1
|
Ma Q, Chen G, Li Y, Guo Z, Zhang X. The molecular genetics of PI3K/PTEN/AKT/mTOR pathway in the malformations of cortical development. Genes Dis 2024; 11:101021. [PMID: 39006182 PMCID: PMC11245990 DOI: 10.1016/j.gendis.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/07/2023] [Accepted: 04/30/2023] [Indexed: 07/16/2024] Open
Abstract
Malformations of cortical development (MCD) are a group of developmental disorders characterized by abnormal cortical structures caused by genetic or harmful environmental factors. Many kinds of MCD are caused by genetic variation. MCD is the common cause of intellectual disability and intractable epilepsy. With rapid advances in imaging and sequencing technologies, the diagnostic rate of MCD has been increasing, and many potential genes causing MCD have been successively identified. However, the high genetic heterogeneity of MCD makes it challenging to understand the molecular pathogenesis of MCD and to identify effective targeted drugs. Thus, in this review, we outline important events of cortical development. Then we illustrate the progress of molecular genetic studies about MCD focusing on the PI3K/PTEN/AKT/mTOR pathway. Finally, we briefly discuss the diagnostic methods, disease models, and therapeutic strategies for MCD. The information will facilitate further research on MCD. Understanding the role of the PI3K/PTEN/AKT/mTOR pathway in MCD could lead to a novel strategy for treating MCD-related diseases.
Collapse
Affiliation(s)
- Qing Ma
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Guang Chen
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Ying Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Zhenming Guo
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Xue Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| |
Collapse
|
2
|
Marafie SK, Al-Mulla F, Abubaker J. mTOR: Its Critical Role in Metabolic Diseases, Cancer, and the Aging Process. Int J Mol Sci 2024; 25:6141. [PMID: 38892329 PMCID: PMC11173325 DOI: 10.3390/ijms25116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The mammalian target of rapamycin (mTOR) is a pivotal regulator, integrating diverse environmental signals to control fundamental cellular functions, such as protein synthesis, cell growth, survival, and apoptosis. Embedded in a complex network of signaling pathways, mTOR dysregulation is implicated in the onset and progression of a range of human diseases, including metabolic disorders such as diabetes and cardiovascular diseases, as well as various cancers. mTOR also has a notable role in aging. Given its extensive biological impact, mTOR signaling is a prime therapeutic target for addressing these complex conditions. The development of mTOR inhibitors has proven advantageous in numerous research domains. This review delves into the significance of mTOR signaling, highlighting the critical components of this intricate network that contribute to disease. Additionally, it addresses the latest findings on mTOR inhibitors and their clinical implications. The review also emphasizes the importance of developing more effective next-generation mTOR inhibitors with dual functions to efficiently target the mTOR pathways. A comprehensive understanding of mTOR signaling will enable the development of effective therapeutic strategies for managing diseases associated with mTOR dysregulation.
Collapse
Affiliation(s)
- Sulaiman K. Marafie
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait;
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| |
Collapse
|
3
|
Subbiah V, Coleman N, Piha-Paul SA, Tsimberidou AM, Janku F, Rodon J, Pant S, Dumbrava EEI, Fu S, Hong DS, Zhang S, Sun M, Jiang Y, Roszik J, Song J, Yuan Y, Meric-Bernstam F, Naing A. Phase I Study of mTORC1/2 Inhibitor Sapanisertib (CB-228/TAK-228) in Combination with Metformin in Patients with mTOR/AKT/PI3K Pathway Alterations and Advanced Solid Malignancies. CANCER RESEARCH COMMUNICATIONS 2024; 4:378-387. [PMID: 38126764 PMCID: PMC10860536 DOI: 10.1158/2767-9764.crc-22-0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 02/20/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Sapanisertib (CB-228/TAK-228) is a potent, selective ATP-competitive, dual inhibitor of mTORC1/2. Metformin is thought to inhibit the mTOR pathway through upstream activation of 5'-AMP-activated protein kinase (AMPK) suggesting combination therapy may enhance antitumor activity of sapanisertib. We report preliminary safety, tolerability, and efficacy from the dose-escalation study of sapanisertib in combination with metformin in patients with advanced solid tumors. METHODS Patients with advanced metastatic solid tumors resistant or refractory to standard treatment, with and without mTOR/AKT/PI3K pathway alterations, received sapanisertib 3 or 4 mg daily together with metformin once to three times daily (500-1,500 mg). All patients underwent 14-day titration period for metformin in cycle 1. Tumor measurements were performed following cycle 2 and subsequently every 8 weeks. RESULTS A total of 30 patients were enrolled across four cohorts (3 mg/500 mg; 3 mg/1,000 mg, 4 mg/1,000 mg; 4 mg/1,500 mg). 