1
|
Chen SF, Wang LY, Lin YS, Chen CY. Novel protein-based prognostic signature linked to immunotherapeutic efficiency in ovarian cancer. J Ovarian Res 2024; 17:190. [PMID: 39342345 PMCID: PMC11437962 DOI: 10.1186/s13048-024-01518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Personalized medicine remains an unmet need in ovarian cancer due to its heterogeneous nature and complex immune microenvironments, which has gained increasing attention in the era of immunotherapy. A key obstacle is the lack of reliable biomarkers to identify patients who would benefit significantly from the therapy. While conventional clinicopathological factors have exhibited limited efficacy as prognostic indicators in ovarian cancer, multi-omics profiling presents a promising avenue for comprehending the interplay between the tumor and immune components. Here we aimed to leverage the individual proteomic and transcriptomic profiles of ovarian cancer patients to develop an effective protein-based signature capable of prognostication and distinguishing responses to immunotherapy. METHODS The workflow was demonstrated based on the Reverse Phase Protein Array (RPPA) and RNA-sequencing profiles of ovarian cancer patients from The Cancer Genome Atlas (TCGA). The algorithm began by clustering patients using immune-related gene sets, which allowed us to identify immune-related proteins of interest. Next, a multi-stage process involving LASSO and Cox regression was employed to distill a prognostic signature encompassing five immune-related proteins. Based on the signature, we subsequently calculated the risk score for each patient and evaluated its prognostic performance by comparing this model with conventional clinicopathological characteristics. RESULTS We developed and validated a protein-based prognostic signature in a cohort of 377 ovarian cancer patients. The risk signature outperformed conventional clinicopathological factors, such as age, grade, stage, microsatellite instability (MSI), and homologous recombination deficiency (HRD) status, in terms of prognoses. Patients in the high-risk group had significantly unfavorable overall survival (p < 0.001). Moreover, our signature effectively stratified patients into subgroups with distinct immune landscapes. The high-risk group exhibited higher levels of CD8 T-cell infiltration and a potentially greater proportion of immunotherapy responders. The co-activation of the TGF-β pathway and cancer-associated fibroblasts could impair the ability of cytotoxic T cells to eliminate cancer cells, leading to poor outcomes in the high-risk group. CONCLUSIONS The protein-based signature not only aids in evaluating the prognosis but also provides valuable insights into the tumor immune microenvironments in ovarian cancer. Together our findings highlight the importance of a thorough understanding of the immunosuppressive tumor microenvironment in ovarian cancer to guide the development of more effective immunotherapies.
Collapse
Affiliation(s)
- Shuo-Fu Chen
- Department of Heavy Particles & Radiation Oncology, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Liang-Yun Wang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yi-Sian Lin
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cho-Yi Chen
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
2
|
Evans ET, Page EF, Choi AS, Shonibare Z, Kahn AG, Arend RC, Mythreye K. Activin levels correlate with lymphocytic infiltration in epithelial ovarian cancer. Cancer Med 2024; 13:e7368. [PMID: 39248018 PMCID: PMC11381957 DOI: 10.1002/cam4.7368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 09/10/2024] Open
Abstract
OBJECTIVE The TGF-β superfamily member activin, a dimer of the gene products of INHBA and/or INHBB, has been implicated in immune cell maturation and recruitment, but its immune impact within epithelial ovarian cancer (EOC) is not well characterized. We sought to explore differences in activin (INHBA/ Inhibin-βA and INHBB/ Inhibin-βB) between malignant and ovarian tissues at the RNA and protein level and assess the relationship between activin and immune cells in EOC. METHODS Publicly available RNA sequencing data were accessed from GEO (#GSE143897) with normalization and quantification performed via DESeq2. Immune gene expression profile was further explored within the TCGA-OV cohort derived from The Cancer Genome Atlas (TCGA). Immunohistochemical analysis was performed to evaluate activin A and T-cell markers CD8 and FoxP3 at the protein level. ELISA to activin-A was used to assess levels in the ascites of advanced EOC patients. Kaplan-Meier curves were generated to visualize survival outcomes. RESULTS Gene expression levels of components of the activin signaling pathway were elevated within EOC when compared to a benign cohort, with differences in activin type I/II receptor gene profiles identified. Additionally, INHBA gene expression was linked to lymphocytic immune markers in EOC samples. Immunohistochemistry analysis revealed a positive correlation of CD8 and FOXP3 staining with activin A at the protein level in both primary and metastatic epithelial ovarian cancer samples. Furthermore, Activin-A (inhibin-βA) is significantly elevated in EOC patient ascites. CONCLUSION INHBA expression is elevated within EOC, correlating with worse survival, with activin protein levels correlating with specific immune infiltration. Our findings suggest that activin-A may play a role in suppressing anti-tumor immunity in EOC, highlighting its potential as a therapeutic target.
