1
|
Application of nanogels as drug delivery systems in multicellular spheroid tumor model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
2
|
Wang P, Hu Y, Qu P, Zhao Y, Liu J, Zhao J, Kong B. Protein tyrosine phosphatase receptor type Z1 inhibits the cisplatin resistance of ovarian cancer by regulating PI3K/AKT/mTOR signal pathway. Bioengineered 2022; 13:1931-1941. [PMID: 35001804 PMCID: PMC8805848 DOI: 10.1080/21655979.2021.2022268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022] Open
Abstract
Most patients with ovarian cancer (OC) get remission after undergoing cytoreductive surgery and platinum-based standard chemotherapy, but more than 50% of patients with advanced OC relapse within the first 5 years after treatment and develop resistance to standard chemotherapy. The production of medicinal properties is the main reason for the poor prognosis and high mortality of OC patients. Cisplatin (DDP) resistance is a major cause for poor prognosis of OC patients. PTPRZ1 can regulate the growth and apoptosis of ovarian cancer cells, while the molecular mechanism remains unknown. This study was designed to investigate the roles of PTPRZ1 in DDP-resistant OC cells and possible mechanism. PTPRZ1 expression in OC tissues and normal tissues was analyzed by GEPIA database and verified by Real-time Quantitative Reverse Transcription PCR (RT-PCR) assay. PTPRZ1 expression in normal ovarian cancer cells and DDP-resistant OC cells was also analyzed. Subsequently, RT-PCR, Western blot, MTT experiment and flow cytometry were used to assess the effects of PTPRZ1-PI3K/AKT/mTOR regulating axis on DDP resistance of OC. PTPRZ1 expression was abnormally low in OC tissues, and notably reduced in DDP-resistant OC cells. MTT experiment and flow cytometer indicated that overexpression of PTPRZ1 enhanced the DDP sensitivity of OC cells and promoted the cell apoptosis. Moreover, the results of our research showed that PTPRZ1 might exert its biological effects through blocking PI3K/AKT/mTOR pathway. PTPRZ1 overexpression inhibitied OC tumor growth and resistance to DDP in vivo. Overall, PTPRZ1 might suppress the DDP resistance of OC and induce the cytotoxicity by blocking PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Peng Wang
- Department of Gynecology Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Yuanjing Hu
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Pengpeng Qu
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Ying Zhao
- Department of Gynecology Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jing Liu
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Jianguo Zhao
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Beihua Kong
- Department of Gynecology Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Bilbao M, Katz C, Kass SL, Smith D, Hunter K, Warshal D, Aikins JK, Ostrovsky O. Epigenetic Therapy Augments Classic Chemotherapy in Suppressing the Growth of 3D High-Grade Serous Ovarian Cancer Spheroids over an Extended Period of Time. Biomolecules 2021; 11:1711. [PMID: 34827710 PMCID: PMC8615646 DOI: 10.3390/biom11111711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/20/2023] Open
Abstract
Recurrent high-grade serous ovarian cancer (HGSC) is clinically very challenging and prematurely shortens patients' lives. Recurrent ovarian cancer is characterized by high tumor heterogeneity; therefore, it is susceptible to epigenetic therapy in classic 2D tissue culture and rodent models. Unfortunately, this success has not translated well into clinical trials. Utilizing a 3D spheroid model over a period of weeks, we were able to compare the efficacy of classic chemotherapy and epigenetic therapy on recurrent ovarian cancer cells. Unexpectedly, in our model, a single dose of paclitaxel alone caused the exponential growth of recurrent high-grade serous epithelial ovarian cancer over a period of weeks. In contrast, this effect is not only opposite under treatment with panobinostat, but panobinostat reverses the repopulation of cancer cells following paclitaxel treatment. In our model, we also demonstrate differences in the drug-treatment sensitivity of classic chemotherapy and epigenetic therapy. Moreover, 3D-derived ovarian cancer cells demonstrate induced proliferation, migration, invasion, cancer colony formation and chemoresistance properties after just a single exposure to classic chemotherapy. To the best of our knowledge, this is the first evidence demonstrating a critical contrast between short and prolonged post-treatment outcomes following classic chemotherapy and epigenetic therapy in recurrent high-grade serous ovarian cancer in 3D culture.
