1
|
Zheng Y, Vdovichenko N, Schürmann P, Ramachandran D, Geffers R, Speith LM, Bogdanova N, Enßen J, Dubrowinskaja N, Yugay T, Yessimsiitova ZB, Turmanov N, Hillemanns P, Dörk T. Comparative sequencing study of mismatch repair and homology-directed repair genes in endometrial cancer and breast cancer patients from Kazakhstan. Int J Cancer 2025; 156:764-775. [PMID: 39400928 DOI: 10.1002/ijc.35215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 10/15/2024]
Abstract
Endometrial cancer has been associated with pathogenic variants in mismatch repair (MMR) genes, especially in the context of the hereditary Lynch Syndrome. More recently, pathogenic variants in genes of homology-directed repair (HDR) have also been suggested to contribute to a subset of endometrial cancers. In the present hospital-based study, we investigated the relative distribution of pathogenic MMR or HDR gene variants in a series of 342 endometrial cancer patients from the Oncology Clinic in Almaty, Kazakhstan. In comparison, we also sequenced 178 breast cancer patients from the same population with the same gene panel. Identified variants were classified according to ClinVar, ESM1b, and AlphaMissense prediction tools. We found 10 endometrial cancer patients (2.9%) carrying pathogenic or likely pathogenic variants in MMR genes (7 MSH6, 1 MSH2, 2 MUTYH), while 14 endometrial cancer patients (4.1%) carried pathogenic variants in HDR genes (4 BRCA2, 3 BRCA1, 3 FANCM, 2 SLX4, 1 BARD1, 1 BRIP1). In the breast cancer series, we found 8 carriers (4.5%) of pathogenic or likely pathogenic variants in MMR genes (2 MSH2, 2 MSH6, 4 MUTYH) while 12 patients (6.7%) harbored pathogenic or likely pathogenic HDR gene variants (5 BRCA1, 3 BRCA2, 1 BRIP1, 1 ERRC4, 1 FANCM, 1 SLX4). One patient who developed breast cancer first and endometrial cancer later carried a novel frameshift variant in MSH6. Our results indicate that MMR and HDR gene variants with predicted pathogenicity occur at substantial frequencies in both breast and endometrial cancer patients from the Kazakh population.
Collapse
Affiliation(s)
- Ying Zheng
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | | | - Peter Schürmann
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | | | - Robert Geffers
- Genome Analytics, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Lisa-Marie Speith
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Natalia Bogdanova
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Julia Enßen
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | | | | | | | - Nurzhan Turmanov
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
- Rahat Clinics, Almaty, Kazakhstan
| | - Peter Hillemanns
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Liu YL, Sia TY, Varice N, Wu M, Byrne M, Khurram A, Kemel Y, Sheehan M, Galle J, Sabbatini P, Brown C, Roche KL, Chi D, Solit DB, Mueller J, Stadler ZK, Hamilton JG, Aghajanian C, Abu-Rustum NR. Optimizing Mainstreaming of Genetic Testing in Parallel With Ovarian and Endometrial Cancer Tumor Testing: How Do We Maximize Our Impact? JCO Precis Oncol 2024; 8:e2400525. [PMID: 39715484 DOI: 10.1200/po-24-00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/05/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
PURPOSE Although germline genetic testing (GT) is recommended for all patients with ovarian cancer (OC) and some patients with endometrial cancer (EC), uptake remains low with multiple barriers. Our center performs GT in parallel with somatic testing via a targeted sequencing assay (MSK-IMPACT) and initiates testing in oncology clinics (mainstreaming). We sought to optimize our GT processes for OC/EC. METHODS We performed a quality improvement study to evaluate our GT processes within gynecologic surgery/medical oncology clinics. All eligible patients with newly diagnosed OC/EC were identified for GT and tracked in a REDCap database. Clinical data and GT rates were collected by the study team, who reviewed data for qualitative themes. RESULTS From February 2023 to April 2023, we identified 116 patients with newly diagnosed OC (n = 57) and EC (n = 59). Patients were mostly White (62%); English was the preferred language for 90%. GT was performed in 52 (91%) patients with OC (seven external, 45 MSK-IMPACT) and in 44 (75%) patients with EC (three external, 41 MSK-IMPACT). GT results were available within 3 months for 100% and 95% of patients with OC and EC, respectively. Reasons for not undergoing GT included being missed by the clinical team where there was no record that GT was recommended, feeling overwhelmed, financial and privacy concerns, and language barriers. In qualitative review, we found that resources were concentrated in the initial visit with little follow-up to encourage GT at subsequent points of care. CONCLUSION A mainstreaming approach that couples somatic and germline GT resulted in high testing rates in OC/EC; however, barriers were identified. Processes that encourage GT at multiple care points and allow self-directed, multilingual digital consenting should be piloted.