Collapse
MESH Headings
- Humans
- Female
- Carcinoma, Ovarian Epithelial/pathology
- Carcinoma, Ovarian Epithelial/immunology
- Carcinoma, Ovarian Epithelial/metabolism
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/mortality
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/mortality
- Ovarian Neoplasms/genetics
- Inhibin-beta Subunits/genetics
- Inhibin-beta Subunits/metabolism
- Activins/metabolism
- Activins/genetics
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Middle Aged
- Gene Expression Regulation, Neoplastic
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Forkhead Transcription Factors/metabolism
- Forkhead Transcription Factors/genetics
Collapse
Affiliation(s)
- Elizabeth T Evans
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, Alabama, USA
| | - Emily F Page
- Department of Pathology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Alex Seok Choi
- Department of Pathology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Zainab Shonibare
- Department of Pathology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Andrea G Kahn
- Department of Pathology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Rebecca C Arend
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, Alabama, USA
| | - Karthikeyan Mythreye
- Department of Pathology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Ulevicius J, Jasukaitiene A, Bartkeviciene A, Dambrauskas Z, Gulbinas A, Urboniene D, Paskauskas S. Preoperative Immune Cell Dysregulation Accompanies Ovarian Cancer Patients into the Postoperative Period. Int J Mol Sci 2024; 25:7087. [PMID: 39000195 PMCID: PMC11240929 DOI: 10.3390/ijms25137087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Ovarian cancer (OC) poses a significant global health challenge with high mortality rates, emphasizing the need for improved treatment strategies. The immune system's role in OC progression and treatment response is increasingly recognized, particularly regarding peripheral blood mononuclear cells (PBMCs) and cytokine production. This study aimed to investigate PBMC subpopulations (T and B lymphocytes, natural killer cells, monocytes) and cytokine production, specifically interleukin-1 beta (IL-1β), interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-10 (IL-10), interleukin-12 (IL-12), and tumor necrosis factor alpha (TNFα), in monocytes of OC patients both preoperatively and during the early postoperative period. Thirteen OC patients and 23 controls were enrolled. Preoperatively, OC patients exhibited changes in PBMC subpopulations, including decreased cytotoxic T cells, increased M2 monocytes, and the disbalance of monocyte cytokine production. These alterations persisted after surgery with subtle additional changes observed in PBMC subpopulations and cytokine expression in monocytes. Considering the pivotal role of these altered cells and cytokines in OC progression, our findings suggest that OC patients experience an enhanced pro-tumorigenic environment, which persists into the early postoperative period. These findings highlight the impact of surgery on the complex interaction between the immune system and OC progression. Further investigation is needed to clarify the underlying mechanisms during this early postoperative period, which may hold potential for interventions aimed at improving OC management.
Collapse
Affiliation(s)
- Jonas Ulevicius
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania
| | - Aldona Jasukaitiene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania
| | - Arenida Bartkeviciene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania
| | - Zilvinas Dambrauskas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania
| | - Antanas Gulbinas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania
| | - Daiva Urboniene
- Department of Laboratory Medicine, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania
| | - Saulius Paskauskas
- Department of Obstetrics and Gynecology, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania
| |
Collapse
|
4
|
Chai C, Liang L, Mikkelsen NS, Wang W, Zhao W, Sun C, Bak RO, Li H, Lin L, Wang F, Luo Y. Single-cell transcriptome analysis of epithelial, immune, and stromal signatures and interactions in human ovarian cancer. Commun Biol 2024; 7:131. [PMID: 38278958 PMCID: PMC10817929 DOI: 10.1038/s42003-024-05826-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
A comprehensive investigation of ovarian cancer (OC) progression at the single-cell level is crucial for enhancing our understanding of the disease, as well as for the development of better diagnoses and treatments. Here, over half a million single-cell transcriptome data were collected from 84 OC patients across all clinical stages. Through integrative analysis, we identified heterogeneous epithelial-immune-stromal cellular compartments and their interactions in the OC microenvironment. The epithelial cells displayed clinical subtype features with functional variance. A significant increase in distinct T cell subtypes was identified including Tregs and CD8+ exhausted T cells from stage IC2. Additionally, we discovered antigen-presenting cancer-associated fibroblasts (CAFs), with myofibroblastic CAFs (myCAFs) exhibiting enriched extracellular matrix (ECM) functionality linked to tumor progression at stage IC2. Furthermore, the NECTIN2-TIGIT ligand-receptor pair was identified to mediate T cells communicating with epithelial, fibroblast, endothelial, and other cell types. Knock-out of NECTIN2 using CRISPR/Cas9 inhibited ovarian cancer cell (SKOV3) proliferation, and increased T cell proliferation when co-cultured. These findings shed light on the cellular compartments and functional aspects of OC, providing insights into the molecular mechanisms underlying stage IC2 and potential therapeutic strategies for OC.
Collapse
Affiliation(s)
- Chaochao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
| | - Langchao Liang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
| | | | - Wei Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wandong Zhao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China
| | - Chengcheng Sun
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Hanbo Li
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Fei Wang
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China.
- BGI Research, Shenzhen, 518083, China.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China.
- BGI Research, Shenzhen, 518083, China.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
5
|
Nersesian S, Arseneau RJ, Mejia JP, Lee SN, Westhaver LP, Griffiths NW, Grantham SR, Meunier L, Communal L, Mukherjee A, Mes-Masson AM, Arnason T, Nelson BH, Boudreau JE. Improved overall survival in patients with high-grade serous ovarian cancer is associated with CD16a+ immunologic neighborhoods containing NK cells, T cells and macrophages. Front Immunol 2024; 14:1307873. [PMID: 38318505 PMCID: PMC10838965 DOI: 10.3389/fimmu.2023.1307873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024] Open
Abstract