Collapse
Affiliation(s)
- Michelle Bilbao
- Virtua Gynecologic Oncology, Virtua Health, Voorhees, NJ 08043, USA;
| | - Chelsea Katz
- Department of Obstetrics and Gynecology, Cooper University Health Care, Camden, NJ 08103, USA; (C.K.); (S.L.K.)
| | - Stephanie L. Kass
- Department of Obstetrics and Gynecology, Cooper University Health Care, Camden, NJ 08103, USA; (C.K.); (S.L.K.)
| | - Devon Smith
- Department of Obstetrics and Gynecology, Division of Urogynecology, Cooper University Health Care, Camden, NJ 08103, USA;
| | - Krystal Hunter
- Department of Statistics, Cooper Research Institute, Cooper University Health Care, Camden, NJ 08103, USA;
| | - David Warshal
- Department of Gynecologic Oncology, MD Anderson Cancer Center at Cooper, Cooper University Health Care, Camden, NJ 08103, USA;
| | - James K. Aikins
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA;
| | - Olga Ostrovsky
- Department of Surgery, Division of Surgical Research, Cooper University Health Care, Camden, NJ 08103, USA
| |
Collapse
|
4
|
Tofani LB, Sousa LO, Luiz MT, Abriata JP, Marchetti JM, Leopoldino AM, Swiech K. Generation of a Three-Dimensional in Vitro Ovarian Cancer Co-Culture Model for Drug Screening Assays. J Pharm Sci 2021; 110:2629-2636. [PMID: 33848527 DOI: 10.1016/j.xphs.2021.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
In vitro 3D culture models have emerged in the cancer field due to their ability to recapitulate characteristics of the in vivo tumor. Herein, we described the establishment and characterization of 3D multicellular spheroids using ovarian cancer cells (SKOV-3) in co-culture with mesenchymal cells (MUC-9) or fibroblasts (CCD27-Sk). We demonstrated that SKOV-3 cells in co-culture were able to form regular and compact spheroids with diameters ranging from 300 to 400 µm and with a roundness close to 1.0 regardless of the type of stromal cell used. In the 3D culture an increase was not observed in spheroid diameter nor was there significant cell growth. What is more, the 3D co-cultures presented an up regulation of genes related to tumorigenesis, angiogenesis and metastases (MMP2, VEGFA, SNAI1, ZEB1 and VIM) when compared with 2D and 3D monoculture. As expected, both 3D cultures (mono and co-cultures) exhibited a higher Paclitaxel chemoresistance when compared to 2D condition. Although we did not observe differences in the Paclitaxel resistance between the 3D mono and co-cultures, the gene expression results indicate that the presence of mesenchymal cells and fibroblasts better recapitulate the in vivo tumor microenvironment, being able, therefore, to more accurately evaluate drug efficacy for ovarian cancer therapy.
Collapse
Affiliation(s)
- Larissa Bueno Tofani
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café w/n, Ribeirão Preto, Sao Paulo, Brazil
| | - Lucas Oliveira Sousa
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café w/n, Ribeirão Preto, Sao Paulo, Brazil
| | - Marcela Tavares Luiz
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café w/n, Ribeirão Preto, Sao Paulo, Brazil
| | - Juliana Palma Abriata
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café w/n, Ribeirão Preto, Sao Paulo, Brazil
| | - Juliana Maldonado Marchetti
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café w/n, Ribeirão Preto, Sao Paulo, Brazil
| | - Andréia Machado Leopoldino
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café w/n, Ribeirão Preto, Sao Paulo, Brazil
| | - Kamilla Swiech
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café w/n, Ribeirão Preto, Sao Paulo, Brazil.