Collapse
Affiliation(s)
- Ying L Liu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical School, New York, NY
| | - Tiffany Y Sia
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nancy Varice
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michelle Wu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Maureen Byrne
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aliya Khurram
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yelena Kemel
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Margaret Sheehan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jesse Galle
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Paul Sabbatini
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical School, New York, NY
| | - Carol Brown
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Obstetrics and Gynecology, Weill Cornell Medical School, New York, NY
| | - Kara Long Roche
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Obstetrics and Gynecology, Weill Cornell Medical School, New York, NY
| | - Dennis Chi
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Obstetrics and Gynecology, Weill Cornell Medical School, New York, NY
| | - David B Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical School, New York, NY
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jennifer Mueller
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Obstetrics and Gynecology, Weill Cornell Medical School, New York, NY
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical School, New York, NY
| | - Jada G Hamilton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Psychiatry, Weill Cornell Medical School, New York, NY
| | - Carol Aghajanian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical School, New York, NY
| | - Nadeem R Abu-Rustum
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Obstetrics and Gynecology, Weill Cornell Medical School, New York, NY
| |
Collapse
|
3
|
Kanbergs A, Rauh-Hain JA, Wilke RN. Differential Receipt of Genetic Services Among Patients With Gynecologic Cancer and Their Relatives: A Review of Challenges to Health Equity. Clin Obstet Gynecol 2024; 67:666-671. [PMID: 39331025 DOI: 10.1097/grf.0000000000000893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Up to 14% of endometrial cancers and 23% of epithelial ovarian cancers are associated with genetic predispositions. Referral for genetic testing and counseling can significantly impact a patient's oncologic outcomes. However, significant disparities in genetic referral and testing exist within medically underserved and minority populations in the United States. These disparities in care and access to care are multifactorial, often involving patient-level, health care-level, and system-level factors. In this review, we focus on disparities in genetic testing among patients with ovarian and uterine cancer, and the missed opportunities for primary cancer prevention among their relatives.
Collapse
Affiliation(s)
- Alexa Kanbergs
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | |
Collapse
|
4
|
Liu YL, Gordhandas S, Arora K, Rios-Doria E, Cadoo KA, Catchings A, Maio A, Kemel Y, Sheehan M, Salo-Mullen E, Zhou Q, Iasonos A, Carrot-Zhang J, Manning-Geist B, Sia TY, Selenica P, Vanderbilt C, Misyura M, Latham A, Bandlamudi C, Berger MF, Hamilton JG, Makker V, Abu-Rustum NR, Ellenson LH, Offit K, Mandelker DL, Stadler Z, Weigelt B, Aghajanian C, Brown C. Pathogenic germline variants in patients with endometrial cancer of diverse ancestry. Cancer 2024; 130:576-587. [PMID: 37886874 PMCID: PMC10922155 DOI: 10.1002/cncr.35071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Racial disparities in outcomes exist in endometrial cancer (EC). The contribution of ancestry-based variations in germline pathogenic variants (gPVs) is unknown. METHODS Germline assessment of ≥76 cancer predisposition genes was performed in patients with EC undergoing tumor-normal Memorial Sloan Kettering Cancer Center Integrated Mutation Profiling of Actionable Cancer Targets sequencing from January 1, 2015 through June 30, 2021. Self-reported race/ethnicity and Ashkenazi Jewish ancestry data classified patients into groups. Genetic ancestry was inferred from Memorial Sloan Kettering Cancer Center Integrated Mutation Profiling of Actionable Cancer Targets. Rates of gPV and genetic counseling were compared by ancestry. RESULTS Among 1625 patients with EC, 216 (13%) had gPVs; 15 had >1 gPV. Rates of gPV varied by self-reported ancestry (Ashkenazi Jewish, 40/202 [20%]; Asian, 15/124 [12%]; Black/African American (AA), 12/171 [7.0%]; Hispanic, 15/124 [12%]; non-Hispanic (NH) White, 129/927 [14%]; missing, 5/77 [6.5%]; p = .009], with similar findings by genetic ancestry (p < .001). We observed a lower likelihood of gPVs in patients of Black/AA (odds ratio [OR], 0.44; 95% CI, 0.22-0.81) and African (AFR) ancestry (OR, 0.42; 95% CI, 0.18-0.85) and a higher likelihood in patients of Ashkenazi Jewish genetic ancestry (OR, 1.62; 95% CI; 1.11-2.34) compared with patients of non-Hispanic White/European ancestry, even after adjustment for age and molecular subtype. Somatic landscape influenced gPVs with lower rates of microsatellite instability-high tumors in patients of Black/AA and AFR ancestry. Among those with newly identified gPVs (n = 114), 102 (89%) were seen for genetic counseling, with lowest rates among Black/AA (75%) and AFR patients (67%). CONCLUSIONS In those with EC, gPV and genetic counseling varied by ancestry, with lowest rates among Black/AA and AFR patients, potentially contributing to disparities in outcomes given implications for treatment and cancer prevention. PLAIN LANGUAGE SUMMARY Black women with endometrial cancer do worse than White women, and there are many reasons for this disparity. Certain genetic changes from birth (mutations) can increase the risk of cancer, and it is unknown if rates of these changes are different between different ancestry groups. Genetic mutations in 1625 diverse women with endometrial cancer were studied and the lowest rates of mutations and genetic counseling were found in Black and African ancestry women. This could affect their treatment options as well as their families and may make disparities worse.
