1
|
Devins KM, Young RH, Oliva E. Sex Cord-Stromal Tumors of the Ovary: An Update and Review. Part II - Pure Sex Cord and Sex Cord-Stromal Tumors. Adv Anat Pathol 2024; 31:231-250. [PMID: 38420747 DOI: 10.1097/pap.0000000000000436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
We review the time honored but still frequently challenging features of ovarian sex cord-stromal tumors and also emphasize new developments, including unusual morphologic appearances that, despite the relative rarity of many of the tumors, result in a disproportionate number of differential diagnostic problems, variant immunohistochemical profiles, and specific molecular and syndromic associations. These neoplasms are also of historical interest as current knowledge is still based in significant part to the contributions of 2 giants of gynecologic pathology, Dr Robert Meyer and Dr. Robert E. Scully. In part I, we reviewed the pure ovarian stromal tumors. Now, in part II, we present the major clinical, pathologic, and genomic features of pure sex cord and sex cord-stromal tumors.
Collapse
Affiliation(s)
- Kyle M Devins
- James Homer Wright Pathology Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
2
|
Trecourt A, Donzel M, Alsadoun N, Allias F, Devouassoux-Shisheboran M. Relevance of Molecular Pathology for the Diagnosis of Sex Cord-Stromal Tumors of the Ovary: A Narrative Review. Cancers (Basel) 2023; 15:5864. [PMID: 38136408 PMCID: PMC10741682 DOI: 10.3390/cancers15245864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Ovarian sex cord-stromal tumors (SCSTs) account for 8% of all primary ovarian neo-plasms. Accurate diagnosis is crucial since each subtype has a specific prognostic and treatment. Apart from fibrosarcomas, stromal tumors are benign while sex cord tumors may recur, sometimes with a significant time to relapse. Although the diagnosis based on morphology is straightforward, in some cases the distinction between stromal tumors and sex cord tumors may be tricky. Indeed, the immunophenotype is usually nonspecific between stromal tumors and sex cord tumors. Therefore, molecular pathology plays an important role in the diagnosis of such entities, with pathognomonic or recurrent alterations, such as FOXL2 variants in adult granulosa cell tumors. In addition, these neoplasms may be associated with genetic syndromes, such as Peutz-Jeghers syndrome for sex cord tumors with annular tubules, and DICER1 syndrome for Sertoli-Leydig cell tumors (SLCTs), for which the pathologist may be in the front line of syndromic suspicion. Molecular pathology of SCST is also relevant for patient prognosis and management. For instance, the DICER1 variant is associated with moderately to poorly differentiated SLCTS and a poorer prognosis. The present review summarizes the histomolecular criteria useful for the diagnosis of SCST, using recent molecular data from the literature.
Collapse
Affiliation(s)
- Alexis Trecourt
- Service de Pathologie Multi-Site—Site Sud, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69310 Lyon, France; (A.T.); (M.D.); (N.A.); (F.A.)
- UR 3738, Centre pour l’Innovation en Cancérologie de Lyon (CICLY), Université Claude Bernard Lyon 1, 69921 Lyon, France
| | - Marie Donzel
- Service de Pathologie Multi-Site—Site Sud, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69310 Lyon, France; (A.T.); (M.D.); (N.A.); (F.A.)
| | - Nadjla Alsadoun
- Service de Pathologie Multi-Site—Site Sud, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69310 Lyon, France; (A.T.); (M.D.); (N.A.); (F.A.)
| | - Fabienne Allias
- Service de Pathologie Multi-Site—Site Sud, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69310 Lyon, France; (A.T.); (M.D.); (N.A.); (F.A.)
| | - Mojgan Devouassoux-Shisheboran
- Service de Pathologie Multi-Site—Site Sud, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69310 Lyon, France; (A.T.); (M.D.); (N.A.); (F.A.)
- UR 3738, Centre pour l’Innovation en Cancérologie de Lyon (CICLY), Université Claude Bernard Lyon 1, 69921 Lyon, France
| |
Collapse
|
3
|
Mubeen A, Parra-Herran C. FOXL2: a gene central to ovarian function. J Clin Pathol 2023; 76:798-801. [PMID: 37798106 DOI: 10.1136/jcp-2023-208827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/07/2023]
Abstract
The FOXL2 (forkhead box L2) gene is located on chromosome 3 and encodes for forkhead box (FOX) family of transcription factors which play a critical role in various biological processes. Germline FOXL2 mutations have been identified in blepharophimosis/ptosis/epicanthus inversus syndrome. The somatic missense mutation in FOXL2 (FOXL2 C134W) is now known to be the defining molecular feature of adult-type granulosa cell tumour of the ovary, present in over 90% of cases of this tumour type. Immunohistochemistry for FOXL2 is used as a marker of sex cord-stromal differentiation. However, expression is not restricted to lesions harbouring FOXL2 mutations, and it is positive in a variety of sex cord-stromal proliferations other than adult-type granulosa cell tumour.