| |
Collapse
|
5
|
Shen H, Cai S, Wu C, Yang W, Yu H, Liu L. Recent Advances in Three-Dimensional Multicellular Spheroid Culture and Future Development. MICROMACHINES 2021; 12:96. [PMID: 33477508 PMCID: PMC7831097 DOI: 10.3390/mi12010096] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
Three-dimensional multicellular spheroids (MCSs) have received extensive attention in the field of biomedicine due to their ability to simulate the structure and function of tissues in vivo more accurately than traditional in vitro two-dimensional models and to simulate cell-cell and cell extracellular matrix (ECM) interactions. It has become an important in vitro three-dimensional model for tumor research, high-throughput drug screening, tissue engineering, and basic biology research. In the review, we first summarize methods for MCSs generation and their respective advantages and disadvantages and highlight the advances of hydrogel and microfluidic systems in the generation of spheroids. Then, we look at the application of MCSs in cancer research and other aspects. Finally, we discuss the development direction and prospects of MCSs.
Collapse
Affiliation(s)
- Honglin Shen
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.S.); (S.C.); (C.W.)
| | - Shuxiang Cai
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.S.); (S.C.); (C.W.)
| | - Chuanxiang Wu
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.S.); (S.C.); (C.W.)
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.S.); (S.C.); (C.W.)
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; (H.Y.); (L.L.)
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; (H.Y.); (L.L.)
| |
Collapse
|
6
|
O’Dwyer J, O’Cearbhaill RE, Wylie R, O’Mahony S, O’Dwyer M, Duffy GP, Dolan EB. Enhancing delivery of small molecule and cell-based therapies for ovarian cancer using advanced delivery strategies. ADVANCED THERAPEUTICS 2020; 3:2000144. [PMID: 33709016 PMCID: PMC7942751 DOI: 10.1002/adtp.202000144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 12/17/2022]
Abstract
Ovarian cancer is the most lethal gynecological malignancy with a global five-year survival rate of 30-50%. First-line treatment involves cytoreductive surgery and administration of platinum-based small molecules and paclitaxel. These therapies were traditionally administered via intravenous infusion, although intraperitoneal delivery has also been investigated. Initial clinical trials of intraperitoneal administration for ovarian cancer indicated significant improvements in overall survival compared to intravenous delivery, but this result is not consistent across all studies performed. Recently cell-based immunotherapy has been of interest for ovarian cancer. Direct intraperitoneal delivery of cell-based immunotherapies might prompt local immunoregulatory mechanisms to act synergistically with the delivered immunotherapy. Based on this theory, pre-clinical in vivo studies have delivered these cell-based immunotherapies via the intraperitoneal route, with promising results. However, successful intraperitoneal delivery of cell-based immunotherapy and clinical adoption of this technique will depend on overcoming challenges of intraperitoneal delivery and finding the optimal combinations of dose, therapeutic and delivery route. We review the potential advantages and disadvantages of intraperitoneal delivery of cell-based immunotherapy for ovarian cancer and the pre-clinical and clinical work performed so far. Potential advanced delivery strategies, which might improve the efficacy and adoption of intraperitoneal delivery of therapy for ovarian cancer, are also outlined.