19 were female (63%), median age was 57 (range: 30-77), all were Eastern Cooperative Oncology Group performance status 1. Tumor types included sarcoma (6), breast (4), ovarian (4), head and neck (3), colorectal (2), lung (2), renal cell (2), endometrial (2), gastroesophageal junction (1), prostate (1), stomach (1), urachus (1), and cervical cancer (1). Median number of prior lines of therapy was 4. Most common genomic alterations included PIK3CA (27%), PTEN (17%), AKT1/2 (10%), mTOR (10%). Of 30 patients evaluable for response, 4 patients achieved partial response (PR); 15 patients achieved stable disease (SD) as best response. Disease control rate (PR+SD) was 63%. Of the responders in PR, 3 of 4 patients had documented PTEN mutations (3/5 patients enrolled with PTEN mutations had PR); 2 of 4 of patients in PR had comutations (patient with leiomyosarcoma had both PTEN and TSC; patient with breast cancer had both PTEN and STK11); 1 of 4 patients in PR had AKT and mTOR mutation; tumor types included leiomyosarcoma (n = 2), breast (n = 1), and endometrial cancer (n = 1). Most common treatment-emergent adverse events included nausea, anorexia, diarrhea, and rash. Grade (G) 3-5 treatment-related adverse events included hyperglycemia (4/30; 13%), fatigue (2/30; 7%), hypertriglyceridemia (1/30; 3%), rash (2/20; 7%), diarrhea (2/30; 7%), creatinine increase (1/30; 3%), acidosis (1/30; 3%). No dose-limiting toxicities (DLT) were reported in the 3 mg/500 mg cohort. One of 6 patient had DLT in the 3 mg/1,000 mg cohort (G3 diarrhea) and 2 of 11 patients had DLTs in the 4 mg/1,500 mg cohort (G3 fatigue, G3 rash). 4 mg/1,000 mg was defined as the MTD. CONCLUSIONS The safety profile of mTORC1/2 inhibitor sapanisertib in combination with metformin was generally tolerable, with antitumor activity observed in patients with advanced malignancies harboring PTEN mutations and AKT/mTOR pathway alterations. SIGNIFICANCE Sapanisertib (CB-228/TAK-228) is a potent, selective ATP-competitive, next-generation dual inhibitor of mTORC1/2. Metformin is thought to inhibit the mTOR pathway through upstream activation of AMPK suggesting combination therapy may enhance antitumor activity of sapanisertib. This dose-escalation study of sapanisertib and metformin in advanced solid tumors and mTOR/AKT/PI3K pathway alterations, demonstrates safety, tolerability, and early clinical activity in advanced malignancies harboring PTEN mutations and AKT/mTOR pathway alterations.Clinical trial information: NCT03017833.
Collapse
Affiliation(s)
- Vivek Subbiah
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Niamh Coleman
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarina A. Piha-Paul
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Apostolia M. Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Filip Janku
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jordi Rodon
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shubham Pant
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ecaterina E. Ileana Dumbrava
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David S. Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shizhen Zhang
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ming Sun
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yunfang Jiang
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Biostatistics, MD Anderson Cancer Center, Houston, Texas
| | - Juhee Song
- Department of Biostatistics, MD Anderson Cancer Center, Houston, Texas
| | - Ying Yuan
- Department of Biostatistics, MD Anderson Cancer Center, Houston, Texas
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Khalifa Institute for Personalized Cancer Therapy, MD Anderson Cancer Center, Houston, Texas
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
4
|
Coleman N, Stephen B, Fu S, Karp D, Subbiah V, Ahnert JR, Piha‐Paul SA, Wright J, Fessahaye SN, Ouyang F, Yilmaz B, Meric‐Bernstam F, Naing A. Phase I study of sapanisertib (CB-228/TAK-228/MLN0128) in combination with ziv-aflibercept in patients with advanced solid tumors. Cancer Med 2024; 13:e6877. [PMID: 38400671 PMCID: PMC10891443 DOI: 10.1002/cam4.6877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Sapanisertib is a potent ATP-competitive, dual inhibitor of mTORC1/2. Ziv-aflibercept is a recombinant fusion protein comprising human VEGF receptor extracellular domains fused to human immunoglobulin G1. HIF-1α inhibition in combination with anti-angiogenic therapy is a promising anti-tumor strategy. This Phase 1 dose-escalation/expansion study assessed safety/ tolerability of sapanisertib in combination with ziv-aflibercept in advanced solid tumors. METHODS Fifty-five patients with heavily pre-treated advanced metastatic solid tumors resistant or refractory to standard treatment received treatment on a range of dose levels. RESULTS Fifty-five patients were enrolled and treated across a range of dose levels. Forty were female (73%), median age was 62 (range: 21-79), and ECOG PS was 0 (9, 16%) or 1 (46, 84%). Most common tumor types included ovarian (8), colorectal (8), sarcoma (8), breast (3), cervical (4), and endometrial (4). Median number of prior lines of therapy was 4 (range 2-11). Sapanisertib 4 mg orally 3 days on and 4 days off plus 3 mg/kg ziv-aflibercept IV every 2 weeks on a 28-day cycle was defined as the maximum tolerated dose. Most frequent treatment-related grade ≥2 adverse events included hypertension, fatigue, anorexia, hypertriglyceridemia, diarrhea, nausea, mucositis, and serum lipase increase. There were no grade 5 events. In patients with evaluable disease (n = 50), 37 patients (74%) achieved stable disease (SD) as best response, two patients (4%) achieved a confirmed partial response (PR); disease control rate (DCR) (CR + SD + PR) was 78%. CONCLUSION The combination of sapanisertib and ziv-aflibercept was generally tolerable and demonstrated anti-tumor activity in heavily pre-treated patients with advanced malignancies.
