3-octadecylcarbamoylacrylic acid-cisplatin-based liposomes. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:441-449. [PMID: 28255230 PMCID: PMC5322835 DOI: 10.2147/dddt.s124912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liposome-based drug delivery system would be an innovative and promising candidate to circumvent multidrug resistance (MDR) of cisplatin (CDDP). However, the reversal efficacy of liposomal CDDP was severely impaired by weak cellular uptake and insufficient intracellular drug release. In this study, 3-octadecylcarbamoylacrylic acid–CDDP nanocomplex (OMI–CDDP–N)-based liposomes (OCP-L) with high cellular uptake and sufficient intracellular drug release were designed to circumvent MDR of lung cancer. OMI–CDDP–N was synthesized through a pH-sensitive monocarboxylato and an O→Pt coordinate bond, which is more efficient than CDDP. Also, OCP-L incorporated with OMI–CDDP–N could induce effective cellular uptake, enhanced nuclear distribution, and optimal cellular uptake kinetics. In particular, OCP-L presented superior effects on enhancing cell apoptosis and in vitro cytotoxicity in CDDP-resistant human lung cancer (A549/CDDP) cells. The mechanisms of MDR reversal in A549/CDDP cells by OCP-L could attribute to organic cation transporter 2 restoration, ATPase copper-transporting beta polypeptide suppression, hypoxia-inducible factor 1 α-subunit depletion, and phosphatidylinositol 3-kinase/Akt pathway inhibition. These results demonstrated that OCP-L may provide an effective delivery of CDDP to resistant cells to circumvent MDR and enhance the therapeutic index of the chemotherapy.
Collapse
Affiliation(s)
- Juan Song
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China
| | - Weifang Ren
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China
| | - Tingting Xu
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China
| | - Yi Zhang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China
| | - Hongyu Guo
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China
| | - Shanshan Zhu
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China
| | - Li Yang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
27
|
Poy D, Akbarzadeh A, Ebrahimi Shahmabadi H, Ebrahimifar M, Farhangi A, Farahnak Zarabi M, Akbari A, Saffari Z, Siami F. Preparation, characterization, and cytotoxic effects of liposomal nanoparticles containing cisplatin: an in vitro study. Chem Biol Drug Des 2016; 88:568-73. [PMID: 27178305 DOI: 10.1111/cbdd.12786] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 11/27/2022]
Abstract
Cisplatin is a chemotherapeutic agent used for treating various malignancies. The study aimed to prepare pegylated liposomal cisplatin and evaluate its efficacy against human breast cancer cell line MCF-7. Drug-loaded nanoparticles were synthesized by reverse phase evaporation technique. The study is highlighted by extensive characterization of nanoparticles in terms of nanoparticle morphology, type of drug entrapment, cisplatin retention capability, and cytotoxicity effects. The size, size distribution, and zeta potential of nanodrug were estimated 142 nm, 0.33, and -22 mV, respectively. Drug-loading efficiency was equal to 48% that occurred physically. Furthermore, high retention capability (39% of drug was released after 72 h) with significantly enhanced cytotoxicity of nanodrug (1.75 times more than the standard drug) confirmed the potency of liposomal nanoparticles as proper cisplatin carrier.
Collapse
Affiliation(s)
- Donya Poy
- Department of Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Azim Akbarzadeh
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran.
| | - Hasan Ebrahimi Shahmabadi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Meysam Ebrahimifar
- Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza, Iran
| | - Ali Farhangi
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Azam Akbari
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Saffari
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Siami
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
28
|
Yamamoto T, Tsigelny IF, Götz AW, Howell SB. Cisplatin inhibits MEK1/2. Oncotarget 2016; 6:23510-22. [PMID: 26155939 PMCID: PMC4695133 DOI: 10.18632/oncotarget.4355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/09/2015] [Indexed: 11/30/2022] Open
Abstract
Cisplatin (cDDP) is known to bind to the CXXC motif of proteins containing a ferrodoxin-like fold but little is known about its ability to interact with other Cu-binding proteins. MEK1/2 has recently been identified as a Cu-dependent enzyme that does not contain a CXXC motif. We found that cDDP bound to and inhibited the activity of recombinant MEK1 with an IC50 of 0.28 μM and MEK1/2 in whole cells with an IC50 of 37.4 μM. The inhibition of MEK1/2 was relieved by both Cu+1 and Cu+2 in a concentration-dependent manner. cDDP did not inhibit the upstream pathways responsible for activating MEK1/2, and did not cause an acute depletion of cellular Cu that could account for the reduction in MEK1/2 activity. cDDP was found to bind MEK1/2 in whole cells and the extent of binding was augmented by supplementary Cu and reduced by Cu chelation. Molecular modeling predicts 3 Cu and cDDP binding sites and quantum chemistry calculations indicate that cDDP would be expected to displace Cu from each of these sites. We conclude that, at clinically relevant concentrations, cDDP binds to and inhibits MEK1/2 and that both the binding and inhibitory activity are related to its interaction with Cu bound to MEK1/2. This may provide the basis for useful interactions of cDDP with other drugs that inhibit MAPK pathway signaling.