Background For patients with high grade serous carcinoma of the ovary (HGSC), survival rates have remained static for the last half century. Despite the presence of tumor mutations and infiltration of immune cells, existing immunotherapies have achieved little success against HGSC. These observations highlight a gap in the understanding of how the immune system functions and interacts within HGSC tumors. Methods We analyzed duplicate core samples from 939 patients with HGSC to understand patterns of immune cell infiltration, localization, and associations with clinical features. We used high-parameter immunohistochemical/Opal multiplex, digital pathology, computational biology, and multivariate analysis to identify immune cell subsets and their associations with HGSC tumors. Results We defined six patterns of cellular infiltration by spatially restricted unsupervised clustering of cell subsets. Each pattern was represented to some extent in most patient samples, but their specific distributions differed. Overall (OS) and progression-free survival (PFS) corresponded with higher infiltration of CD16a+ cells, and their co-localization with macrophages, T cells, NK cells, in one of six cellular neighborhoods that we defined with our spatial assessment. Conclusions Immune cell neighborhoods containing CD16a+ cells are associated with improved OS and PFS for patients with HGSC. Patterns of immunologic neighborhoods differentiate patient outcomes, and could inform future, more precise approaches to treatment.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Riley J. Arseneau
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Jorge P. Mejia
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | | | | | - Liliane Meunier
- Centre de recherche du Centre hospitalier de l’Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
| | - Laudine Communal
- Centre de recherche du Centre hospitalier de l’Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
| | | | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l’Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Thomas Arnason
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Pathology & Laboratory Medicine, QEII Health Sciences Centre, Nova Scotia Health (Central Zone), Halifax, NS, Canada
| | - Brad H. Nelson
- Deeley Research Centre, British Columbia Cancer Research Institute, Victoria, BC, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
6
|
Yang X, Li P, Zhuang J, Wu Y, Qu Z, Wu W, Wei Q. Identification of Molecular Targets of Bile Acids Acting on Colorectal Cancer and Their Correlation with Immunity. Dig Dis Sci 2024; 69:123-134. [PMID: 37917212 DOI: 10.1007/s10620-023-08032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/02/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Bile acids (BAs) are closely related to the occurrence and development of colorectal cancer (CRC), but the specific mechanism is still unclear. AIMS To identify potential targets related to BAs in CRC and analyze the correlation with immunity. METHODS The expression of BAs and CRC-related genes in TCGA was studied and screened using KEGG. GSE71187 was used for external validation of differentially expressed genes. Immunofluorescence, immunohistochemistry, and enzymatic cycling assays were used to detect the expression levels of the differentially expressed genes ki67 and BAs. Weighted gene coexpression network analysis (WGCNA) was used to identify genes associated with differential gene expression and immunity. The Cibersort algorithm was used to detect the infiltration of 22 kinds of immune cells in cancer tissues. The PPI network and ceRNA network were constructed to reveal the possible molecular mechanisms behind tumorigenesis. RESULTS The BA-related gene UGT2A3 is positively correlated with good prognoses in CRC. The expression level of UGT2A3 was negatively related to the BA level and positively related to the Ki67 proliferation index. The expression level of UGT2A3 was higher in the moderately differentiation and advanced stage (stage IV) of CRC. In addition, the expression level of UGT2A3 is correlated with CD8+ T cells. A PPI network related to UGT2A3 and T-cell immune-related genes was constructed. A ceRNA network containing 32 miRNA‒mRNA and 40 miRNA‒lncRNA regulatory pairs was constructed. CONCLUSION UGT2A3 is a potential molecular target of bile acids in the regulation of CRC and is related to T-cell immunity.
Collapse
Affiliation(s)
- Xi Yang
- Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, People's Republic of China
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
- Huzhou Central Hospital, Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ping Li
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhuang
- Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
- Huzhou Central Hospital, Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yinhang Wu
- Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
- Huzhou Central Hospital, Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhanbo Qu
- Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
- Huzhou Central Hospital, Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Wu
- Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
- Huzhou Central Hospital, Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qichun Wei
- Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, People's Republic of China.
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Hathaway CA, Townsend MK, Conejo-Garcia JR, Fridley BL, Moran Segura C, Nguyen JV, Armaiz-Pena GN, Sasamoto N, Saeed-Vafa D, Terry KL, Kubzansky LD, Tworoger SS. The relationship of lifetime history of depression on the ovarian tumor immune microenvironment. Brain Behav Immun 2023; 114:52-60. [PMID: 37557966 PMCID: PMC10592154 DOI: 10.1016/j.bbi.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Depression is associated with a higher ovarian cancer risk. Prior work suggests that depression can lead to systemic immune suppression, which could potentially alter the anti-tumor immune response. METHODS We evaluated the association of pre-diagnosis depression with features of the anti-tumor immune response, including T and B cells and immunoglobulins, among women with ovarian tumor tissue collected in three studies, the Nurses' Health Study (NHS; n = 237), NHSII (n = 137) and New England Case-Control Study (NECC; n = 215). Women reporting depressive symptoms above a clinically relevant cut-point, antidepressant use, or physician diagnosis of depression at any time prior to diagnosis of ovarian cancer were considered to have pre-diagnosis depression. Multiplex immunofluorescence was performed on tumor tissue microarrays to measure immune cell infiltration. In pooled analyses, we estimated odds ratios (OR) and 95% confidence intervals (CI) for the positivity of tumor immune cells using a beta-binomial model comparing those with and without depression. We used Bonferroni corrections to adjust for multiple comparisons. RESULTS We observed no statistically significant association between depression status and any immune markers at the Bonferroni corrected p-value of 0.0045; however, several immune markers were significant at a nominal p-value of 0.05. Specifically, there were increased odds of having recently activated cytotoxic (CD3+CD8+CD69+) and exhausted-like T cells (CD3+Lag3+) in tumors of women with vs. without depression (OR = 1.36, 95 %CI = 1.09-1.69 and OR = 1.24, 95 %CI = 1.01-1.53, respectively). Associations were comparable when considering high grade serous tumors only (comparable ORs = 1.33, 95 %CI = 1.05-1.69 and OR = 1.25, 95 %CI = 0.99-1.58, respectively). There were decreased odds of having tumor infiltrating plasma cells (CD138+) in women with vs. without depression (OR = 0.54, 95 %CI = 0.33-0.90), which was similar among high grade serous carcinomas, although not statistically significant. Depression was also related to decreased odds of having naïve and memory B cells (CD20+: OR = 0.54, 95 %CI = 0.30-0.98) and increased odds of IgG (OR = 1.22, 95 %CI = 0.97-1.53) in high grade serous carcinomas. CONCLUSION Our results provide suggestive evidence that depression may influence ovarian cancer outcomes through changes in the tumor immune microenvironment, including increasing T cell activation and exhaustion and reducing antibody-producing B cells. Further studies with clinical measures of depression and larger samples are needed to confirm these results.