Collapse
Affiliation(s)
- Niamh Coleman
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Present address:
Department of Medical OncologyTrinity St. James' Cancer Institute, St. James's Hospital Trinity College MedicineDublinIreland
| | - Bettzy Stephen
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Siqing Fu
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Daniel Karp
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Vivek Subbiah
- Early Phase Drug DevelopmentSarah Cannon Research InstituteNashvilleTennesseeUSA
| | - Jordi Rodon Ahnert
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Sarina A. Piha‐Paul
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - John Wright
- National Cancer Institute (NCI), Cancer Therapy Evaluation Program (CTEP)BethesdaMarylandUSA
| | - Senait N. Fessahaye
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Fengying Ouyang
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Bulent Yilmaz
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Funda Meric‐Bernstam
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Khalifa Institute for Personalized Cancer TherapyMD Anderson Cancer CenterHoustonTexasUSA
- Department of Surgical OncologyMD Anderson Cancer CenterHoustonTexasUSA
| | - Aung Naing
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
5
|
Alhalabi O, Groisberg R, Zinner R, Hahn AW, Naing A, Zhang S, Tsimberidou AM, Rodon J, Fu S, Yap TA, Hong DS, Sun M, Jiang Y, Pant S, Shah AY, Zurita A, Tannir NM, Vikram R, Roszik J, Meric-Bernstam F, Subbiah V. Phase I study of sapanisertib with carboplatin and paclitaxel in mTOR pathway altered solid malignancies. NPJ Precis Oncol 2023; 7:37. [PMID: 37072571 PMCID: PMC10113233 DOI: 10.1038/s41698-023-00369-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 03/03/2023] [Indexed: 04/20/2023] Open
Abstract
Pre-clinically, the mTORC1/2 inhibitor sapanisertib restored sensitivity to platinums and enhanced paclitaxel-induced cancer cell killing. NCT03430882 enrolled patients with mTOR pathway aberrant tumors to receive sapanisertib, carboplatin and paclitaxel. Primary objective was safety and secondary objectives were clinical response and survival. One patient had a dose-limiting toxicity at dose level 4. There were no unanticipated toxicities. Grade 3-4 treatment-related adverse events included anemia (21%), neutropenia (21%), thrombocytopenia (10.5%), and transaminitis (5%). Of 17 patients evaluable for response, 2 and 11 patients achieved partial response and stable disease, respectively. Responders included a patient with unclassified renal cell carcinoma harboring EWSR1-POU5F1 fusion and a patient with castrate resistant prostate cancer harboring PTEN loss. Median progression free survival was 3.84 months. Sapanisertib in combination with carboplatin plus paclitaxel demonstrated a manageable safety profile, with preliminary antitumor activity observed in advanced malignancies harboring mTOR pathway alterations.
Collapse
Affiliation(s)
- Omar Alhalabi
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roman Groisberg
- Department of Medical Oncology, Rutgers University, New Jersey, NJ, USA
| | - Ralph Zinner
- Department of Thoracic Oncology, University of Kentucky, Lexington, KY, USA
| | - Andrew W Hahn
- Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shizhen Zhang
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jordi Rodon
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ming Sun
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yunfang Jiang
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shubham Pant
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amishi Y Shah
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amado Zurita
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghunandan Vikram
- Department of Abdominal Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Roszik
- Department of Genomic Medicine, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Zhang S, Wang M, Li Q, Zhu P. MiR-101 reduces cell proliferation and invasion and enhances apoptosis in endometrial cancer via regulating PI3K/Akt/mTOR. Cancer Biomark 2021; 21:179-186. [DOI: 10.3233/cbm-170620] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This article has been retracted, and the online PDF replaced with this retraction notice.
