1
|
Chen J, Wu T, Yang Y. Sialylation-associated long non-coding RNA signature predicts the prognosis, tumor microenvironment, and immunotherapy and chemotherapy options in uterine corpus endometrial carcinoma. Cancer Cell Int 2024; 24:314. [PMID: 39261877 PMCID: PMC11391619 DOI: 10.1186/s12935-024-03486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 08/17/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Sialylation in uterine corpus endometrial carcinoma (UCEC) differs significantly from apoptotic and ferroptosis pathways. It plays a crucial role in cancer progression and immune response modulation. Exploring how sialylation affects tumor behavior and its link with long non-coding RNAs (lncRNAs) may provide new insights into UCEC prognosis and treatment. METHODS We obtained RNA transcriptome, clinical, and mutation data of UCEC samples from the TCGA database. Our approach involved developing a risk model based on the co-expression patterns of sialylation genes and lncRNAs. Prognostic lncRNAs were identified through Cox regression and further refined using LASSO analysis. To understand the biological functions and pathways of model-associated differentially expressed genes (MADEGs), we conducted enrichment analyses. We also assessed the immune infiltration status of MADEGs using eight different algorithms, which helped in evaluating the potential for immunotherapy. Additionally, we validated the expression of these lncRNAs in UCEC using cell lines and clinical samples. RESULTS We developed a UCEC risk model using five sialylation-related lncRNAs (AC004884.2, AC026202.2, LINC01579, LINC00942, SLC16A1-AS1). This model, confirmed through Cox analysis and clinical evaluation, effectively predicted patient outcomes. Survival data analysis across entire cohort, as well as within training and test groups, indicated better survival in low-risk UCEC patients. Enrichment analyses linked MADEGs to sialylation functions and cancer pathways. High-risk patients showed increased responsiveness to immune checkpoint inhibitors (ICIs), as indicated by immunological assessments. Subgroup C2 patients showed superior outcomes and a robust response to immunotherapy and chemotherapy. Notably, LINC01579, LINC00942, and SLC16A1-AS1 were significantly overexpressed in UCEC clinical tumor samples as well as in Ishikawa and HEC-1-B cell lines, compared to the normal groups. CONCLUSIONS This lncRNA signature associated with sialylation could guide prognosis, enhance the understanding of molecular mechanisms, and inform treatment strategies in UCEC. It highlights the potential for the use of ICIs and chemotherapy.
Collapse
Affiliation(s)
- Jun Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Wu
- Department of Cardiovasology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongwen Yang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, P. R. China.
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Jiang D, Yue H, Liang WT, Wu Z. Developmental endothelial locus 1: the present and future of an endogenous factor in vessels. Front Physiol 2024; 15:1347888. [PMID: 39206385 PMCID: PMC11350114 DOI: 10.3389/fphys.2024.1347888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Developmental Endothelial Locus-1 (DEL-1), also known as EGF-like repeat and discoidin I-like domain-3 (EDIL3), is increasingly recognized for its multifaceted roles in immunoregulation and vascular biology. DEL-1 is a protein that is mainly produced by endothelial cells. It interacts with various integrins to regulate the behavior of immune cells, such as preventing unnecessary recruitment and inflammation. DEL-1 also helps in resolving inflammation by promoting efferocytosis, which is the process of clearing apoptotic cells. Its potential as a therapeutic target in immune-mediated blood disorders, cardiovascular diseases, and cancer metastasis has been spotlighted due to its wide-ranging implications in vascular integrity and pathology. However, there are still unanswered questions about DEL-1's precise functions and mechanisms. This review provides a comprehensive examination of DEL-1's activity across different vascular contexts and explores its potential clinical applications. It underscores the need for further research to resolve existing controversies and establish the therapeutic viability of DEL-1 modulation.