Collapse
Affiliation(s)
| | - Mary K Townsend
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Brooke L Fridley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Carlos Moran Segura
- Advanced Analytical and Digital Laboratory, Moffitt Cancer Center, Tampa, FL, USA
| | - Jonathan V Nguyen
- Advanced Analytical and Digital Laboratory, Moffitt Cancer Center, Tampa, FL, USA
| | - Guillermo N Armaiz-Pena
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Ponce Health Sciences University, Ponce, PR, USA
| | - Naoko Sasamoto
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Daryoush Saeed-Vafa
- Advanced Analytical and Digital Laboratory, Moffitt Cancer Center, Tampa, FL, USA; Department of Anatomic Pathology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kathryn L Terry
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Laura D Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shelley S Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
8
|
Interactions between Platelets and Tumor Microenvironment Components in Ovarian Cancer and Their Implications for Treatment and Clinical Outcomes. Cancers (Basel) 2023; 15:cancers15041282. [PMID: 36831623 PMCID: PMC9953912 DOI: 10.3390/cancers15041282] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Platelets, the primary operatives of hemostasis that contribute to blood coagulation and wound healing after blood vessel injury, are also involved in pathological conditions, including cancer. Malignancy-associated thrombosis is common in ovarian cancer patients and is associated with poor clinical outcomes. Platelets extravasate into the tumor microenvironment in ovarian cancer and interact with cancer cells and non-cancerous elements. Ovarian cancer cells also activate platelets. The communication between activated platelets, cancer cells, and the tumor microenvironment is via various platelet membrane proteins or mediators released through degranulation or the secretion of microvesicles from platelets. These interactions trigger signaling cascades in tumors that promote ovarian cancer progression, metastasis, and neoangiogenesis. This review discusses how interactions between platelets, cancer cells, cancer stem cells, stromal cells, and the extracellular matrix in the tumor microenvironment influence ovarian cancer progression. It also presents novel potential therapeutic approaches toward this gynecological cancer.
Collapse
|
9
|
Gomez S, Cox OL, Walker RR, Rentia U, Hadley M, Arthofer E, Diab N, Grundy EE, Kanholm T, McDonald JI, Kobyra J, Palmer E, Noonepalle S, Villagra A, Leitenberg D, Bollard CM, Saunthararajah Y, Chiappinelli KB. Inhibiting DNA methylation and RNA editing upregulates immunogenic RNA to transform the tumor microenvironment and prolong survival in ovarian cancer. J Immunother Cancer 2022; 10:jitc-2022-004974. [PMID: 36343976 PMCID: PMC9644370 DOI: 10.1136/jitc-2022-004974] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Novel therapies are urgently needed for ovarian cancer (OC), the fifth deadliest cancer in women. Preclinical work has shown that DNA methyltransferase inhibitors (DNMTis) can reverse the immunosuppressive tumor microenvironment in OC. Inhibiting DNA methyltransferases activate transcription of double-stranded (ds)RNA, including transposable elements. These dsRNAs activate sensors in the cytoplasm and trigger type I interferon (IFN) signaling, recruiting host immune cells to kill the tumor cells. Adenosine deaminase 1 (ADAR1) is induced by IFN signaling and edits mammalian dsRNA with an A-to-I nucleotide change, which is read as an A-to-G change in sequencing data. These edited dsRNAs cannot be sensed by dsRNA sensors, and thus ADAR1 inhibits the type I IFN response in a negative feedback loop. We hypothesized that decreasing ADAR1 editing would enhance the DNMTi-induced immune response. METHODS Human OC cell lines were treated in vitro with DNMTi and then RNA-sequenced to measure RNA editing. Adar1 was stably knocked down in ID8 Trp53-/- mouse OC cells. Control cells (shGFP) or shAdar1 cells were tested with mock or DNMTi treatment. Tumor-infiltrating immune cells were immunophenotyped using flow cytometry and cell culture supernatants were analyzed for secreted chemokines/cytokines. Mice were injected with syngeneic shAdar1 ID8 Trp53-/- cells and treated with tetrahydrouridine/DNMTi while given anti-interferon alpha and beta receptor 1, anti-CD8, or anti-NK1.1 antibodies every 3 days. RESULTS We show that ADAR1 edits transposable elements in human OC cell lines after DNMTi treatment in vitro. Combining ADAR1 knockdown with DNMTi significantly increases pro-inflammatory cytokine/chemokine production and sensitivity to IFN-β compared with either perturbation alone. Furthermore, DNMTi treatment and Adar1 loss reduces tumor burden and prolongs survival in an immunocompetent mouse model of OC. Combining Adar1 loss and DNMTi elicited the most robust antitumor response and transformed the immune microenvironment with increased recruitment and activation of CD8+ T cells. CONCLUSION In summary, we showed that the survival benefit from DNMTi plus ADAR1 inhibition is dependent on type I IFN signaling. Thus, epigenetically inducing transposable element transcription combined with inhibition of RNA editing is a novel therapeutic strategy to reverse immune evasion in OC, a disease that does not respond to current immunotherapies.
Collapse
Affiliation(s)
- Stephanie Gomez
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Olivia L Cox
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Reddick R Walker
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Uzma Rentia
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Melissa Hadley
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Elisa Arthofer
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Noor Diab
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Erin E Grundy
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Tomas Kanholm
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - James I McDonald
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Julie Kobyra
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Erica Palmer
- Department of Biochemistry, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Satish Noonepalle
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Alejandro Villagra
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - David Leitenberg
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA,Department of Pediatrics, Division of Pathology and Laboratory Medicine, Children's National Hospital, Washington, District of Columbia, USA
| | - Catherine M Bollard
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA,Department of Pediatrics, Children's National Hospital, Washington, District of Columbia, USA
| | - Yogen Saunthararajah
- Department of Hematology and Medical Oncology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
10
|
Immune Tumor Microenvironment in Ovarian Cancer Ascites. Int J Mol Sci 2022; 23:ijms231810692. [PMID: 36142615 PMCID: PMC9504085 DOI: 10.3390/ijms231810692] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer (OC) has a specific type of metastasis, via transcoelomic, and most of the patients are diagnosed at advanced stages with multiple tumors spread within the peritoneal cavity. The role of Malignant Ascites (MA) is to serve as a transporter of tumor cells from the primary location to the peritoneal wall or to the surface of the peritoneal organs. MA comprise cellular components with tumor and non-tumor cells and acellular components, creating a unique microenvironment capable of modifying the tumor behavior. These microenvironment factors influence tumor cell proliferation, progression, chemoresistance, and immune evasion, suggesting that MA play an active role in OC progression. Tumor cells induce a complex immune suppression that neutralizes antitumor immunity, leading to disease progression and treatment failure, provoking a tumor-promoting environment. In this review, we will focus on the High-Grade Serous Carcinoma (HGSC) microenvironment with special attention to the tumor microenvironment immunology.