Collapse
|
7
|
Phase 1 study of mTORC1/2 inhibitor sapanisertib (TAK-228) in advanced solid tumours, with an expansion phase in renal, endometrial or bladder cancer. Br J Cancer 2020; 123:1590-1598. [PMID: 32913286 PMCID: PMC7686313 DOI: 10.1038/s41416-020-01041-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 07/17/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background This Phase 1 dose-escalation/expansion study assessed safety/tolerability of sapanisertib, an oral, highly selective inhibitor of mTORC1/mTORC2, in advanced solid tumours. Methods Eligible patients received increasing sapanisertib doses once daily (QD; 31 patients), once weekly (QW; 30 patients), QD for 3 days on/4 days off QW (QD × 3dQW; 33 patients) or QD for 5 days on/2 days off QW (QD × 5dQW; 22 patients). In expansion cohorts, 82 patients with renal cell carcinoma (RCC), endometrial or bladder cancer received sapanisertib 5 mg QD (39 patients), 40 mg QW (26 patients) or 30 mg QW (17 patients). Results Maximum tolerated doses of sapanisertib were 6 mg QD, 40 mg QW, 9 mg QD × 3dQW and 7 mg QD × 5dQW. Frequent dose-limiting toxicities (DLTs) included hyperglycaemia, maculo-papular rash (QD), asthenia and stomatitis (QD × 3dQW/QD × 5dQW); expansion phase doses of 5 mg QD and 30 mg QW were selected based on tolerability beyond the DLT evaluation period. One patient with RCC achieved complete response; nine experienced partial responses (RCC: seven patients; carcinoid tumour/endometrial cancer: one patient each). Sapanisertib pharmacokinetics were time-linear and supported multiple dosing. Pharmacodynamic findings demonstrated treatment-related reductions in TORC1/2 biomarkers. Conclusions Sapanisertib demonstrated a manageable safety profile, with preliminary antitumour activity observed in RCC and endometrial cancer. Clinical trial registration ClinicalTrials.gov, NCT01058707.
Collapse
|
8
|
Van Acker E, De Rijcke M, Asselman J, Beck IM, Huysman S, Vanhaecke L, De Schamphelaere KA, Janssen CR. Aerosolizable Marine Phycotoxins and Human Health Effects: In Vitro Support for the Biogenics Hypothesis. Mar Drugs 2020; 18:md18010046. [PMID: 31936833 PMCID: PMC7024199 DOI: 10.3390/md18010046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/19/2022] Open
Abstract
Respiratory exposure to marine phycotoxins is of increasing concern. Inhalation of sea spray aerosols (SSAs), during harmful Karenia brevis and Ostreopsis ovata blooms induces respiratory distress among others. The biogenics hypothesis, however, suggests that regular airborne exposure to natural products is health promoting via a downregulation of the mechanistic target of rapamycin (mTOR) pathway. Until now, little scientific evidence supported this hypothesis. The current explorative in vitro study investigated both health-affecting and potential health-promoting mechanisms of airborne phycotoxin exposure, by analyzing cell viability effects via cytotoxicity assays and effects on the mTOR pathway via western blotting. To that end, A549 and BEAS-2B lung cells were exposed to increasing concentrations (ng·L−1–mg·L−1) of (1) pure phycotoxins and (2) an extract of experimental aerosolized homoyessotoxin (hYTX). The lowest cell viability effect concentrations were found for the examined yessotoxins (YTXs). Contradictory to the other phycotoxins, these YTXs only induced a partial cell viability decrease at the highest test concentrations. Growth inhibition and apoptosis, both linked to mTOR pathway activity, may explain these effects, as both YTXs were shown to downregulate this pathway. This proof-of-principle study supports the biogenics hypothesis, as specific aerosolizable marine products (e.g., YTXs) can downregulate the mTOR pathway.
Collapse
Affiliation(s)
- Emmanuel Van Acker
- Laboratory of Environmental Toxicology and Aquatic Ecology, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Coupure links 653, 9000 Ghent, Belgium
- Correspondence:
| | - Maarten De Rijcke
- Flanders Marine Institute (VLIZ), InnovOcean site, Wandelaarkaai 7, 8400 Ostend, Belgium
| | - Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Coupure links 653, 9000 Ghent, Belgium
- Greenbridge, Ghent University, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Ilse M. Beck
- Laboratory for experimental cancer research (LECR), Department for Radiation Oncology and Experimental Cancer Research, Ghent University, Campus UZ, De Pintelaan 185, 9000 Ghent, Belgium
- Department Health Sciences, Odisee University College, 9000 Ghent, Belgium
| | - Steve Huysman
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Campus Merelbeke, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Campus Merelbeke, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Karel A.C. De Schamphelaere
- Laboratory of Environmental Toxicology and Aquatic Ecology, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Coupure links 653, 9000 Ghent, Belgium
| | - Colin R. Janssen
- Laboratory of Environmental Toxicology and Aquatic Ecology, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Coupure links 653, 9000 Ghent, Belgium
| |
Collapse
|
9
|
David-West G, Ernlund A, Gadi A, Schneider RJ. mTORC1/2 inhibition re-sensitizes platinum-resistant ovarian cancer by disrupting selective translation of DNA damage and survival mRNAs. Oncotarget 2018; 9:33064-33076. [PMID: 30237852 PMCID: PMC6145695 DOI: 10.18632/oncotarget.25869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 07/08/2018] [Indexed: 12/12/2022] Open
Abstract
Platinum resistance is a major cause of treatment failure and mortality in epithelial ovarian cancer. mTORC1/2 inhibitors, which impair mRNA translation, can re-sensitize resistant ovarian cancer cells to platinum chemotherapy but the mechanism remains poorly described. Using platinum-resistant OVCAR-3 cells treated with the selective mTORC1/2 inhibitor INK128/MLN128, we conducted genome-wide transcription and translation studies and analyzed the effect on cell proliferation, AKT-mTOR signaling and cell survival, to determine whether carboplatin resistance involves selective mRNA translational reprogramming, and whether it is sensitive to mTORC1/2 inhibition. Gene ontology and Ingenuity Pathway Analysis (IPA) were used to categorize gene expression changes into experimentally authenticated biochemical and molecular networks. We show that carboplatin resistance involves increased mTORC1/2 signaling, resulting in selective translation of mRNAs involved in DNA damage and repair responses (DDR), cell cycle and anti-apoptosis (survival) pathways. Re-sensitization of ovarian cancer cell killing by carboplatin required only modest mTORC1/2 inhibition, with downregulation of protein synthesis by only 20-30%. Genome-wide transcriptomic and translatomic analyses in OVCAR-3 cells revealed that the modest downregulation of global protein synthesis by dual mTORC1/2 inhibition is associated with greater selective inhibition of DDR, cell cycle and survival mRNA translation, which was confirmed in platinum-resistant SKOV-3 cells. These data suggest a clinical path to re-sensitize platinum resistant ovarian cancer to platinum chemotherapy through partial inhibition of mTORC1/2, resulting in selective translation inhibition of DDR and anti-apoptosis protective mRNAs.