Collapse
Affiliation(s)
- Aysha Mubeen
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Carlos Parra-Herran
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Bai K, Chen X, Qi X, Zhang Y, Zou Y, Li J, Yu L, Li Y, Jiang J, Yang Y, Liu Y, Feng S, Bu H. Cerebrospinal fluid circulating tumour DNA genotyping and survival analysis in lung adenocarcinoma with leptomeningeal metastases. J Neurooncol 2023; 165:149-160. [PMID: 37897649 PMCID: PMC10638181 DOI: 10.1007/s11060-023-04471-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/30/2023]
Abstract
PURPOSE The prognosis of patients with leptomeningeal metastasis (LM) remains poor. Circulating tumour DNA (ctDNA) has been proven to be abundantly present in cerebrospinal fluid (CSF); hence, its clinical implication as a biomarker needs to be further verified. METHODS We conducted a retrospective study of 35 lung adenocarcinoma (LUAD) patients with LM, and matched CSF and plasma samples were collected from all patients. All paired samples underwent next-generation sequencing (NGS) of 139 lung cancer-associated genes. The clinical characteristics and genetic profiling of LM were analysed in association with survival prognosis. RESULTS LM showed genetic heterogeneity, in which CSF had a higher detection rate of ctDNA (P = 0.003), a higher median mutation count (P < 0.0001), a higher frequency of driver mutations (P < 0.01), and more copy number variation (CNV) alterations (P < 0.001) than plasma. The mutation frequencies of the EGFR, TP53, CDKN2A, MYC and CDKN2B genes were easier to detect in CSF than in LUAD tissue (P < 0.05), possibly reflecting the underlying mechanism of LM metastasis. CSF ctDNA is helpful for analysing the mechanism of EGFR-TKI resistance. In cohort 1, which comprised patients who received 1/2 EGFR-TKIs before the diagnosis of LM, TP53 and CDKN2A were the most common EGFR-independent resistant mutations. In cohort 2, comprising those who progressed after osimertinib and developed LM, 7 patients (43.75%) had EGFR CNV detected in CSF but not plasma. Furthermore, patient characteristics and various genes were included for interactive survival analysis. Patients with EGFR-mutated LUAD (P = 0.042) had a higher median OS, and CSF ctDNA mutation with TERT (P = 0.013) indicated a lower median OS. Last, we reported an LM case in which CSF ctDNA dynamic changes were well correlated with clinical treatment. CONCLUSIONS CSF ctDNA could provide a more comprehensive genetic landscape of LM, indicating the potential metastasis-related and EGFR-TKI resistance mechanisms of LM patients. In addition, genotyping of CSF combined with clinical outcomes can predict the prognosis of LUAD patients with LM.
Collapse
Affiliation(s)
- Kaixuan Bai
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Xin Chen
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- Department of Neurology, Xingtai People's Hospital, Xingtai, China
| | - Xuejiao Qi
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yueli Zou
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Jian Li
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- Department of General Practice, Hengshui People's Hospital, Hengshui, China
| | - Lili Yu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yuanyuan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Jiajia Jiang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yi Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yajing Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Shuanghao Feng
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Hui Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China.
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China.
- Neurological Laboratory of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
5
|
Abstract
This article focuses on the recent advances in ovarian sex cord-stromal tumors, predominantly in the setting of their molecular underpinnings. The integration of genetic information with morphologic and immunohistochemical findings in this rare subset of tumors is of clinical significance from refining the diagnostic and prognostic stratifications to genetic counseling.
Collapse
Affiliation(s)
- Zehra Ordulu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 1345 Center Drive, Box 100275, Gainesville, FL 32610, USA.