Collapse
Affiliation(s)
- Tetsu Yamamoto
- Moores Cancer Center and Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Igor F Tsigelny
- Moores Cancer Center and Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Neuroscience Department, University of California, San Diego, La Jolla, CA 92093, USA.,San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephen B Howell
- Moores Cancer Center and Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
29
|
Ordikhani F, Erdem Arslan M, Marcelo R, Sahin I, Grigsby P, Schwarz JK, Azab AK. Drug Delivery Approaches for the Treatment of Cervical Cancer. Pharmaceutics 2016; 8:E23. [PMID: 27447664 PMCID: PMC5039442 DOI: 10.3390/pharmaceutics8030023] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022] Open
Abstract
Cervical cancer is a highly prevalent cancer that affects women around the world. With the availability of new technologies, researchers have increased their efforts to develop new drug delivery systems in cervical cancer chemotherapy. In this review, we summarized some of the recent research in systematic and localized drug delivery systems and compared the advantages and disadvantages of these methods.
Collapse
Affiliation(s)
- Farideh Ordikhani
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, Saint Louis, MO 63108, USA.
| | - Mustafa Erdem Arslan
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, Saint Louis, MO 63108, USA.
| | - Raymundo Marcelo
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, Saint Louis, MO 63108, USA.
| | - Ilyas Sahin
- Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, MA 02138, USA.
| | - Perry Grigsby
- Department of Radiation Oncology, Radiology and Obstetrics and Gynecology, Washington University School of Medicine, Saint Louis, MO 63108, USA.
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108, USA.
| | - Julie K Schwarz
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, Saint Louis, MO 63108, USA.
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108, USA.
- Department of Radiation Oncology, Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO 63108, USA.
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, Saint Louis, MO 63108, USA.
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108, USA.
| |
Collapse
|
30
|
Zhu H, Luo H, Zhang W, Shen Z, Hu X, Zhu X. Molecular mechanisms of cisplatin resistance in cervical cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1885-95. [PMID: 27354763 PMCID: PMC4907638 DOI: 10.2147/dddt.s106412] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Patients with advanced or recurrent cervical cancer have poor prognosis, and their 1-year survival is only 10%–20%. Chemotherapy is considered as the standard treatment for patients with advanced or recurrent cervical cancer, and cisplatin appears to treat the disease effectively. However, resistance to cisplatin may develop, thus substantially compromising the efficacy of cisplatin to treat advanced or recurrent cervical cancer. In this article, we systematically review the recent literature and summarize the recent advances in our understanding of the molecular mechanisms underlying cisplatin resistance in cervical cancer.
Collapse
Affiliation(s)
- Haiyan Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Hui Luo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Wenwen Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhaojun Shen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
31
|
Zou W, Ma X, Hua W, Chen B, Huang Y, Wang D, Cai G. BRIP1 inhibits the tumorigenic properties of cervical cancer by regulating RhoA GTPase activity. Oncol Lett 2015; 11:551-558. [PMID: 26870246 PMCID: PMC4727061 DOI: 10.3892/ol.2015.3963] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 10/28/2015] [Indexed: 02/06/2023] Open
Abstract
Breast cancer 1, early onset (BRCA1)-interacting protein 1 (BRIP1), a DNA-dependent adenosine triphosphatase and DNA helicase, is required for BRCA-associated DNA damage repair functions, and may be associated with the tumorigenesis and aggressiveness of various cancers. The present study investigated the expression of BRIP1 in normal cervix tissues and cervical carcinoma via reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry assays. BRIP1 expression was observed to be reduced in squamous cancer tissue and adenocarcinoma compared with normal cervix tissue, and there were significant correlations between the reduction in BRIP1 expression and unfavorable variables, including the International Federation of Gynecologists and Obstetricians stage and presence of lymph node metastases. In order to elucidate the role of BRIP1 in cervical cancer, a BRIP1 recombinant plasmid was constructed and overexpressed in a cervical cancer cell line (HeLa). The ectopic expression of BRIP1 markedly inhibited the tumorigenic properties of HeLa cells in vitro, as demonstrated by decreased cell growth, invasion and adhesion, and increased cell apoptosis. In addition, it was identified that the inhibitory tumorigenic properties of BRIP1 may be partly attributed to the attenuation of RhoA GTPase activity. The present study provides a novel insight into the essential role of BRIP1 in cervical cancer, and suggests that BRIP1 may be a useful therapeutic target for the treatment of this common malignancy.