Collapse
Affiliation(s)
- Gizelka David-West
- Division of Gynecologic Oncology, New York University School of Medicine, New York, NY, USA
- New York Medical College, Westchester Medical Center, Hawthorne, NY, USA
| | - Amanda Ernlund
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Abhilash Gadi
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Robert J. Schneider
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
10
|
Remmerie M, Janssens V. Targeted Therapies in Type II Endometrial Cancers: Too Little, but Not Too Late. Int J Mol Sci 2018; 19:E2380. [PMID: 30104481 PMCID: PMC6121653 DOI: 10.3390/ijms19082380] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 01/14/2023] Open
Abstract
Type II endometrial carcinomas (ECs) are responsible for most endometrial cancer-related deaths due to their aggressive nature, late stage detection and high tolerance for standard therapies. However, there are no targeted therapies for type II ECs, and they are still treated the same way as the clinically indolent and easily treatable type I ECs. Therefore, type II ECs are in need of new treatment options. More recently, molecular analysis of endometrial cancer revealed phosphorylation-dependent oncogenic signalling in the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways to be most frequently altered in type II ECs. Consequently, clinical trials tested pharmacologic kinase inhibitors targeting these pathways, although mostly with rather disappointing results. In this review, we highlight the most common genetic alterations in type II ECs. Additionally, we reason why most clinical trials for ECs using targeted kinase inhibitors had unsatisfying results and what should be changed in future clinical trial setups. Furthermore, we argue that, besides kinases, phosphatases should no longer be ignored in clinical trials, particularly in type II ECs, where the tumour suppressive phosphatase protein phosphatase type 2A (PP2A) is frequently mutated. Lastly, we discuss the therapeutic potential of targeting PP2A for (re)activation, possibly in combination with pharmacologic kinase inhibitors.
Collapse
Affiliation(s)
- Michiel Remmerie
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Leuven Cancer Institute (LKI), B-3000 Leuven, Belgium.
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Leuven Cancer Institute (LKI), B-3000 Leuven, Belgium.
| |
Collapse
|
11
|
Geter PA, Ernlund AW, Bakogianni S, Alard A, Arju R, Giashuddin S, Gadi A, Bromberg J, Schneider RJ. Hyperactive mTOR and MNK1 phosphorylation of eIF4E confer tamoxifen resistance and estrogen independence through selective mRNA translation reprogramming. Genes Dev 2017; 31:2235-2249. [PMID: 29269484 PMCID: PMC5769768 DOI: 10.1101/gad.305631.117] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/20/2017] [Indexed: 01/04/2023]
Abstract
Geter et al. show that tamoxifen resistance involves selective mRNA translational reprogramming to an anti-estrogen state by Runx2 and other mRNAs. Tamoxifen-resistant translational reprogramming is shown to be mediated by increased expression of eIF4E and its increased availability by hyperactive mTOR and to require phosphorylation of eIF4E at Ser209 by increased MNK activity. The majority of breast cancers expresses the estrogen receptor (ER+) and is treated with anti-estrogen therapies, particularly tamoxifen in premenopausal women. However, tamoxifen resistance is responsible for a large proportion of breast cancer deaths. Using small molecule inhibitors, phospho-mimetic proteins, tamoxifen-sensitive and tamoxifen-resistant breast cancer cells, a tamoxifen-resistant patient-derived xenograft model, patient tumor tissues, and genome-wide transcription and translation studies, we show that tamoxifen resistance involves selective mRNA translational reprogramming to an anti-estrogen state by Runx2 and other mRNAs. Tamoxifen-resistant translational reprogramming is shown to be mediated by increased expression of eIF4E and its increased availability by hyperactive mTOR and to require phosphorylation of eIF4E at Ser209 by increased MNK activity. Resensitization to tamoxifen is restored only by reducing eIF4E expression or mTOR activity and also blocking MNK1 phosphorylation of eIF4E. mRNAs specifically translationally up-regulated with tamoxifen resistance include Runx2, which inhibits ER signaling and estrogen responses and promotes breast cancer metastasis. Silencing Runx2 significantly restores tamoxifen sensitivity. Tamoxifen-resistant but not tamoxifen-sensitive patient ER+ breast cancer specimens also demonstrate strongly increased MNK phosphorylation of eIF4E. eIF4E levels, availability, and phosphorylation therefore promote tamoxifen resistance in ER+ breast cancer through selective mRNA translational reprogramming
Collapse
Affiliation(s)
- Phillip A Geter
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Amanda W Ernlund
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Sofia Bakogianni
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Amandine Alard