Collapse
Affiliation(s)
- Ying L Liu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Sushmita Gordhandas
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kanika Arora
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric Rios-Doria
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Karen A Cadoo
- St. James's Hospital, Trinity St. James's Cancer Institute, Dublin, Ireland
| | - Amanda Catchings
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Anna Maio
- Sloan Kettering Institute, New York, New York, USA
| | - Yelena Kemel
- Sloan Kettering Institute, New York, New York, USA
| | - Margaret Sheehan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Erin Salo-Mullen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Qin Zhou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Alexia Iasonos
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jian Carrot-Zhang
- Department of Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Beryl Manning-Geist
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tiffany Y Sia
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Chad Vanderbilt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maksym Misyura
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Alicia Latham
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Chaitanya Bandlamudi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael F Berger
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jada G Hamilton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Psychiatry, Weill Cornell Medical College, New York, New York, USA
| | - Vicky Makker
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Nadeem R Abu-Rustum
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, New York, USA
| | - Lora H Ellenson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Diana L Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Zsofia Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Carol Aghajanian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Carol Brown
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
5
|
Hutchcraft ML, Zhang S, Lin N, Pickarski JC, Belcher EA, Wei S, Bocklage T, Miller RW, Villano JL, Cavnar MJ, Kim J, Arnold SM, Ueland FR, Kolesar JM. Feasibility and Clinical Utility of Reporting Hereditary Cancer Predisposition Pathogenic Variants Identified in Research Germline Sequencing: A Prospective Interventional Study. JCO Precis Oncol 2024; 8:e2300266. [PMID: 38295319 PMCID: PMC10843325 DOI: 10.1200/po.23.00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 02/02/2024] Open
Abstract
PURPOSE Patients with cancer frequently undergo research-grade germline sequencing but clinically actionable results are not routinely disclosed. The objective of this study is to evaluate the feasibility of reporting clinically relevant secondary findings (SF) identified in germline research sequencing using the institutional molecular tumor board (MTB) and the treating oncology physician. METHODS This prospective, interventional cohort study enrolled Total Cancer Care participants with any cancer diagnosis at a single institution. Patients underwent research-grade germline whole-exome sequencing, with bioinformatic analysis in a Clinical Laboratory Improvement Amendments-certified laboratory to verify pathogenic/likely pathogenic germline variants (PGVs) in any American College of Medical Genomics and Genetics SF v2.0 genes. After a protocol modification in consenting patients, the MTB reported PGVs to treating oncology physicians with recommendations for referral to a licensed genetic counselor and clinical confirmatory testing. RESULTS Of the 781 enrolled participants, 32 (4.1%) harbored cancer predisposition PGVs, 24 (3.1%) were heterozygous carriers of an autosomal recessive cancer predisposition syndrome, and 14 (1.8%) had other hereditary disease PGVs. Guideline-directed testing would have missed 37.5% (12/32) of the inherited cancer predisposition PGVs, which included BRCA1, BRCA2, MSH6, SDHAF2, SDHB, and TP53 variants. Three hundred fifteen participants consented to reporting results; results for all living patients were reported to the clinical team with half referred to a licensed genetic counselor. There was concordance between all research variants identified in patients (n = 9) who underwent clinical confirmatory sequencing. CONCLUSION MTB reporting of research-grade germline sequencing to the clinical oncology team is feasible. Over a third of PGVs identified using a universal testing strategy would have been missed by guideline-based approach, suggesting a role for expanding germline testing.