Collapse
Affiliation(s)
- Joanne O’Dwyer
- Department of Biomedical Engineering, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Ireland; Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Ireland
| | - Roisin E. O’Cearbhaill
- Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Ireland; Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Robert Wylie
- Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Ireland
| | - Saoirse O’Mahony
- Department of Biomedical Engineering, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Ireland
| | - Michael O’Dwyer
- Apoptosis Research Centre, National University of Ireland Galway, Ireland
| | - Garry P. Duffy
- Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Ireland
| | - Eimear B. Dolan
- Department of Biomedical Engineering, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Ireland
| |
Collapse
|
7
|
Tofani LB, Abriata JP, Luiz MT, Marchetti JM, Swiech K. Establishment and characterization of an in vitro
3D
ovarian cancer model for drug screening assays. Biotechnol Prog 2020; 36:e3034. [DOI: 10.1002/btpr.3034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Larissa B. Tofani
- School of Pharmaceutical Sciences of Ribeirao Preto University of Sao Paulo Ribeirão Preto Sao Paulo Brazil
| | - Juliana P. Abriata
- School of Pharmaceutical Sciences of Ribeirao Preto University of Sao Paulo Ribeirão Preto Sao Paulo Brazil
| | - Marcela T. Luiz
- School of Pharmaceutical Sciences of Ribeirao Preto University of Sao Paulo Ribeirão Preto Sao Paulo Brazil
| | - Juliana M. Marchetti
- School of Pharmaceutical Sciences of Ribeirao Preto University of Sao Paulo Ribeirão Preto Sao Paulo Brazil
| | - Kamilla Swiech
- School of Pharmaceutical Sciences of Ribeirao Preto University of Sao Paulo Ribeirão Preto Sao Paulo Brazil
| |
Collapse
|
8
|
Han S, Dwivedi P, Mangrio FA, Dwivedi M, Khatik R, Cohn DE, Si T, Xu RX. Sustained release paclitaxel-loaded core-shell-structured solid lipid microparticles for intraperitoneal chemotherapy of ovarian cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:957-967. [DOI: 10.1080/21691401.2019.1576705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Shuya Han
- Department of Precision Machinery and Precision Instrumentation, School of Engineering Science, University of Science and Technology of China, Hefei, P.R.China
| | - Pankaj Dwivedi
- Department of Precision Machinery and Precision Instrumentation, School of Engineering Science, University of Science and Technology of China, Hefei, P.R.China
| | - Farhana Akbar Mangrio
- Department of Precision Machinery and Precision Instrumentation, School of Engineering Science, University of Science and Technology of China, Hefei, P.R.China
| | - Monika Dwivedi
- Department of Precision Machinery and Precision Instrumentation, School of Engineering Science, University of Science and Technology of China, Hefei, P.R.China
| | - Renuka Khatik
- Department of Chemistry, Laboratory of Nanomaterials for Energy Conversion (LNEC), University of Science and Technology of China, Hefei, Anhui, PR China
| | - David E. Cohn
- Division of Gynecologic Oncology, Ohio State University College of Medicine, Columbus, OH, USA
| | - Ting Si
- Department of Precision Machinery and Precision Instrumentation, School of Engineering Science, University of Science and Technology of China, Hefei, P.R.China
| | - Ronald X. Xu
- Department of Precision Machinery and Precision Instrumentation, School of Engineering Science, University of Science and Technology of China, Hefei, P.R.China
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Konkankit CC, Vaughn BA, MacMillan SN, Boros E, Wilson JJ. Combinatorial Synthesis to Identify a Potent, Necrosis-Inducing Rhenium Anticancer Agent. Inorg Chem 2019; 58:3895-3909. [PMID: 30793900 DOI: 10.1021/acs.inorgchem.8b03552] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Combinatorial synthesis can be applied for developing a library of compounds that can be rapidly screened for biological activity. Here, we report the application of microwave-assisted combinatorial chemistry for the synthesis of 80 rhenium(I) tricarbonyl complexes bearing diimine ligands. This library was evaluated for anticancer activity in three different cancer cell lines, enabling the identification of three lead compounds with cancer cell growth-inhibitory activities of less than 10 μM. These three lead structures, Re-9B, Re-9C, and Re-9D, were synthesized independently and fully characterized by NMR spectroscopy, mass spectrometry, elemental analysis, and X-ray crystallography. The most potent of these three complexes, Re-9D, was further explored to understand its mechanism of action. Complex Re-9D is equally effective in both wild-type and cisplatin-resistant A2780 ovarian cancer cells, indicating that it circumvents cisplatin resistance. This compound was also shown to possess promising activity against ovarian cancer tumor spheroids. Additionally, flow cytometry showed that Re-9D does not induce cell cycle arrest or flipping of phosphatidylserine to the outer cell membrane. Analysis of the morphological changes of cancer cells treated with Re-9D revealed that this compound gives rise to rapid plasma membrane rupture. Collectively, these data suggest that Re-9D induces necrosis in cancer cells. To assess the in vivo biodistribution and stability of this compound, a radioactive 99mTc analogue of Re-9D, 99mTc-9D(H2O), was synthesized and administered to naı̈ve BALB/c mice. Results of these studies indicate that 99mTc-9D(H2O) exhibits high metabolic stability and a distinct biodistribution profile. This research demonstrates that combinatorial synthesis is an effective approach for the development of new rhenium anticancer agents with advantageous biological properties.