Collapse
|
11
|
Liang ZQ, He RQ, Luo JY, Huang ZG, Li J, Zhong LY, Chen JH, Huang SN, Shi L, Wei KL, Zeng JH, Zeng JJ, Chen G. Downregulated Dual-Specificity Protein Phosphatase 1 in Ovarian Carcinoma: A Comprehensive Study With Multiple Methods. Pathol Oncol Res 2022; 28:1610404. [PMID: 35911442 PMCID: PMC9336223 DOI: 10.3389/pore.2022.1610404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022]
Abstract
Introduction: We aimed to explore the abnormal expression of dual-specificity protein phosphatase 1 (DUSP1) and its latent molecular mechanisms in ovarian carcinoma (OVCA). Materials and Methods: Two clinical cohorts collected from two different hospitals were used to evaluate the expression of DUSP1 protein in OVCA tissues. RNA-sequencing and microarray datasets were utilised to verify DUSP1 expression at mRNA levels in both OVCA tissues and in the peripheral blood of OVCA patients. Furthermore, an integrated calculation was performed to pool the standard mean difference (SMD) from each cohort in order to comprehensively assess the expression of DUSP1 in OVCA. Furthermore, we examined the relationship among DUSP1, tumour microenvironment (TME), and chemotherapy resistance in OVCA. Moreover, we used pathway enrichment analysis to explore the underlying mechanisms of DUSP1 in OVCA. Results: A pooled SMD of −1.19 (95% CI [−2.00, −0.38], p = 0.004) with 1,240 samples revealed that DUSP1 was downregulated in OVCA at both mRNA and protein levels. The area under the receiver operating characteristic curve of 0.9235 indicated the downregulated DUSP1 in peripheral blood may have a non-invasive diagnostic value in OVCA. Through six algorithms, we identified that DUSP1 may related to tumour-infiltrating T cells and cancer associated fibroblasts (CAFs) in OVCA. Pathway enrichment demonstrated that DUSP1 might participate in the mitogen-activated protein kinase (MAPK) signalling pathway. Furthermore, DUSP1 may have relations with chemotherapy resistance, and a favourable combining affinity was observed in the paclitaxel-DUSP1 docking model. Conclusion: DUSP1 was downregulated in OVCA, and this decreasing trend may affect the infiltration of CAFs. Finally, DUSP1 may have a targeting relation with paclitaxel and participate in MAPK signaling pathways.
Collapse
Affiliation(s)
- Zi-Qian Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jia-Yuan Luo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jie Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lu-Yang Zhong
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun-Hong Chen
- Department of Pathology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lin Shi
- Department of Pathology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kang-Lai Wei
- Department of Pathology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiang-Hui Zeng
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People’s Hospital, Nanning, China
| | - Jing-Jing Zeng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Gang Chen,
| |
Collapse
|
12
|
Li H, Zheng X, Gao J, Leung KS, Wong MH, Yang S, Liu Y, Dong M, Bai H, Ye X, Cheng L. Whole transcriptome analysis reveals non-coding RNA's competing endogenous gene pairs as novel form of motifs in serous ovarian cancer. Comput Biol Med 2022; 148:105881. [DOI: 10.1016/j.compbiomed.2022.105881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/30/2022] [Accepted: 07/16/2022] [Indexed: 11/03/2022]
|
13
|
Knapik LO, Paresh S, Nabi D, Brayboy LM. The Role of T Cells in Ovarian Physiology and Infertility. Front Cell Dev Biol 2022; 10:713650. [PMID: 35557956 PMCID: PMC9086286 DOI: 10.3389/fcell.2022.713650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Infertility affects one in six couples worldwide, with more than 48 million couples affected internationally. The prevalence of infertility is increasing which is thought to be attributed to delayed child-bearing due to socioeconomic factors. Since women are more prone to autoimmune diseases, we sought to describe the correlation between ovarian-mediated infertility and autoimmunity, and more specifically, the role of T cells in infertility. T cells prevent autoimmune diseases and allow maternal immune tolerance of the semi-allogeneic fetus during pregnancy. However, the role of T cells in ovarian physiology has yet to be fully understood.
Collapse
Affiliation(s)
| | | | - Dalileh Nabi
- Department of Neuropediatrics Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lynae M. Brayboy
- Department of Neuropediatrics Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Reproductive Biology, Bedford Research Foundation, Bedford, MA, United States
| |
Collapse
|
14
|
Stur E, Corvigno S, Xu M, Chen K, Tan Y, Lee S, Liu J, Ricco E, Kraushaar D, Castro P, Zhang J, Sood AK. Spatially resolved transcriptomics of high-grade serous ovarian carcinoma. iScience 2022; 25:103923. [PMID: 35252817 PMCID: PMC8891954 DOI: 10.1016/j.isci.2022.103923] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/23/2021] [Accepted: 02/10/2022] [Indexed: 01/13/2023] Open
Abstract
Bulk and single-cell RNA sequencing do not provide full characterization of tissue spatial diversity in cancer samples, and currently available in situ techniques (multiplex immunohistochemistry and imaging mass cytometry) allow for only limited analysis of a small number of targets. The current study represents the first comprehensive approach to spatial transcriptomics of high-grade serous ovarian carcinoma using intact tumor tissue. We selected a small cohort of patients with highly annotated high-grade serous ovarian carcinoma, categorized them by response to neoadjuvant chemotherapy (poor or excellent), and analyzed pre-treatment tumor tissue specimens. Our study uncovered extensive differences in tumor composition between the poor responders and excellent responders to chemotherapy, related to cell cluster organization and localization. This in-depth characterization of high-grade serous ovarian carcinoma tumor tissue from poor and excellent responders showed that spatial interactions between cell clusters may influence chemo-responsiveness more than cluster composition alone.