Collapse
Affiliation(s)
| | | | - Wei-Tao Liang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhong Wu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Chambers L, Haight P, Chalif J, Mehra Y, Spakowicz D, Backes FJ, Cosgrove CM, O’Malley DM, Vargas R, Corr BR, Bae-Jump VL, Arend RC. Bridging the Gap from Bench to Bedside: A Call for In Vivo Preclinical Models to Advance Endometrial Cancer and Cervical Cancer Immuno-oncology Research. Clin Cancer Res 2024; 30:2905-2909. [PMID: 38662438 PMCID: PMC11250463 DOI: 10.1158/1078-0432.ccr-23-2570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/29/2023] [Accepted: 04/23/2024] [Indexed: 07/16/2024]
Abstract
Advanced-stage endometrial and cervical cancers are associated with poor outcomes despite contemporary advances in surgical techniques and therapeutics. Recent clinical trial results have led to a shift in the treatment paradigm for both malignancies, in which immunotherapy is now incorporated as the standard of care up front for most patients with advanced endometrial and cervical cancers as the standard of care. Impressive response rates have been observed, but unfortunately, a subset of patients do not benefit from immunotherapy, and survival remains poor. Continued preclinical research and clinical trial development are crucial for our understanding of resistance mechanisms to immunotherapy and maximization of therapeutic efficacy. In this setting, syngeneic models are preferred over xenograft models as they allow for the evaluation of the tumor-immune interaction in an immunocompetent host, most closely mimicking the tumor-immune interaction in patients with cancer. Unfortunately, significant disparities exist about syngeneic models in gynecologic malignancy, in which queries from multiple large bioscience companies confirm no commercial availability of endometrial or cervical cancer syngeneic cell lines. Published data exist about the recent development of several endometrial and cervical cancer syngeneic cell lines, warranting further investigation. Closing the disparity gap for preclinical models in endometrial and cervical cancers will support physician scientists, basic and translational researchers, and clinical trialists who are dedicated to improving outcomes for our patients with advanced disease and poor prognosis.
Collapse
Affiliation(s)
- Laura Chambers
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, James Hospital and Solove Research Institute
| | - Paulina Haight
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, James Hospital and Solove Research Institute
| | - Julia Chalif
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, James Hospital and Solove Research Institute
| | - Yogita Mehra
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Daniel Spakowicz
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Floor J. Backes
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, James Hospital and Solove Research Institute
| | - Casey M. Cosgrove
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, James Hospital and Solove Research Institute
| | - David M. O’Malley
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, James Hospital and Solove Research Institute
| | - Roberto Vargas
- Division of Gynecologic Oncology, The Cleveland Clinic Foundation, Cleveland, OH
| | - Bradley R. Corr
- Division of Gynecologic Oncology, University of Colorado, Denver, CO
| | - Victoria L. Bae-Jump
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C. Arend
- Department of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
4
|
Gonnella F, Konstantinidou F, Donato M, Gatta DMP, Peserico A, Barboni B, Stuppia L, Nothnick WB, Gatta V. The Molecular Link between Obesity and the Endometrial Environment: A Starting Point for Female Infertility. Int J Mol Sci 2024; 25:6855. [PMID: 38999965 PMCID: PMC11241599 DOI: 10.3390/ijms25136855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Female infertility constitutes a growing health problem in developing countries and could be associated with several possible causes including reproductive disorders, congenital malformations, infections and hormonal dysfunction. Nonetheless, a series of additional factors can also negatively impact female fertility and are represented by chronic exposure to environmental pollutants, stress, unhealthy lifestyle choices such as cigarette smoking and, among others, obesity. Excess weight is associated with several chronic diseases, and growing evidence demonstrates that it can compromise reproductive physiology due to its influence on endometrial gene expression and receptivity. Thus, the current review of the literature mainly focused on how obesity can impair uterine receptivity, mostly from a molecular point of view throughout the window of implantation (WOI) period at an endometrial level. It was also highlighted that an obesity-related increase in adipose tissue may lead to a modulation in the expression of multiple pathways, which could cause a hostile endometrial environment with a consequent negative impact on the uterine receptivity and the establishment of pregnancy. Thanks to the use of the endometrial receptivity assay (ERA), a specific microarray that studies the expression of a series of genes, it is now possible to evaluate the endometrial status of patients with infertility problems in a more detailed manner. Moreover, female fertility and endometrial receptivity could be affected by endometriosis, a chronic benign gynecological disease, whose cause-and-effect relationship to obesity is still uncertain. Therefore, further investigations would be required to better elucidate these mechanisms that govern embryo implantation and could be potentially useful for the generation of new strategies to overcome implantation failure and improve the pregnancy rates in obese women.