Collapse
Affiliation(s)
- Chilaluck C Konkankit
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Brett A Vaughn
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Eszter Boros
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
10
|
Cui L, Zhou F, Chen C, Wang CC. Overexpression of CCDC69 activates p14 ARF/MDM2/p53 pathway and confers cisplatin sensitivity. J Ovarian Res 2019; 12:4. [PMID: 30651135 PMCID: PMC6334460 DOI: 10.1186/s13048-019-0479-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 01/03/2019] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES The aim of the study is to explore the relationship between CCDC69 expression and resistance of ovarian cancer cells to cisplatin and reveal the underlying mechanism. METHODS One hundred thirty five ovarian cancer patients with intact chemo-response information from The Cancer Genome Atlas (TCGA) database were included and analyzed. Stable CCDC69 overexpressing 293 and ovarian cancer A2780 cell lines were established and subjected to examine cell apoptosis and cell cycle distribution using CCK-8 assay and flow cytometry. Cell cycle and apoptosis pathway were evaluated by immunoblots. Stability of p14ARF/MDM2/p53 pathway related proteins were determined by half-life analysis and ubiquitination experiments. RESULTS We found that CCDC69 expression was significantly higher in chemo-sensitive groups compared with chemo-resistant groups from TCGA database. High CCDC69 expression was associated longer survival. CCDC69 overexpressing 293 and A2780 cells with wildtype p53 and contributes to cisplatin sensitivity following treatment with cisplatin. We further found over-expression of CCDC69 activated p14ARF/MDM2/p53 pathway. Importantly, we also demonstrated that CCDC69 expression extended p53 and p14ARF protein half-life and shortened MDM2 protein half-life. Ubiquitination assay revealing a decrease in p14 ubiquitination in CCDC69 over-expression cells comparing to cells expressing empty vector. CONCLUSIONS It is tempting to conclude that targeting CCDC69 may play a role in cisplatin resistance.
Collapse
Affiliation(s)
- Long Cui
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children Hospital, Guangzhou, 511400, Guangdong, China. .,Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| | - Fang Zhou
- School of Nursing, The First Affiliated Hospital, Xuzhou Medical University, Xuzhou, China
| | - Cui Chen
- Intensive Care Unit, The First Affiliated Hospital, Xuzhou Medical University, Xuzhou, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Reproduction and Development Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Shatin, China
| |
Collapse
|
11
|
Kato S, Liberona MF, Cerda-Infante J, Sánchez M, Henríquez J, Bizama C, Bravo ML, Gonzalez P, Gejman R, Brañes J, García K, Ibañez C, Owen GI, Roa JC, Montecinos V, Cuello MA. Simvastatin interferes with cancer 'stem-cell' plasticity reducing metastasis in ovarian cancer. Endocr Relat Cancer 2018; 25:821-836. [PMID: 29848667 DOI: 10.1530/erc-18-0132] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022]
Abstract
Cell plasticity of 'stem-like' cancer-initiating cells (CICs) is a hallmark of cancer, allowing metastasis and cancer progression. Here, we studied whether simvastatin, a lipophilic statin, could impair the metastatic potential of CICs in high-grade serous ovarian cancer (HGS-ovC), the most lethal among the gynecologic malignancies. qPCR, immunoblotting and immunohistochemistry were used to assess simvastatin effects on proteins involved in stemness and epithelial-mesenchymal cell plasticity (EMT). Its effects on tumor growth and metastasis were evaluated using different models (e.g., spheroid formation and migration assays, matrigel invasion assays, 3D-mesomimetic models and cancer xenografts). We explored also the clinical benefit of statins by comparing survival outcomes among statin users vs non-users. Herein, we demonstrated that simvastatin modifies the stemness and EMT marker expression patterns (both in mRNA and protein levels) and severely impairs the spheroid assembly of CICs. Consequently, CICs become less metastatic in 3D-mesomimetic models and show fewer ascites/tumor burden in HGS-ovC xenografts. The principal mechanism behind statin-mediated effects involves the inactivation of the Hippo/YAP/RhoA pathway in a mevalonate synthesis-dependent manner. From a clinical perspective, statin users seem to experience better survival and quality of life when compared with non-users. Considering the high cost and the low response rates obtained with many of the current therapies, the use of orally or intraperitoneally administered simvastatin offers a cost/effective and safe alternative to treat and potentially prevent recurrent HGS-ovCs.