Collapse
Affiliation(s)
- Elaine Stur
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77054, USA
| | - Sara Corvigno
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77054, USA
| | - Mingchu Xu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yukun Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Sanghoon Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Emily Ricco
- Genomic and RNA Profiling Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel Kraushaar
- Genomic and RNA Profiling Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patricia Castro
- Pathology and Histology Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77054, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77054, USA
| |
Collapse
|
15
|
Shen X, Gu X, Ma R, Li X, Wang J. Identification of the Immune Signatures for Ovarian Cancer Based on the Tumor Immune Microenvironment Genes. Front Cell Dev Biol 2022; 10:772701. [PMID: 35372348 PMCID: PMC8974491 DOI: 10.3389/fcell.2022.772701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/02/2022] [Indexed: 11/21/2022] Open
Abstract
Ovarian cancer (OV) is a deadly gynecological cancer. The tumor immune microenvironment (TIME) plays a pivotal role in OV development. However, the TIME of OV is not fully known. Therefore, we aimed to provide a comprehensive network of the TIME in OV. Gene expression data and clinical information from OV patients were obtained from the Cancer Genome Atlas Program (TCGA) database. Non-negative Matrix Factorization, NMFConsensus, and nearest template prediction algorithms were used to perform molecular clustering. The biological functions of differentially expressed genes (DEGs) were identified using Metascape, gene set enrichment analysis (GSEA), gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The copy number variations (CNVs), single nucleotide polymorphisms (SNPs) and tumor mutation burden were analyzed using Gistic 2.0, R package maftools, and TCGA mutations, respectively. Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data and CIBERSORT were utilized to elucidate the TIME. Moreover, external data from the International Cancer Genome Consortium (ICGC) and ArrayExpress databases were used to validate the signature. All 361 samples from the TCGA OV dataset were classified into Immune Class and non-Immune Class with immune signatures. By comparing the two classes, we identified 740 DEGs that accumulated in immune-related, cancer-related, inflammation-related biological functions and pathways. There were significant differences in the CNVs between the Immune and non-Immune Classes. The Immune Class was further divided into immune-activated and immune-suppressed subtypes. There was no significant difference in the top 20 genes in somatic SNPs among the three groups. In addition, the immune-activated subtype had significantly increased proportions of CD4 memory resting T cells, T cells, M1 macrophages, and M2 macrophages than the other two groups. The qRT-PCR results indicated that the mRNA expression levels of RYR2, FAT3, MDN1 and RYR1 were significantly down-regulated in OV compared with normal tissues. Moreover, the signatures of the TIME were validated using ICGC cohort and the ArrayExpress cohort. Our study clustered the OV patients into an immune-activated subtype, immune-suppressed subtype, and non-Immune Class and provided potential clues for further research on the molecular mechanisms and immunotherapy strategies of OV.
Collapse
Affiliation(s)
- Xiaoyan Shen
- Department of Gynecology, Peking University People’s Hospital, Beijing, China
| | - Xiao Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ruiqiong Ma
- Department of Gynecology, Peking University People’s Hospital, Beijing, China
| | - Xiaoping Li
- Department of Gynecology, Peking University People’s Hospital, Beijing, China
| | - Jianliu Wang
- Department of Gynecology, Peking University People’s Hospital, Beijing, China
- *Correspondence: Jianliu Wang,
| |
Collapse
|
16
|
Li DF, Tulahong A, Uddin MN, Zhao H, Zhang H. Meta-analysis identifying epithelial-derived transcriptomes predicts poor clinical outcome and immune infiltrations in ovarian cancer. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:6527-6551. [PMID: 34517544 DOI: 10.3934/mbe.2021324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Previous studies revealed that the epithelial component is associated with the modulation of the ovarian tumor microenvironment (TME). However, the identification of key transcriptional signatures of laser capture microdissected human ovarian cancer epithelia remains lacking. METHODS We identified the differentially expressed transcriptional signatures of human ovarian cancer epithelia by meta-analysis of GSE14407, GSE2765, GSE38666, GSE40595, and GSE54388. Then we investigated the enrichment of KEGG pathways that are associated with epithelia-derived transcriptomes. Finally, we investigated the correlation of key epithelia-hub genes with the survival prognosis and immune infiltrations. Finally, we investigated the genetic alterations of key prognostic hub genes and their diagnostic efficacy in ovarian cancer epithelia. RESULTS We identified 1339 differentially expressed genes (DEGs) in ovarian cancer epithelia including 541upregulated and 798 downregulated genes. We identified 21 (such as E2F4, FOXM1, TFDP1, E2F1, and SIN3A) and 11 (such as JUN, DDX4, FOSL1, NOC2L, and HMGA1) master transcriptional regulators (MTRs) that are interacted with upregulated and the downregulated genes in ovarian tumor epithelium, respectively. The STRING-based analysis identified hub genes (such as CDK1, CCNB1, AURKA, CDC20, and CCNA2) in ovarian cancer epithelia. The significant clusters of identified hub genes are associated with the enrichment of KEGG pathways including cell cycle, DNA replication, cytokine-cytokine receptor interaction, pathways in cancer, and focal adhesion. The upregulation of SCNN1A and CDCA3 and the downregulation of SOX6 are correlated with a shorter survival prognosis in ovarian cancer (OV). The expression level of SOX6 is negatively correlated with immune score and positively correlated with tumor purity in OV. Moreover, SOX6 is negatively correlated with the infiltration of TILs, CD8+ T cells, CD4+ Regulatory T cells, cytolytic activity, T cell activation, pDC, neutrophils, and macrophages in OV. Also, SOX6 is negatively correlated with various immune markers including CD8A, PRF1, GZMA, GZMB, NKG7, CCL3, and CCL4, indicating the immune regulatory efficiency of SOX6 in the TME of OV. Furthermore, SCNN1A, CDCA3, and SOX6 genes are genetically altered in OV and the expression levels of SCNN1A and SOX6 genes showed diagnostic efficacy in ovarian cancer epithelia. CONCLUSIONS The identified ovarian cancer epithelial-derived key transcriptional signatures are significantly correlated with survival prognosis and immune infiltrations, and may provide new insight into the diagnosis and treatment of epithelial ovarian cancer.