Collapse
Affiliation(s)
- Megan L. Hutchcraft
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky Markey Comprehensive Cancer Center, Lexington, KY
| | - Shulin Zhang
- Department of Pathology and Laboratory Medicine University of Kentucky Chandler Medical Center, Lexington, KY
- Markey Comprehensive Cancer Center, University of Kentucky, Lexington, KY
| | - Nan Lin
- Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, Lexington, KY
| | | | - Elizabeth A. Belcher
- Department of Clinical Research, University of Kentucky Markey Comprehensive Cancer Center, Lexington, KY
| | - Sainan Wei
- Department of Pathology and Laboratory Medicine University of Kentucky Chandler Medical Center, Lexington, KY
| | - Thèrése Bocklage
- Department of Pathology and Laboratory Medicine University of Kentucky Chandler Medical Center, Lexington, KY
| | - Rachel W. Miller
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky Markey Comprehensive Cancer Center, Lexington, KY
| | - John L. Villano
- Division of Medical Oncology, Department of Internal Medicine, University of Kentucky Markey Comprehensive Cancer Center, Lexington, KY
| | - Michael J. Cavnar
- Division of Surgical Oncology, Department of Surgery, University of Kentucky Markey Comprehensive Cancer Center, Lexington, KY
| | - Joseph Kim
- Division of Surgical Oncology, Department of Surgery, University of Kentucky Markey Comprehensive Cancer Center, Lexington, KY
| | - Susanne M. Arnold
- Division of Medical Oncology, Department of Internal Medicine, University of Kentucky Markey Comprehensive Cancer Center, Lexington, KY
| | - Frederick R. Ueland
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky Markey Comprehensive Cancer Center, Lexington, KY
| | - Jill M. Kolesar
- Markey Comprehensive Cancer Center, University of Kentucky, Lexington, KY
- Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, Lexington, KY
| |
Collapse
|
6
|
Sorouri K, Lynce F, Feltmate CM, Davis MR, Muto MG, Konstantinopoulos PA, Stover EH, Kurian AW, Hill SJ, Partridge AH, Tolaney SM, Garber JE, Bychkovsky BL. Endometrial Cancer Risk Among Germline BRCA1/ 2 Pathogenic Variant Carriers: Review of Our Current Understanding and Next Steps. JCO Precis Oncol 2023; 7:e2300290. [PMID: 38061009 PMCID: PMC10715772 DOI: 10.1200/po.23.00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/02/2023] [Accepted: 09/14/2023] [Indexed: 12/18/2023] Open
Abstract
PURPOSE To review the literature exploring endometrial cancer (EC) risk among surgical candidates with germline BRCA1/2 pathogenic variants (PVs) to guide decisions around risk-reducing (rr) hysterectomy in this population. DESIGN A comprehensive review was conducted of the current literature that influences clinical practice and informs expert consensus. We present our understanding of EC risk among BRCA1/2 PV carriers, the risk-modifying factors specific to this patient population, and the available research technology that may guide clinical practice in the future. Limitations of the existing literature are outlined. RESULTS Patients with BRCA1/2 PVs, those with a personal history of tamoxifen use, those who desire long-term hormone replacement therapy, and/or have an elevated BMI are at higher risk of EC, primarily endometrioid EC and/or uterine papillary serous carcinoma, and may benefit from rr-hysterectomy. Although prescriptive clinical guidelines specific to BRCA1/2 PV carriers could inform decisions around rr-hysterectomy, limitations of the current literature prevent more definitive guidance at this time. A large population-based study of a contemporary cohort of BRCA1/2 PV carriers with lifetime follow-up compared with cancer-gene negative controls would advance this topic and facilitate care decisions. CONCLUSION This review validates a potential role for rr-hysterectomy to address EC risk among surgical candidates with BRCA1/2 PVs. Evidence-based clinical guidelines for rr-hysterectomy in BRCA1/2 PV carriers are essential to ensure equitable access to this preventive measure, supporting insurance coverage for patients with either BRCA1 or BRCA2 PVs to pursue rr-hysterectomy. Overall, this review highlights the complexity of EC risk in BRCA1/2 PV carriers and offers a comprehensive framework to shared decision making to inform rr-hysterectomy for BRCA1/2 PV carriers.