Collapse
Affiliation(s)
- S Kato
- Division of Obstetrics and GynecologyFaculty of Medicine, Pontificia Universidad Católica de Chile (PUC), Santiago, Chile
| | - M F Liberona
- Division of Obstetrics and GynecologyFaculty of Medicine, Pontificia Universidad Católica de Chile (PUC), Santiago, Chile
| | - J Cerda-Infante
- Department of Hematology and OncologyFaculty of Medicine, PUC, Santiago, Chile
- Department of Cellular and MolecularFaculty of Biological Sciences, PUC, Santiago, Chile
| | - M Sánchez
- Department of Hematology and OncologyFaculty of Medicine, PUC, Santiago, Chile
| | - J Henríquez
- Department of Hematology and OncologyFaculty of Medicine, PUC, Santiago, Chile
| | - C Bizama
- Department of PathologyFaculty of Medicine, PUC, Santiago, Chile
| | - M L Bravo
- Department of Physiological SciencesFaculty of Biological Sciences, PUC, Santiago, Chile
- Millennium Institute on Immunology and ImmunotherapyPUC, Santiago, Chile
| | - P Gonzalez
- Department of Physiological SciencesFaculty of Biological Sciences, PUC, Santiago, Chile
| | - R Gejman
- Department of PathologyFaculty of Medicine, PUC, Santiago, Chile
| | - J Brañes
- Division of Obstetrics and GynecologyFaculty of Medicine, Pontificia Universidad Católica de Chile (PUC), Santiago, Chile
| | - K García
- Division of Obstetrics and GynecologyFaculty of Medicine, Pontificia Universidad Católica de Chile (PUC), Santiago, Chile
| | - C Ibañez
- Department of Hematology and OncologyFaculty of Medicine, PUC, Santiago, Chile
- Millennium Institute on Immunology and ImmunotherapyPUC, Santiago, Chile
| | - G I Owen
- Department of Physiological SciencesFaculty of Biological Sciences, PUC, Santiago, Chile
- Millennium Institute on Immunology and ImmunotherapyPUC, Santiago, Chile
| | - J C Roa
- Department of PathologyFaculty of Medicine, PUC, Santiago, Chile
- Millennium Institute on Immunology and ImmunotherapyPUC, Santiago, Chile
| | - V Montecinos
- Department of Hematology and OncologyFaculty of Medicine, PUC, Santiago, Chile
| | - M A Cuello
- Division of Obstetrics and GynecologyFaculty of Medicine, Pontificia Universidad Católica de Chile (PUC), Santiago, Chile
| |
Collapse
|
12
|
Wendel JRH, Wang X, Hawkins SM. The Endometriotic Tumor Microenvironment in Ovarian Cancer. Cancers (Basel) 2018; 10:cancers10080261. [PMID: 30087267 PMCID: PMC6115869 DOI: 10.3390/cancers10080261] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
Women with endometriosis are at increased risk of developing ovarian cancer, specifically ovarian endometrioid, low-grade serous, and clear-cell adenocarcinoma. An important clinical caveat to the association of endometriosis with ovarian cancer is the improved prognosis for women with endometriosis at time of ovarian cancer staging. Whether endometriosis-associated ovarian cancers develop from the molecular transformation of endometriosis or develop because of the endometriotic tumor microenvironment remain unknown. Additionally, how the presence of endometriosis improves prognosis is also undefined, but likely relies on the endometriotic microenvironment. The unique tumor microenvironment of endometriosis is composed of epithelial, stromal, and immune cells, which adapt to survive in hypoxic conditions with high levels of iron, estrogen, and inflammatory cytokines and chemokines. Understanding the unique molecular features of the endometriotic tumor microenvironment may lead to impactful precision therapies and/or modalities for prevention. A challenge to this important study is the rarity of well-characterized clinical samples and the limited model systems. In this review, we will describe the unique molecular features of endometriosis-associated ovarian cancers, the endometriotic tumor microenvironment, and available model systems for endometriosis-associated ovarian cancers. Continued research on these unique ovarian cancers may lead to improved prevention and treatment options.