Collapse
Affiliation(s)
- Dong-Feng Li
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Aisikeer Tulahong
- Department of Oncology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Md Nazim Uddin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Huan Zhao
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Hua Zhang
- Department of Oncology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| |
Collapse
|
17
|
Zhang G, Xu Q, Zhang X, Yang M, Wang Y, He M, Lu J, Liu H. Spatial cytotoxic and memory T cells in tumor predict superior survival outcomes in patients with high-grade serous ovarian cancer. Cancer Med 2021; 10:3905-3918. [PMID: 33955198 PMCID: PMC8209602 DOI: 10.1002/cam4.3942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/11/2021] [Accepted: 04/03/2021] [Indexed: 01/05/2023] Open
Abstract
Although the association between tumor‐infiltrating CD3+ T and CD8+ T cells and superior survival in high‐grade serous ovarian cancer (HGSOC) has been observed, the different spatial localization of tumor‐infiltrating lymphocytes (TILs) possesses heterogeneous effects. We performed localized measurements in 260 HGSOC from 2 independent cohorts represented in tissue microarray format to determine the localized expression pattern and clinical significance of CD3+ T, CD8+ T, and CD45RO+ cells in HGSOC. Different density of spatial localization of CD3+ T, CD8+ T, and CD45RO+ cells exhibited heterogeneous association with OS. The combination of the center of the tumor and invasive margin localized CD8+T cells (CD8CT&IM) with the same margin localized CD45RO (CD45ROCT&IM) was the most robust prognostic predictor. Immune score (IS) was constructed by integrating FIGO stage with CD8CT&IM and CD45ROIM&CT and had the best prognostic value in HGSOC. The low‐, intermediate‐, and high‐IS groups were observed in 44.7%, 41.6%, and 13.7% of patients, respectively. Low‐IS identified patients were at higher risk of death compared to high‐IS identified patients (HR = 12.426; 95% CI 5.317–29.039, p < 0.001); meanwhile, we evaluate the RMSTs over 10 years of follow‐up and obtained RMST values of 104.09 months (95% CI 96.31–111.87 months) in the high‐IS group, 75.26 months (95% CI 59.92–90.60 months) in the intermediate‐IS group, and 48.68 months (95%CI 38.82–58.54 months) in the low‐IS group. In general, spatial localization can modulate the clinical effects of TILs in HGSOC. Thus, the spatial expression of CD8 and CD45RO could aid clinicians to determine the follow‐up plan of patients with HGSOC.
Collapse
Affiliation(s)
- Guodong Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Qing Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Xiangyun Zhang
- Department of Gynecology, Suzhou Municipal Hospital, Suzhou, China
| | - Moran Yang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yiying Wang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Mengdi He
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Jiaqi Lu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Gynecology, Kashgar Prefecture Second People's Hospital, Kashi, China
| | - Haiou Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
18
|
Chaudhari S, Dey Pereira S, Asare-Warehene M, Naha R, Kabekkodu SP, Tsang BK, Satyamoorthy K. Comorbidities and inflammation associated with ovarian cancer and its influence on SARS-CoV-2 infection. J Ovarian Res 2021; 14:39. [PMID: 33632295 PMCID: PMC7906086 DOI: 10.1186/s13048-021-00787-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide is a major public health concern. Cancer patients are considered a vulnerable population to SARS-CoV-2 infection and may develop several COVID-19 symptoms. The heightened immunocompromised state, prolonged chronic pro-inflammatory milieu coupled with comorbid conditions are shared in both disease conditions and may influence patient outcome. Although ovarian cancer (OC) and COVID-19 are diseases of entirely different primary organs, both diseases share similar molecular and cellular characteristics in their microenvironment suggesting a potential cooperativity leading to poor outcome. In COVID-19 related cases, hospitalizations and deaths worldwide are lower in women than in males; however, comorbidities associated with OC may increase the COVID-19 risk in women. The women at the age of 50-60 years are at greater risk of developing OC as well as SARS-CoV-2 infection. Increased levels of gonadotropin and androgen, dysregulated renin-angiotensin-aldosterone system (RAAS), hyper-coagulation and chronic inflammation are common conditions observed among OC and severe cases of COVID-19. The upregulation of common inflammatory cytokines and chemokines such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-2, IL-6, IL-10, interferon-γ-inducible protein 10 (IP-10), granulocyte colony-stimulating factor (G-CSF), monocyte chemoattractant protein-1 (MCP-1), macrophage colony-stimulating factor (M-CSF), among others in the sera of COVID-19 and OC subjects suggests potentially similar mechanism(s) involved in the hyper-inflammatory condition observed in both disease states. Thus, it is conceivable that the pathogenesis of OC may significantly contribute to the potential infection by SARS-CoV-2. Our understanding of the influence and mechanisms of SARS-CoV-2 infection on OC is at an early stage and in this article, we review the underlying pathogenesis presented by various comorbidities of OC and correlate their influence on SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sima Chaudhari
- Department of Cell and Molecular Biology, Manipal School of Life Science, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Satyajit Dey Pereira
- Department of Cell and Molecular Biology, Manipal School of Life Science, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Meshach Asare-Warehene
- Chronic Disease Program, Ottawa Hospital Research Institute and Department of Obstetrics & Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Ritam Naha
- Department of Cell and Molecular Biology, Manipal School of Life Science, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Science, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Benjamin K Tsang