Collapse
Affiliation(s)
- Kimia Sorouri
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Filipa Lynce
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
| | - Colleen M. Feltmate
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Brigham and Women's Hospital, Boston, MA
| | - Michelle R. Davis
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Brigham and Women's Hospital, Boston, MA
| | - Michael G. Muto
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Brigham and Women's Hospital, Boston, MA
| | - Panagiotis A. Konstantinopoulos
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Elizabeth H. Stover
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Sarah J. Hill
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Ann H. Partridge
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
| | - Sara M. Tolaney
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
| | - Judy E. Garber
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA
| | - Brittany L. Bychkovsky
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
7
|
Safonov A, Nomakuchi TT, Chao E, Horton C, Dolinsky JS, Yussuf A, Richardson M, Speare V, Li S, Bogus ZC, Bonanni M, Raper A, Kallish S, Ritchie MD, Nathanson KL, Drivas TG. A genotype-first approach identifies high incidence of NF1 pathogenic variants with distinct disease associations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.08.23293676. [PMID: 37609227 PMCID: PMC10441497 DOI: 10.1101/2023.08.08.23293676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Loss of function variants in the NF1 gene cause neurofibromatosis type 1 (NF1), a genetic disorder characterized by complete penetrance, prevalence of 1 in 3,000, characteristic physical exam findings, and a substantially increased risk for malignancy. However, our understanding of the disorder is entirely based on patients ascertained through phenotype-first approaches. Leveraging a genotype-first approach in two large patient cohorts, we demonstrate unexpectedly high prevalence (1 in 450-750) of NF1 pathogenic variants. Half were identified in individuals lacking clinical features of NF1, with many appearing to have post-zygotic mosaicism for the identified variant. Incidentally discovered variants were not associated with classic NF1 features but were associated with an increased incidence of malignancy compared to a control population. Our findings suggest that NF1 pathogenic variants are substantially more common than previously thought, often characterized by somatic mosaicism and reduced penetrance, and are important contributors to cancer risk in the general population.