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Rezina Arju
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Shah Giashuddin
- New York Presbyterian-Brooklyn Methodist Hospital, Brooklyn, New York 11215, USA
| | - Abhilash Gadi
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Jacqueline Bromberg
- Memorial Sloan Kettering Cancer Institute, New York, New York 10016 USA.,Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016 USA
| | - Robert J Schneider
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA.,Memorial Sloan Kettering Cancer Institute, New York, New York 10016 USA.,Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016 USA
| |
Collapse
|
12
|
Eritja N, Yeramian A, Chen BJ, Llobet-Navas D, Ortega E, Colas E, Abal M, Dolcet X, Reventos J, Matias-Guiu X. Endometrial Carcinoma: Specific Targeted Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 943:149-207. [PMID: 27910068 DOI: 10.1007/978-3-319-43139-0_6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endometrial cancer (EC) is the most common gynecologic malignancy in the western world with more than 280,000 cases per year worldwide. Prognosis for EC at early stages, when primary surgical resection is the most common initial treatment, is excellent. Five-year survival rate is around 70 %.Several molecular alterations have been described in the different types of EC. They occur in genes involved in important signaling pathways. In this chapter, we will review the most relevant altered pathways in EC, including PI3K/AKT/mTOR, RAS-RAF-MEK-ERK, Tyrosine kinase, WNT/β-Catenin, cell cycle, and TGF-β signaling pathways. At the end of the chapter, the most significant clinical trials will be briefly discussed.This information is important to identify specific targets for therapy.
Collapse
Affiliation(s)
- Nuria Eritja
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Andree Yeramian
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Bo-Juen Chen
- New York Genome Center, New York, NY, 10013, USA
| | - David Llobet-Navas
- Institute of Genetic Medicine, Newcastle University, Newcastle-Upon-Tyne, NE1 3BZ, UK
| | - Eugenia Ortega
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Eva Colas
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Research Unit in Biomedicine and Translational and Pediatric Oncology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Miguel Abal
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Xavier Dolcet
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Jaume Reventos
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Research Unit in Biomedicine and Translational and Pediatric Oncology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain.
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain.
| |
Collapse
|
13
|
Burris HA, Kurkjian CD, Hart L, Pant S, Murphy PB, Jones SF, Neuwirth R, Patel CG, Zohren F, Infante JR. TAK-228 (formerly MLN0128), an investigational dual TORC1/2 inhibitor plus paclitaxel, with/without trastuzumab, in patients with advanced solid malignancies. Cancer Chemother Pharmacol 2017; 80:261-273. [PMID: 28601972 DOI: 10.1007/s00280-017-3343-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/20/2017] [Indexed: 11/28/2022]
Abstract
PURPOSE This phase I trial evaluated the safety, pharmacokinetic profile, and antitumor activity of investigational oral TORC1/2 inhibitor TAK-228 plus paclitaxel, with/without trastuzumab, in patients with advanced solid malignancies. METHODS Sixty-seven patients received TAK-228 6-40 mg via three dosing schedules; once daily for 3 days (QDx3d QW) or 5 days per week (QDx5d QW), and once weekly (QW) plus paclitaxel 80 mg/m2 (dose-escalation phase, n = 47) and with/without trastuzumab 2 mg/kg (expansion phase, n = 20). Doses were escalated using a modified 3 + 3 design, based upon dose-limiting toxicities in cycle 1. RESULTS TAK-228 pharmacokinetics exhibited dose-dependent increase in exposure when dosed with paclitaxel and no apparent differences when administered with or 24 h after paclitaxel. Dose-limiting toxicities were dehydration, diarrhea, stomatitis, fatigue, rash, thrombocytopenia, neutropenia, leukopenia, and nausea. The maximum tolerated dose of TAK-228 was determined as 10-mg QDx3d QW; the expansion phase proceeded with 8-mg QDx3d QW. Overall, the most common grade ≥3 drug-related toxicities were neutropenia (21%), diarrhea (12%), and hyperglycemia (12%). Of 54 response-evaluable patients, eight achieved partial response and six had stable disease lasting ≥6 months. CONCLUSION TAK-228 demonstrated a safety profile consistent with other TORC inhibitors and promising preliminary antitumor activity in a range of tumor types; no meaningful difference was noted in the pharmacokinetics of TAK-228 when administered with or 24 h after paclitaxel. These findings support further investigation of TAK-228 in combination with other agents including paclitaxel, with/without trastuzumab, in patients with advanced solid tumors. CLINICALTRIALS. GOV IDENTIFIER NCT01351350.