Collapse
Affiliation(s)
- Wei Zou
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiangdong Ma
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Hua
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Biliang Chen
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yanhong Huang
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Detang Wang
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Guoqing Cai
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
32
|
Song S, Mao G, Du J, Zhu X. Novel RGD containing, temozolomide-loading nanostructured lipid carriers for glioblastoma multiforme chemotherapy. Drug Deliv 2015. [PMID: 26203687 DOI: 10.3109/10717544.2015.1064186] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shuxin Song
- Department of Neurosurgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Guohua Mao
- Department of Neurosurgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jiansheng Du
- Department of Neurosurgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Xingen Zhu
- Department of Neurosurgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
33
|
Chen Z, Lai X, Song S, Zhu X, Zhu J. Nanostructured lipid carriers based temozolomide and gene co-encapsulated nanomedicine for gliomatosis cerebri combination therapy. Drug Deliv 2015; 23:1369-73. [PMID: 26017099 DOI: 10.3109/10717544.2015.1038857] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zhihua Chen
- Department of Neurosurgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Xianliang Lai
- Department of Neurosurgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Shuxin Song
- Department of Neurosurgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Xingen Zhu
- Department of Neurosurgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jianming Zhu
- Department of Neurosurgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
34
|
Xie Q, Liang J, Rao Q, Xie X, Li R, Liu Y, Zhou H, Han J, Yao T, Lin Z. Aldehyde Dehydrogenase 1 Expression Predicts Chemoresistance and Poor Clinical Outcomes in Patients with Locally Advanced Cervical Cancer Treated with Neoadjuvant Chemotherapy Prior to Radical Hysterectomy. Ann Surg Oncol 2015; 23:163-70. [PMID: 25916979 DOI: 10.1245/s10434-015-4555-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neoadjuvant chemotherapy (NAC) is an important treatment strategy for cervical cancer; however, few predictive markers of the response to NAC exist. Aldehyde dehydrogenase 1 (ALDH1), a cancer stem cell marker, is associated with chemoresistance in a variety of cancers. This study attempted to investigate the value of ALDH1 as a predictive marker of chemosensitivity and its prognostic value in cervical cancer patients treated with NAC. METHODS Immunohistochemistry was used to evaluate ALDH1 expression in matched pre- and post-NAC tumor samples from 52 patients with cervical cancer. Kaplan-Meier analysis and a Cox proportional hazards regression model were applied to determine overall survival (OS) and disease-free survival (DFS). RESULTS Fourteen patients (26.9 %) had ALDH1-positive tumors pre-NAC, and ALDH1 expression pre-NAC was significantly associated with a low clinical chemotherapy response rate and clinical non-response. Twenty-two patients (42.3 %) had ALDH1-positive tumors post-NAC, and ALDH1 expression post-NAC was associated with poor DFS and OS (both p = 0.004). Multivariate analysis revealed that ALDH1 expression post-NAC was an independent prognostic factor for OS (hazard ratio 3.513; p = 0.033). Moreover, we observed that ALDH1 expression was increased after NAC in 18 patients (36.7 %). Increased levels of ALDH1 expression after NAC predicted poor DFS and OS (p = 0.013 and p = 0.08, respectively). CONCLUSIONS Our findings suggest that ALDH1 expression pre-NAC may be a predictive marker for response to NAC, and ALDH1 expression post-NAC could be a prognostic marker for cervical cancer.