Collapse
|
8
|
Kral J, Jelinkova S, Zemankova P, Vocka M, Borecka M, Cerna L, Cerna M, Dostalek L, Duskova P, Foretova L, Havranek O, Horackova K, Hovhannisyan M, Chvojka S, Kalousova M, Kosarova M, Koudova M, Krutilkova V, Machackova E, Nehasil P, Novotny J, Otahalova B, Puchmajerova A, Safarikova M, Slama J, Stranecky V, Subrt I, Tavandzis S, Zikan M, Zima T, Soukupova J, Kleiblova P, Kleibl Z, Janatova M. Germline multigene panel testing of patients with endometrial cancer. Oncol Lett 2023; 25:216. [PMID: 37153042 PMCID: PMC10157349 DOI: 10.3892/ol.2023.13802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/03/2023] [Indexed: 05/09/2023] Open
Abstract
Endometrial cancer (EC) is the most common gynecological malignancy in developed countries. The present study aimed to determine the frequency of germline pathogenic variants (PV) in patients with EC. In this multicenter retrospective cohort study, germline genetic testing (GGT) was performed in 527 patients with EC using a next generation sequencing panel targeting 226 genes, including 5 Lynch syndrome (LS) and 14 hereditary breast and ovarian cancer (HBOC) predisposition genes, and 207 candidate predisposition genes. Gene-level risks were calculated using 1,662 population-matched controls (PMCs). Patients were sub-categorized to fulfill GGT criteria for LS, HBOC, both or none. A total of 60 patients (11.4%) carried PV in LS (5.1%) and HBOC (6.6%) predisposition genes, including two carriers of double PV. PV in LS genes conferred a significantly higher EC risk [odds ratio (OR), 22.4; 95% CI, 7.8-64.3; P=1.8×10-17] than the most frequently altered HBOC genes BRCA1 (OR, 3.9; 95% CI, 1.6-9.5; P=0.001), BRCA2 (OR, 7.4; 95% CI, 1.9-28.9; P=0.002) and CHEK2 (OR, 3.2; 95% CI, 1.0-9.9; P=0.04). Furthermore, >6% of patients with EC not fulfilling LS or HBOC GGT indication criteria carried a PV in a clinically relevant gene. Carriers of PV in LS genes had a significantly lower age of EC onset than non-carriers (P=0.01). Another 11.0% of patients carried PV in a candidate gene (the most frequent were FANCA and MUTYH); however, their individual frequencies did not differ from PMCs (except for aggregated frequency of loss-of-function variants in POLE/POLD1; OR, 10.44; 95% CI, 1.1-100.5; P=0.012). The present study demonstrated the importance of GGT in patients with EC. The increased risk of EC of PV carriers in HBOC genes suggests that the diagnosis of EC should be included in the HBOC GGT criteria.
Collapse
Affiliation(s)
- Jan Kral
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
| | - Sandra Jelinkova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
| | - Petra Zemankova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague 120 00, Czech Republic
| | - Michal Vocka
- Department of Oncology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
| | - Marianna Borecka
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
| | - Leona Cerna
- Center for Medical Genetics and Reproductive Medicine, Gennet, Prague 170 00, Czech Republic
| | - Marta Cerna
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
| | - Lukas Dostalek
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
| | - Petra Duskova
- Laboratory of Molecular Genetics, Hospital Ceske Budejovice, Ceske Budejovice 370 00, Czech Republic
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno 656 53, Czech Republic
| | - Ondrej Havranek
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
- BIOCEV (Biotechnology and Biomedicine Center of The Czech Academy of Sciences and Charles University), First Faculty of Medicine, Charles University, Prague 252 50, Czech Republic
| | - Klara Horackova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
| | - Milena Hovhannisyan
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
| | - Stepan Chvojka
- Center for Medical Genetics and Reproductive Medicine, Gennet, Prague 170 00, Czech Republic
| | - Marta Kalousova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
| | - Marcela Kosarova
- Department of Medical Genetics, Pronatal, Prague 140 00, Czech Republic
| | - Monika Koudova
- Center for Medical Genetics and Reproductive Medicine, Gennet, Prague 170 00, Czech Republic
| | - Vera Krutilkova
- Department of Medical Genetics, AGEL Laboratories, AGEL Research and Training Institute, Novy Jicin 741 00, Czech Republic
| | - Eva Machackova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno 656 53, Czech Republic
| | - Petr Nehasil
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague 120 00, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
| | - Jan Novotny
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
| | - Barbora Otahalova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Prague 120 00, Czech Republic
| | - Alena Puchmajerova
- Center for Medical Genetics and Reproductive Medicine, Gennet, Prague 170 00, Czech Republic
| | - Marketa Safarikova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
| | - Jiri Slama
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
| | - Viktor Stranecky
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
| | - Ivan Subrt
- Department of Medical Genetics, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen 323 00, Czech Republic
| | - Spiros Tavandzis
- Department of Medical Genetics, AGEL Laboratories, AGEL Research and Training Institute, Novy Jicin 741 00, Czech Republic
| | - Michal Zikan
- Department of Gynecology and Obstetrics, Bulovka University Hospital and First Faculty of Medicine, Charles University, Prague 180 00, Czech Republic
| | - Tomas Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
| | - Jana Soukupova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
| | - Petra Kleiblova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