Collapse
Affiliation(s)
- Howard A Burris
- Sarah Cannon Research Institute, 250 25th Avenue North, #100, Nashville, TN, 37203, USA. .,Tennessee Oncology PLLC, Nashville, TN, USA.
| | - C D Kurkjian
- Sarah Cannon Research Institute, 250 25th Avenue North, #100, Nashville, TN, 37203, USA.,Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - L Hart
- Sarah Cannon Research Institute, 250 25th Avenue North, #100, Nashville, TN, 37203, USA.,Florida Cancer Specialists, Fort Myers, FL, USA
| | - S Pant
- Sarah Cannon Research Institute, 250 25th Avenue North, #100, Nashville, TN, 37203, USA.,Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P B Murphy
- Sarah Cannon Research Institute, 250 25th Avenue North, #100, Nashville, TN, 37203, USA.,Tennessee Oncology PLLC, Nashville, TN, USA
| | - S F Jones
- Sarah Cannon Research Institute, 250 25th Avenue North, #100, Nashville, TN, 37203, USA
| | - R Neuwirth
- Millennium Pharmaceuticals, Inc., A Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - C G Patel
- Millennium Pharmaceuticals, Inc., A Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - F Zohren
- Millennium Pharmaceuticals, Inc., A Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - J R Infante
- Sarah Cannon Research Institute, 250 25th Avenue North, #100, Nashville, TN, 37203, USA.,Tennessee Oncology PLLC, Nashville, TN, USA
| |
Collapse
|
14
|
Musa F, Alard A, David-West G, Curtin JP, Blank SV, Schneider RJ. Dual mTORC1/2 Inhibition as a Novel Strategy for the Resensitization and Treatment of Platinum-Resistant Ovarian Cancer. Mol Cancer Ther 2016; 15:1557-67. [PMID: 27196780 DOI: 10.1158/1535-7163.mct-15-0926] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/23/2016] [Indexed: 11/16/2022]
Abstract
There is considerable interest in the clinical development of inhibitors of mTOR complexes mTORC1 and 2. Because mTORC1 and its downstream mRNA translation effectors may protect against genotoxic DNA damage, we investigated the inhibition of mTORC1 and mTORC1/2 in the ability to reverse platinum resistance in tissue culture and in animal tumor models of serous ovarian cancer. Cell survival, tumor growth, PI3K-AKT-mTOR pathway signaling, DNA damage and repair response (DDR) gene expression, and translational control were all investigated. We show that platinum-resistant OVCAR-3 ovarian cancer cells are resensitized to low levels of carboplatin in culture by mTOR inhibition, demonstrating reduced survival after treatment with either mTORC1 inhibitor everolimus or mTORC1/2 inhibitor PP242. Platinum resistance is shown to be associated with activating phosphorylation of AKT and CHK1, inactivating phosphorylation of 4E-BP1, the negative regulator of eIF4E, which promotes increased cap-dependent mRNA translation and increased levels of CHK1 and BRCA1 proteins. Animals with platinum-resistant OVCAR-3 tumors treated with carboplatin plus mTORC1/2 inhibition had significantly longer median survival and strikingly reduced metastasis compared with animals treated with carboplatin plus everolimus, which inhibits only mTORC1. Reduced tumor growth, metastasis, and increased survival by mTORC1/2 inhibition with carboplatin treatment was associated with reduced AKT-activating phosphorylation and increased 4E-BP1 hypophosphorylation (activation). We conclude that mTORC1/2 inhibition is superior to mTORC1 inhibition in reversing platinum resistance in tumors and strongly impairs AKT activation, DNA repair responses, and translation, promoting improved survival in the background of platinum resistance. Mol Cancer Ther; 15(7); 1557-67. ©2016 AACR.
Collapse
Affiliation(s)
- Fernanda Musa
- Department Obstetrics and Gynecology, NYU School of Medicine, New York, New York
| | - Amandine Alard
- Department of Microbiology, NYU School of Medicine, New York, New York
| | - Gizelka David-West
- Department Obstetrics and Gynecology, NYU School of Medicine, New York, New York
| | - John P Curtin
- Department Obstetrics and Gynecology, NYU School of Medicine, New York, New York. NYU Cancer Institute, New York, New York
| | - Stephanie V Blank
- Department Obstetrics and Gynecology, NYU School of Medicine, New York, New York. NYU Cancer Institute, New York, New York
| | - Robert J Schneider
- Department of Microbiology, NYU School of Medicine, New York, New York. NYU Cancer Institute, New York, New York.