Collapse
Affiliation(s)
- Qingsheng Xie
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jinxiao Liang
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qunxian Rao
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiaofei Xie
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ruixin Li
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yunyun Liu
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hui Zhou
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jingjing Han
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Tingting Yao
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Zhongqiu Lin
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
35
|
Chen J, Gu W, Yang L, Chen C, Shao R, Xu K, Xu ZP. Nanotechnology in the management of cervical cancer. Rev Med Virol 2015; 25:72-83. [DOI: 10.1002/rmv.1825] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Jiezhong Chen
- Australian Institute of Bioengineering and Nanotechnology; The University of Queensland; St Lucia QLD Australia
- School of Biomedical Sciences; The University of Queensland; St Lucia QLD Australia
| | - Wenyi Gu
- Australian Institute of Bioengineering and Nanotechnology; The University of Queensland; St Lucia QLD Australia
| | - Lei Yang
- School of Medicine and Health Management; Hangzhou Normal University; Hangzhou Zhejiang China
| | - Chen Chen
- School of Biomedical Sciences; The University of Queensland; St Lucia QLD Australia
| | - Renfu Shao
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering; The University of Sunshine Coast; Maroochydore QLD Australia
| | - Kewei Xu
- School of Medicine; The University of Queensland; St Lucia QLD Australia
| | - Zhi Ping Xu
- Australian Institute of Bioengineering and Nanotechnology; The University of Queensland; St Lucia QLD Australia
| |
Collapse
|
36
|
Zeng F, Ju RJ, Li XT, Lu WL. Advances in investigations on the mechanism of cancer multidrug resistance and the liposomes-based treatment strategy. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2014. [DOI: 10.1007/s40005-014-0154-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Casagrande N, Celegato M, Borghese C, Mongiat M, Colombatti A, Aldinucci D. Preclinical activity of the liposomal cisplatin lipoplatin in ovarian cancer. Clin Cancer Res 2014; 20:5496-506. [PMID: 25231401 DOI: 10.1158/1078-0432.ccr-14-0713] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Cisplatin and its platinum derivatives are first-line chemotherapeutic agents in the treatment of ovarian cancer; however, treatment is associated with tumor resistance and significant toxicity. Here we investigated the antitumoral activity of lipoplatin, one of the most promising liposomal platinum drug formulations under clinical investigation. EXPERIMENTAL DESIGN In vitro effects of lipoplatin were tested on a panel of ovarian cancer cell lines, sensitive and resistant to cisplatin, using both two-dimensional (2D) and 3D cell models. We evaluated in vivo the lipoplatin anticancer activity using tumor xenografts. RESULTS Lipoplatin exhibited a potent antitumoral activity in all ovarian cancer cell lines tested, induced apoptosis, and activated caspase-9, -8, and -3, downregulating Bcl-2 and upregulating Bax. Lipoplatin inhibited thioredoxin reductase enzymatic activity and increased reactive oxygen species accumulation and reduced EGF receptor (EGFR) expression and inhibited cell invasion. Lipoplatin demonstrated a synergistic effect when used in combination with doxorubicin, widely used in relapsed ovarian cancer treatment, and with the albumin-bound paclitaxel, Abraxane. Lipoplatin decreased both ALDH and CD133 expression, markers of ovarian cancer stem cells. Multicellular aggregates/spheroids are present in ascites of patients and most contribute to the spreading to secondary sites. Lipoplatin decreased spheroids growth, vitality, and cell migration out of preformed spheroids. Finally, lipoplatin inhibited more than 90% tumor xenograft growth with minimal systemic toxicity, and after the treatment suspension, no tumor progression was observed. CONCLUSION These preclinical data suggest that lipoplatin has potential for clinical assessment in aggressive cisplatin-resistant patients with ovarian cancer.
Collapse
Affiliation(s)
- Naike Casagrande
- Experimental Oncology 2, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Marta Celegato
- Experimental Oncology 2, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Cinzia Borghese
- Experimental Oncology 2, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Maurizio Mongiat
- Experimental Oncology 2, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Alfonso Colombatti
- Experimental Oncology 2, CRO Aviano National Cancer Institute, Aviano, Italy. Department of Medical and Biological Science Technology and MATI (Microgravity Ageing Training Immobility) Excellence Center, University of Udine, Udine, Italy
| | - Donatella Aldinucci
- Experimental Oncology 2, CRO Aviano National Cancer Institute, Aviano, Italy.
| |
Collapse
|
38
|
Sotiropoulou PA, Christodoulou MS, Silvani A, Herold-Mende C, Passarella D. Chemical approaches to targeting drug resistance in cancer stem cells. Drug Discov Today 2014; 19:1547-62. [PMID: 24819719 DOI: 10.1016/j.drudis.2014.05.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/24/2014] [Accepted: 05/01/2014] [Indexed: 12/16/2022]
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells with high clonogenic capacity and ability to reform parental tumors upon transplantation. Resistance to therapy has been shown for several types of CSC and, therefore, they have been proposed as the cause of tumor relapse. Consequently, much effort has been made to design molecules that can target CSCs specifically and sensitize them to therapy. In this review, we summarize the mechanisms underlying CSC resistance, the potential biological targets to overcome resistance and the chemical compounds showing activity against different types of CSC. The chemical compounds discussed here have been divided according to their origin: natural, natural-derived and synthetic compounds.
Collapse
Affiliation(s)
- Panagiota A Sotiropoulou
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles (ULB), 808 route de Lennik, BatC, 1070 Bruxelles, Belgium
| | - Michael S Christodoulou
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Alessandra Silvani
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|