- Chronic Disease Program, Ottawa Hospital Research Institute and Department of Obstetrics & Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Science, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
19
|
Increased canonical NF-kappaB signaling specifically in macrophages is sufficient to limit tumor progression in syngeneic murine models of ovarian cancer. BMC Cancer 2020; 20:970. [PMID: 33028251 PMCID: PMC7542116 DOI: 10.1186/s12885-020-07450-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND New treatment options for ovarian cancer are urgently required. Tumor-associated macrophages (TAMs) are an attractive target for therapy; repolarizing TAMs from M2 (pro-tumor) to M1 (anti-tumor) phenotypes represents an important therapeutic goal. We have previously shown that upregulated NF-kappaB (NF-κB) signaling in macrophages promotes M1 polarization, but effects in the context of ovarian cancer are unknown. Therefore, we aimed to investigate the therapeutic potential of increasing macrophage NF-κB activity in immunocompetent mouse models of ovarian cancer. METHODS We have generated a transgenic mouse model, termed IKFM, which allows doxycycline-inducible overexpression of a constitutively active form of IKK2 (cIKK2) specifically within macrophages. The IKFM model was used to evaluate effects of increasing macrophage NF-κB activity in syngeneic murine TBR5 and ID8-Luc models of ovarian cancer in two temporal windows: 1) in established tumors, and 2) during tumor implantation and early tumor growth. Tumor weight, ascites volume, ascites supernatant and cells, and solid tumor were collected at sacrifice. Populations of macrophages and T cells within solid tumor and/or ascites were analyzed by immunofluorescent staining and qPCR, and soluble factors in ascitic fluid were analyzed by ELISA. Comparisons of control versus IKFM groups were performed by 2-tailed Mann-Whitney test, and a P-value < 0.05 was considered statistically significant. RESULTS Increased expression of the cIKK2 transgene in TAMs from IKFM mice was confirmed at the mRNA and protein levels. Tumors from IKFM mice, regardless of the timing of doxycycline (dox) administration, demonstrated greater necrosis and immune infiltration than control tumors. Analysis of IKFM ascites and tumors showed sustained shifts in macrophage populations away from the M2 and towards the anti-tumor M1 phenotype. There were also increased tumor-infiltrating CD3+/CD8+ T cells in IKFM mice, accompanied by higher levels of CXCL9, a T cell activating factor secreted by macrophages, in IKFM ascitic fluid. CONCLUSIONS In syngeneic ovarian cancer models, increased canonical NF-κB signaling in macrophages promoted anti-tumor TAM phenotypes and increased cytotoxic T cell infiltration, which was sufficient to limit tumor progression. This may present a novel translational approach for ovarian cancer treatment, with the potential to increase responses to T cell-directed therapy in future studies.
Collapse
|
20
|
Corrado G, Palluzzi E, Bottoni C, Pietragalla A, Salutari V, Ghizzoni V, Distefano M, Scambia G, Ferrandina G. New medical approaches in advanced ovarian cancer. Minerva Med 2019; 110:367-384. [PMID: 31124637 DOI: 10.23736/s0026-4806.19.06139-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ovarian cancer is the fifth leading cause of cancer death among women and the most lethal gynecologic malignancy. Most women with advanced epithelial ovarian cancer will experience many episodes of recurrent disease with progressively shorter disease-free intervals. For women whose disease continues to respond to platinum-based drugs, the disease can often be controlled for 5 years or more. Enormous progress has been made in the management of this disease, and new targeted treatments such as antiangiogenic drugs, poly(adenosine diphosphate-ribose) polymerase inhibitors, and immune checkpoint inhibitors offer potential for improved survival. A variety of combination strategies are being evaluated to leverage these agents. The objective of this review is to summarize results from clinical trials that tested cytotoxic drugs and target strategies for the treatment of ovarian cancer with particular attention to Phase III and ongoing trials.
Collapse
Affiliation(s)
- Giacomo Corrado
- Division of Gynecologic Oncology, Department of Women and Children's Health, A. Gemelli University Hospital and Institute for Research and Care, Rome, Italy -
| | - Eleonora Palluzzi
- Division of Gynecologic Oncology, Department of Women and Children's Health, A. Gemelli University Hospital and Institute for Research and Care, Rome, Italy
| | - Carolina Bottoni
- Division of Gynecologic Oncology, Department of Women and Children's Health, A. Gemelli University Hospital and Institute for Research and Care, Rome, Italy
| | - Antonella Pietragalla
- Division of Gynecologic Oncology, Department of Women and Children's Health, A. Gemelli University Hospital and Institute for Research and Care, Rome, Italy
| | - Vanda Salutari
- Division of Gynecologic Oncology, Department of Women and Children's Health, A. Gemelli University Hospital and Institute for Research and Care, Rome, Italy
| | - Viola Ghizzoni
- Division of Gynecologic Oncology, Department of Women and Children's Health, A. Gemelli University Hospital and Institute for Research and Care, Rome, Italy
| | - Mariagrazia Distefano
- Division of Gynecologic Oncology, Department of Women and Children's Health, A. Gemelli University Hospital and Institute for Research and Care, Rome, Italy
| | - Giovanni Scambia
- Division of Gynecologic Oncology, Department of Women and Children's Health, A. Gemelli University Hospital and Institute for Research and Care, Rome, Italy.,Division of Gynecologic Oncology, Sacred Heart Catholic University, Policlinico A. Gemelli Foundation, Rome, Italy
| | - Gabriella Ferrandina
- Division of Gynecologic Oncology, Department of Women and Children's Health, A. Gemelli University Hospital and Institute for Research and Care, Rome, Italy.,Division of Gynecologic Oncology, Sacred Heart Catholic University, Policlinico A. Gemelli Foundation, Rome, Italy
| |
Collapse
|