| |
Collapse
|
15
|
Mukhopadhyay S, Sinha N, Das DN, Panda PK, Naik PP, Bhutia SK. Clinical relevance of autophagic therapy in cancer: Investigating the current trends, challenges, and future prospects. Crit Rev Clin Lab Sci 2016; 53:228-52. [PMID: 26743568 DOI: 10.3109/10408363.2015.1135103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oncophagy (cancer-related autophagy) has a complex dual character at different stages of tumor progression. It remains an important clinical problem to unravel the reasons that propel the shift in the role of oncophagy from tumor inhibition to a protective mechanism that shields full-blown malignancy. Most treatment strategies emphasize curbing protective oncophagy while triggering the oncophagy that is lethal to tumor cells. In this review, we focus on the trends in current therapeutics as well as various challenges in clinical trials to address the oncophagic dilemma and evaluate the potential of these developing therapies. A detailed analysis of the clinical and pre-clinical scenario of the anticancer medicines highlights the various inducers and inhibitors of autophagy. The ways in which tumor stage, the microenvironment and combination drug treatment continue to play an important tactical role are discussed. Moreover, autophagy targets also play a crucial role in developing the best possible solution to this oncophagy paradox. In this review, we provide a comprehensive update on the current clinical impact of autophagy-based cancer therapeutic drugs and try to lessen the gap between translational medicine and clinical science.
Collapse
Affiliation(s)
- Subhadip Mukhopadhyay
- a Department of Life Science , National Institute of Technology , Rourkela , Odisha , India
| | - Niharika Sinha
- a Department of Life Science , National Institute of Technology , Rourkela , Odisha , India
| | - Durgesh Nandini Das
- a Department of Life Science , National Institute of Technology , Rourkela , Odisha , India
| | - Prashanta Kumar Panda
- a Department of Life Science , National Institute of Technology , Rourkela , Odisha , India
| | - Prajna Paramita Naik
- a Department of Life Science , National Institute of Technology , Rourkela , Odisha , India
| | - Sujit Kumar Bhutia
- a Department of Life Science , National Institute of Technology , Rourkela , Odisha , India
| |
Collapse
|
16
|
Zhang Z, Zhang G, Kong C, Gong D. PP242 suppresses bladder cancer cell proliferation and migration through deactivating the mammalian target of rapamycin complex 2/AKT1 signaling pathway. Mol Med Rep 2015; 13:333-8. [PMID: 26548560 DOI: 10.3892/mmr.2015.4528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 10/06/2015] [Indexed: 11/06/2022] Open
Abstract
While most cancer types are resistant to mammalian target of rapamycin complex 1 (mTORC1) inhibitor rapamycin, recent studies have identified mTORC2 as an important prospective therapeutic target for cancer. The present study assessed the effects of mTORC2 inhibitor PP242 on the proliferation and migration of bladder cancer cells by using Cell Counting Kit‑8, 5‑ethynyl‑2'‑deoxyuridine incorporation, wound healing and Transwell assays. Furthermore, the phosphorylation status of downstream signaling proteins of mTORC1 and mTORC2 was assessed using western blot analysis. The results demonstrated that PP242 concentration‑dependently inhibited the proliferation of bladder cancer cells. Simultaneously, the migration ability of bladder cancer cells was suppressed by PP242. In addition, PP242 markedly restrained the phosphorylation of AKT1 and mTORC2, while the phosphorylation status of S6K1 and mTORC1 was not affected. These results suggested that PP242 exerts potent inhibitory effects on bladder cancer cells by modulating the activity of the mTORC2/AKT1 pathway.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guojun Zhang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Daxin Gong
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
17
|
Wu W, Li W, Zhou Y, Zhang C. Inhibition of beclin1 affects the chemotherapeutic sensitivity of osteosarcoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:7114-7122. [PMID: 25400807 PMCID: PMC4230152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/01/2014] [Indexed: 06/04/2023]
Abstract
This study was conducted to explore the role of autophagy in cisplatin-resistant osteosarcoma. Cisplatin-resistant osteosarcoma cell line (MG63/DDP) was obtained from parental MG63 by treating cisplatin with an intermittent stepwise selection protocol. The autophagy in MG63/DDP and MG63 was fully analyzed by immunofluorescence and western blot analysis. Meanwhile, the autophagy and the sensitivity to cisplatin for MG63/DDP and MG63 after inhibition of beclin1 were analyzed in vitro and in vivo. Increased autophagy was observed in cisplatin resistant MG63/DDP cells and in the cisplatin-treated MG63 and MG63/DDP cells. Meanwhile, inhibition the beclin1 significantly inhibited the formation of autophagosome and resulted in the increase in the sensitivity to cisplatin for both MG63 and MG63/DDP cells in vitro and in vivo. In conclusion, autophagy is implicated in the cisplatin resistant osteosarcoma, and inhibition of beclin1 could be a target for improving osteosarcoma therapy.
Collapse
Affiliation(s)
- Wenxin Wu
- Department of Osteology, Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Wei Li
- Department of Otoalryngology–Head Neck Surgery, Third Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Yong Zhou
- Department of Osteology, Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Chaoyue Zhang
- Department of Osteology, Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| |
Collapse
|