| |
Collapse
|
6
|
Zhang J, Zhang Y, Guo Y. Combination of clinical and MRI features in diagnosing ovarian granulosa cell tumor: A comparison with other ovarian sex cord-gonadal stromal tumors. Eur J Radiol 2023; 158:110593. [PMID: 36434968 DOI: 10.1016/j.ejrad.2022.110593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/09/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To evaluate the combination of magnetic resonance imaging (MRI) findings and clinical features in diagnosing ovarian granulosa cell tumor (OGCT) and comparing OGCTs with other ovarian sex cord-gonadal stromal tumors (OSGTs). METHODS Women who underwent MRI and were surgically confirmed with OSGTs between January 2015 and January 2022 were included in the study. Histology was used as a primary method of diagnosis. T1WI, T2WI, and DWI MR scans were performed for all patients. All MR images were reviewed by two radiologists. The clinic baseline characteristics of all patients were recorded. RESULTS A total of 58 patients were enrolled, with 21 OGCTs found in 20 patients and 39 other OSGTs found in 38 patients. In terms of clinical, the proportion of vaginal discharge/bleeding and menstrual abnormalities were significantly higher in OGCTs than in the control group. A multivariate analysis of the combined clinical MRI revealed that symptomatic, T2 signals of the solid component, Honeycomb-sign, Swiss cheese-sign, and ADC values were independent features for discriminating between OGCTs and other OSGTs. Clinical features, MRI features, and a combined model were established; the areas under the curve of the three models in predicting OGCTs and other OSGTs were 0.694, 0.852, and 0.927, respectively. The DeLong test showed that the combined model had the highest efficiency in predicting OGCTs (p < 0.05), which was significantly different from the AUC of the other two models (p < 0.05). CONCLUSIONS Combining clinic and MRI findings helps differentiate OGCTs from other OSGTs. These results help optimize clinical management and indicate that radiologists should focus on clinical information to help improve diagnostic accuracy.
Collapse
Affiliation(s)
- Jing Zhang
- Dept Imaging Ctr, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Dept Imaging Ctr, Northwest Women's and Children's Hospital, Xi'an, Shaanxi 710061, China
| | - Yi Zhang
- Dept Imaging Ctr, Northwest Women's and Children's Hospital, Xi'an, Shaanxi 710061, China
| | - Youmin Guo
- Dept Imaging Ctr, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
7
|
Dahoud W, Handler J, Parimi V, Meyer CF, Wethington SL, Eshleman JR, Vang R, Ronnett BM, Xing D. Adult Granulosa Cell Tumor With Sarcomatous Transformation: A Case Study With Emphasis on Molecular Alterations. Int J Gynecol Pathol 2022; 41:600-607. [PMID: 34856571 PMCID: PMC9167042 DOI: 10.1097/pgp.0000000000000845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adult granulosa cells tumors (AGCTs) are typically low-grade indolent tumors. On rare occasions, they undergo high-grade/sarcomatous transformation and behave aggressively. This transformation is postulated to occur as the result of acquired genetic alterations, some of which may be eligible for targeted therapy. Here we report a rare case of AGCT with sarcomatous transformation that harbored distinct molecular alterations from those typically seen with AGCTs supporting a molecularly driven approach to these malignancies. The patient is a 56-yr-old G3P3 woman with a history of multiple recurrences of ovarian AGCT for which the first diagnosis was made at the age of 25 when she was evaluated for infertility. The ovarian tumor displayed typical features of AGCT with low-grade, bland morphology. The first extraovarian spread of tumor involving the cul-de-sac was reported at the age of 39. After that, recurrences occurred every 2 to 3 yr with involvement of multiple anatomic sites and repeated surgical resections. At the age of 55 she developed a symptomatic recurrence in the pelvis and underwent resection of an isolated lesion (specimen 1) to no gross residual disease. Within 4 wk of resection she developed significant pelvic pain and imaging showed recurrence of the mass. Therefore, in 5 mo after the initial resection she underwent repeat excision of the lesion (specimen 2) and associated bowel. The sections from specimen 1 showed a biphasic morphology: a low-grade component with morphology and immunophenotype consistent with a typical AGCT and a high-grade spindle cell component with features consistent with a high-grade sarcoma. Specimen 2 featured a pure high-grade sarcoma characterized by coagulative tumor cell necrosis, readily recognizable mitoses, highly atypical cells with vesicular nuclei and prominent nucleoli. SF-1 positivity and the presence of FOXL2 C134W mutation in the sarcomatous component support the notion of transformation of typical AGCT. While detected TERT promoter C228T mutation may play a role in this process, we further identified genetic alterations affecting PI3K/AKT/mTOR pathway, including mutations in PIK3CA , PIK3R1 , AKT1 , and NF2 , which may also contribute to tumor progression/transformation. These findings provide rationale for molecular/pathway-based targeted therapy for patients with advanced AGCT.
Collapse
|
8
|
Update on Ovarian Sex Cord-Stromal Tumors. Surg Pathol Clin 2022; 15:235-258. [PMID: 35715160 DOI: 10.1016/j.path.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This article focuses on the recent advances in ovarian sex cord-stromal tumors, predominantly in the setting of their molecular underpinnings. The integration of genetic information with morphologic and immunohistochemical findings in this rare subset of tumors is of clinical significance from refining the diagnostic and prognostic stratifications to genetic counseling.