| | - Zdenek Kleibl
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague 120 00, Czech Republic
| | - Marketa Janatova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 120 00, Czech Republic
- Correspondence to: Dr Marketa Janatova, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Katerinska 1660/32, Prague 120 00, Czech Republic, E-mail:
| |
Collapse
|
9
|
Gordhandas S, Rios-Doria E, Cadoo KA, Catchings A, Maio A, Kemel Y, Sheehan M, Ranganathan M, Green D, Aryamvally A, Arnold AG, Salo-Mullen E, Manning-Geist B, Sia T, Selenica P, Da Cruz Paula A, Vanderbilt C, Misyura M, Leitao MM, Mueller JJ, Makker V, Rubinstein M, Friedman CF, Zhou Q, Iasonos A, Latham A, Carlo MI, Murciano-Goroff YR, Will M, Walsh MF, Issa Bhaloo S, Ellenson LH, Ceyhan-Birsoy O, Berger MF, Robson ME, Abu-Rustum N, Aghajanian C, Offit K, Stadler Z, Weigelt B, Mandelker DL, Liu YL. Comprehensive analysis of germline drivers in endometrial cancer. J Natl Cancer Inst 2023; 115:560-569. [PMID: 36744932 PMCID: PMC10165491 DOI: 10.1093/jnci/djad016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/12/2022] [Accepted: 01/23/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We sought to determine the prevalence of germline pathogenic variants (gPVs) in unselected patients with endometrial cancer (EC), define biallelic gPVs within tumors, and describe their associations with clinicopathologic features. METHODS Germline assessment of at least 76 cancer predisposition genes was performed in patients with EC undergoing clinical tumor-normal Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) sequencing from January 1, 2015, to June 30, 2021. In patients with gPVs, biallelic alterations in ECs were identified through analysis of loss of heterozygosity and somatic PVs. Clinicopathologic variables were compared using nonparametric tests. RESULTS Of 1625 patients with EC, 216 (13%) had gPVs, and 15 patients had 2 gPVs. There were 231 gPVs in 35 genes (75 [32%] high penetrance; 39 [17%] moderate penetrance; and 117 [51%] low, recessive, or uncertain penetrance). Compared with those without gPVs, patients with gPVs were younger (P = .002), more often White (P = .009), and less obese (P = .025) and had differences in distribution of tumor histology (P = .017) and molecular subtype (P < .001). Among 231 gPVs, 74 (32%) exhibited biallelic inactivation within tumors. For high-penetrance gPVs, 63% (47 of 75) of ECs had biallelic alterations, primarily affecting mismatch repair (MMR) and homologous recombination related genes, including BRCA1,BRCA2, RAD51D, and PALB2. Biallelic inactivation varied across molecular subtypes with highest rates in microsatellite instability-high (MSI-H) or copy-number (CN)-high subtypes (3 of 12 [25%] POLE, 30 of 77 [39%] MSI-H, 27 of 60 [45%] CN-high, 9 of 57 [16%] CN-low; P < .001). CONCLUSIONS Of unselected patients with EC, 13% had gPVs, with 63% of gPVs in high-penetrance genes (MMR and homologous recombination) exhibiting biallelic inactivation, potentially driving cancer development. This supports germline assessment in EC given implications for treatment and cancer prevention.
Collapse
Affiliation(s)
- Sushmita Gordhandas
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Rios-Doria
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karen A Cadoo
- St. James’s Hospital, Trinity St. James’s Cancer Institute, Dublin, Ireland
| | - Amanda Catchings
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna Maio
- Sloan Kettering Institute, New York, NY, USA
| | | | - Margaret Sheehan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Megha Ranganathan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dina Green
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali Aryamvally
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Angela G Arnold
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erin Salo-Mullen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Beryl Manning-Geist
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tiffany Sia
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arnaud Da Cruz Paula
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chad Vanderbilt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maksym Misyura
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mario M Leitao
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Jennifer J Mueller
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Vicky Makker
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Maria Rubinstein
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Claire F Friedman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Qin Zhou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexia Iasonos
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alicia Latham
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Maria I Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Yonina R Murciano-Goroff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Marie Will
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Michael F Walsh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Shirin Issa Bhaloo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lora H Ellenson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ozge Ceyhan-Birsoy
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael F Berger
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark E Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nadeem Abu-Rustum
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Carol Aghajanian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Zsofia Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diana L Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying L Liu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|