Collapse
Affiliation(s)
- Francesca Gonnella
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (F.K.); (M.D.); (L.S.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (B.B.)
| | - Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (F.K.); (M.D.); (L.S.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marisa Donato
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (F.K.); (M.D.); (L.S.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (B.B.)
| | | | - Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (B.B.)
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (B.B.)
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (F.K.); (M.D.); (L.S.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Warren B. Nothnick
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Center for Reproductive Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (F.K.); (M.D.); (L.S.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
5
|
Xiao G, Wei Y, Xie R, Tsang Y, Gu J, Shen D, Ding M, Yuan J, Xu D, Fei J. Citric acid promotes SPARC release in pancreatic cancer cells and inhibits the progression of pancreatic tumors in mice on a high-fat diet. FEBS J 2024; 291:1699-1718. [PMID: 38245817 DOI: 10.1111/febs.17058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/17/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Over the years, pancreatic cancer has experienced a global surge in incidence and mortality rates, largely attributed to the influence of obesity and diabetes mellitus on disease initiation and progression. In this study, we investigated the pathogenesis of pancreatic cancer in mice subjected to a high-fat diet (HFD) and observed an increase in citric acid expenditure. Notably, citrate treatment demonstrates significant efficacy in promoting tumor cell apoptosis, suppressing cell proliferation, and inhibiting tumor growth in vivo. Our investigations revealed that citrate achieved these effects by releasing secreted protein acidic and rich in cysteine (SPARC) proteins, repolarizing M2 macrophages into M1 macrophages, and facilitating tumor cell apoptosis. Overall, our research highlights the critical role of citric acid as a pivotal metabolite in the intricate relationship between obesity and pancreatic cancer. Furthermore, we uncovered the significant metabolic and immune checkpoint function of SPARC in pancreatic cancer, suggesting its potential as both a biomarker and therapeutic target in treating this patient population.
Collapse
Affiliation(s)
- Guohui Xiao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yan Wei
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Rongli Xie
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, China
| | - Yiusing Tsang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Jianhua Gu
- Department of Thyroid and Breast Surgery, Punan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Dongjie Shen
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, China
| | - Min Ding
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Jianming Yuan
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, China
| | - Dan Xu
- Department of Emergency Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Jian Fei
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
- State Key Laboratory of Oncogenes and Related Genes (Shanghai), China
- Institute of Translational Medicine, Shanghai Jiao Tong University, China
| |
Collapse
|
6
|
Wang M, Yue S, Yang Z. Downregulation of PSAT1 inhibits cell proliferation and migration in uterine corpus endometrial carcinoma. Sci Rep 2023; 13:4081. [PMID: 36906716 PMCID: PMC10008565 DOI: 10.1038/s41598-023-31325-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/09/2023] [Indexed: 03/13/2023] Open
Abstract
Phosphoserine aminotransferase 1 (PSAT1) has been associated with the occurrence and development of various carcinomas; however, its function in uterine corpus endometrial carcinoma (UCEC) is unknown. We aimed to explore the relationship between PSAT1 and UCEC using The Cancer Genome Atlas database and functional experiments. PSAT1 expression levels in UCEC were employed using the paired sample t-test, Wilcoxon rank-sum test, the Clinical Proteomic Tumor Analysis Consortium database, and the Human Protein Atlas database, while survival curves were constructed using the Kaplan-Meier plotter. We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to explore the possible functions and related pathways of PSAT1. Furthermore, single-sample gene set enrichment analysis was performed to detect the relationship between PSAT1 and tumor immune infiltration. StarBase and quantitative PCR were used to predict and verify the interactions between miRNAs and PSAT1. The Cell Counting Kit-8, EdU assay, clone formation assay, western blotting and flow cytometry were used to evaluate cell proliferation. Finally, Transwell and Wound healing assays were used to assess cell invasion and migration. Our study found that PSAT1 was significantly overexpressed in UCEC, and this high expression was associated with a worse prognosis. A high level of PSAT1 expression was associated with a late clinical stage and, histological type. In addition, the results of GO and KEGG enrichment analysis showed that PSAT1 was mainly involved in the regulation of cell growth, immune system and cell cycle in UCEC. In addition, PSAT1 expression was positively correlated with Th2 cells and negatively correlated with Th17 cells. Furthermore, we also found that miR-195-5P negatively regulated the expression of PSAT1 in UCEC. Finally, the knockdown of PSAT1 resulted in the inhibition of cell proliferation, migration, and invasion in vitro. Overall, PSAT1 was identified as a potential target for the diagnosis and immunotherapy of UCEC.