Collapse
|
9
|
Ni N, Fang X, Mullens DA, Cai JJ, Ivanov I, Bartholin L, Li Q. Transcriptomic Profiling of Gene Expression Associated with Granulosa Cell Tumor Development in a Mouse Model. Cancers (Basel) 2022; 14:2184. [PMID: 35565312 PMCID: PMC9105549 DOI: 10.3390/cancers14092184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/05/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian granulosa cell tumors (GCTs) are rare sex cord-stromal tumors, accounting for ~5% ovarian tumors. The etiology of GCTs remains poorly defined. Genetically engineered mouse models are potentially valuable for understanding the pathogenesis of GCTs. Mice harboring constitutively active TGFβ signaling (TGFBR1-CA) develop ovarian GCTs that phenocopy several hormonal and molecular characteristics of human GCTs. To determine molecular alterations in the ovary upon TGFβ signaling activation, we performed transcriptomic profiling of gene expression associated with GCT development using ovaries from 1-month-old TGFBR1-CA mice and age-matched controls. RNA-sequencing and bioinformatics analysis coupled with the validation of select target genes revealed dysregulations of multiple cellular events and signaling molecules/pathways. The differentially expressed genes are enriched not only for known GCT-related pathways and tumorigenic events but also for signaling events potentially mediated by neuroactive ligand-receptor interaction, relaxin signaling, insulin signaling, and complements in TGFBR1-CA ovaries. Additionally, a comparative analysis of our data in mice with genes dysregulated in human GCTs or granulosa cells overexpressing a mutant FOXL2, the genetic hallmark of adult GCTs, identified some common genes altered in both conditions. In summary, this study has revealed the molecular signature of ovarian GCTs in a mouse model that harbors the constitutive activation of TGFBR1. The findings may be further exploited to understand the pathogenesis of a class of poorly defined ovarian tumors.
Collapse
Affiliation(s)
- Nan Ni
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (N.N.); (X.F.); (J.J.C.)
| | - Xin Fang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (N.N.); (X.F.); (J.J.C.)
| | - Destiny A. Mullens
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (D.A.M.); (I.I.)
| | - James J. Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (N.N.); (X.F.); (J.J.C.)
| | - Ivan Ivanov
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (D.A.M.); (I.I.)
| | - Laurent Bartholin
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Lyon 1, F-69000 Lyon, France;
- Centre Léon Bérard, F-69008 Lyon, France
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (N.N.); (X.F.); (J.J.C.)
| |
Collapse
|
10
|
Togashi K, Yoneyama T, Sutoh Yoneyama M, Yamamoto H, Hatakeyama S, Yoneyama T, Hashimoto Y, Futagami M, Ohyama C. Renal metastasis of ovarian granulosa cell tumor. IJU Case Rep 2022; 5:186-190. [PMID: 35509773 PMCID: PMC9057734 DOI: 10.1002/iju5.12433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction We would like to present a rare case of metastatic renal tumor. Case presentation A 60‐year‐old woman presented to our department with a left renal tumor. She underwent a total hysterectomy and right adnexal resection for a stage IA ovarian granulosa cell tumor approximately 15 years ago, followed by left adnexal resection and postoperative chemotherapy with gemcitabine and paclitaxel 6 years ago. She received six courses of gemcitabine and carboplatin to treat a stage IC clear cell adenocarcinoma of the ovary. The patient was diagnosed with the left renal tumor and underwent a laparoscopic left nephrectomy. Immunostaining was positive for α‐inhibin and SF‐1 and showed FOXL2 402C→G (C134W) mutation. Finally, the patient was diagnosed with renal metastasis of a granulosa cell tumor. Conclusion To our knowledge, this is a very rare case of renal metastasis of a granulosa cell tumor with the FOXL2 mutation in an adult.
Collapse
Affiliation(s)
- Kyo Togashi
- Department of Urology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Tohru Yoneyama
- Department of Glycotechnology Center for Advanced Medical Research Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Mihoko Sutoh Yoneyama
- Department of Cancer Immunology and Cell Biology Oyokyo Kidney Research Institute Hirosaki Japan
| | - Hayato Yamamoto
- Department of Urology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Shingo Hatakeyama
- Department of Urology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Takahiro Yoneyama
- Department of Urology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Yasuhiro Hashimoto
- Department of Urology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Masayuki Futagami
- Department of Obstetrics and Gynecology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Chikara Ohyama
- Department of Urology Hirosaki University Graduate School of Medicine Hirosaki Japan
| |
Collapse
|