Collapse
Affiliation(s)
- Jillian R Hufgard Wendel
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Xiyin Wang
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Shannon M Hawkins
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
13
|
Broekgaarden M, Rizvi I, Bulin AL, Petrovic L, Goldschmidt R, Massodi I, Celli JP, Hasan T. Neoadjuvant photodynamic therapy augments immediate and prolonged oxaliplatin efficacy in metastatic pancreatic cancer organoids. Oncotarget 2018; 9:13009-13022. [PMID: 29560127 PMCID: PMC5849191 DOI: 10.18632/oncotarget.24425] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/23/2018] [Indexed: 12/18/2022] Open
Abstract
Effective treatment of advanced metastatic disease remains the primary challenge in the management of inoperable pancreatic cancer. Current therapies such as oxaliplatin (OxPt)-based chemotherapy regimens (FOLFIRINOX) provide modest short-term survival improvements, yet with significant toxicity. Photodynamic therapy (PDT), a light-activated cancer therapy, demonstrated clinical promise for pancreatic cancer treatment and enhances conventional chemotherapies with non-overlapping toxicities. This study investigates the capacity of neoadjuvant PDT using a clinically-approved photosensitizer, benzoporphyrin derivative (BPD, verteporfin), to enhance OxPt efficacy in metastatic pancreatic cancer. Treatment effects were evaluated in organotypic three-dimensional (3D) cultures, clinically representative models that bridge the gap between conventional cell cultures and in vivo models. The temporally-spaced, multiparametric analyses demonstrated a superior efficacy for combined PDT+OxPt compared to each monotherapy alone, which was recapitulated on different organotypic pancreatic cancer cultures. The therapeutic benefit of neoadjuvant PDT to OxPt chemotherapy materialized in a time-dependent manner, reducing residual viable tissue and tumor viability in a manner not achievable with OxPt or PDT alone. These findings emphasize the need for intelligent combination therapies and relevant models to evaluate the temporal kinetics of interactions between mechanistically-distinct treatments and highlight the promise of PDT as a neoadjuvant treatment for disseminated pancreatic cancer.
Collapse
Affiliation(s)
- Mans Broekgaarden
- Wellman Center for Photomedicine, Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Imran Rizvi
- Wellman Center for Photomedicine, Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anne-Laure Bulin
- Wellman Center for Photomedicine, Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ljubica Petrovic
- Department of Physics, University of Massachusetts, Boston, MA 02125, USA
| | - Ruth Goldschmidt
- Wellman Center for Photomedicine, Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Iqbal Massodi
- Wellman Center for Photomedicine, Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jonathan P. Celli
- Department of Physics, University of Massachusetts, Boston, MA 02125, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|