Collapse
Affiliation(s)
- Min Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Song Yue
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhu Yang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
7
|
Zhao M, Zheng Z, Li C, Wan J, Wang M. Developmental endothelial locus-1 in cardiovascular and metabolic diseases: A promising biomarker and therapeutic target. Front Immunol 2022; 13:1053175. [PMID: 36518760 PMCID: PMC9742254 DOI: 10.3389/fimmu.2022.1053175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular and metabolic diseases (CVMDs) are a leading cause of death worldwide and impose a major socioeconomic burden on individuals and healthcare systems, underscoring the urgent need to develop new drug therapies. Developmental endothelial locus-1 (DEL-1) is a secreted multifunctional domain protein that can bind to integrins and play an important role in the occurrence and development of various diseases. Recently, DEL-1 has attracted increased interest for its pharmacological role in the treatment and/or management of CVMDs. In this review, we present the current knowledge on the predictive and therapeutic role of DEL-1 in a variety of CVMDs, such as atherosclerosis, hypertension, cardiac remodeling, ischemic heart disease, obesity, and insulin resistance. Collectively, DEL-1 is a promising biomarker and therapeutic target for CVMDs.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Chenfei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China,*Correspondence: Menglong Wang, ; Jun Wan,
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China,*Correspondence: Menglong Wang, ; Jun Wan,
| |
Collapse
|
8
|
Nagasaki K, Gavrilova O, Hajishengallis G, Somerman MJ. Does the RGD region of certain proteins affect metabolic activity? FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.974862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A better understanding of the role of mineralized tissues and their associated factors in governing whole-body metabolism should be of value toward informing clinical strategies to treat mineralized tissue and metabolic disorders, such as diabetes and obesity. This perspective provides evidence suggesting a role for the arginine-glycine-aspartic acid (RGD) region, a sequence identified in several proteins secreted by bone cells, as well as other cells, in modulating systemic metabolic activity. We focus on (a) two of the SIBLING (small integrin-binding ligand, N-linked glycoprotein) family genes/proteins, bone sialoprotein (BSP) and osteopontin (OPN), (b) insulin-like growth factor-binding protein-1 & 2 (IGFBP-1, IGFBP-2) and (c) developmental endothelial locus 1 (DEL1) and milk fat globule–EGF factor-8 (MFG-E8). In addition, for our readers to appreciate the mounting evidence that a multitude of bone secreted factors affect the activity of other tissues, we provide a brief overview of other proteins, to include fibroblast growth factor 23 (FGF23), phosphatase orphan 1 (PHOSPHO1), osteocalcin (OCN/BGLAP), tissue non-specific alkaline phosphatase (TNAP) and acidic serine aspartic-rich MEPE-associated motif (ASARM), along with known/suggested functions of these factors in influencing energy metabolism.
Collapse
|