1
|
Gordinier ME, Schau GF, Pollock SB, Shields LBE, Talwalkar S. Genomic characterization of vulvar squamous cell carcinoma reveals differential gene expression based on clinical outcome. Gynecol Oncol 2024; 180:111-117. [PMID: 38086165 DOI: 10.1016/j.ygyno.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/13/2023] [Accepted: 11/25/2023] [Indexed: 02/18/2024]
Abstract
OBJECTIVE The greatest challenge in the management of vulvar squamous cell carcinoma (VSCC) is treatment of recurrent disease where options for surgery and radiation have been exhausted, or treatment of disease where distant metastasis is present. Identification of mutations differentially expressed between tumor from patients who died of aggressive disease and tumor from patients with an indolent course could reveal novel prognostic indicators and guide development of therapeutic drugs. METHODS From 202 consecutive patients with VSCC, patients who recurred and died of disease (group A) were identified and matched by age, tumor size, depth of invasion and nodal status with those whose disease did not recur (group B). Tumors from 21 patients were subjected to whole exome sequencing of DNA and RNA, immunohistochemistry (IHC) antibodies of PD-L1 and P16, and in-situ hybridization (ISH) for high-risk HPV. RESULTS Analysis of DNA and RNA revealed six genes that were strongly differentially expressed between group A and B: TGM3, ACVR2A, ROS1, NFEL2, CCND1 and BCL6. Clinically relevant DNA mutations were significantly greater in group A versus B: 7 vs 2.3 mutations per patient. The most common genomic alterations were mutations in TP53 and the promoter region of TERT. Other common genomic events include alterations of FAT1, CDKN2A, PIK3CA, CCND1, and LRP1B. All samples were MSI stable and tumor mutational burden (TMB) was similar in groups A and B. Most VSCC specimens (81%) were positive for PD-L1. CONCLUSIONS ACVR2A and TGM3 are significantly under-expressed in tumors with poor outcome, suggesting they may play a role in tumor suppression. Clinical outcome of VSCC appears independent of MSI, TMB, or PD-L1 status.
Collapse
Affiliation(s)
- Mary E Gordinier
- Norton Cancer Institute, Norton Healthcare, Louisville, KY 40207, USA.
| | | | | | - Lisa B E Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY 40202, USA.
| | - Sameer Talwalkar
- Department of Pathology, Norton Healthcare, Louisville, KY 40202, USA.
| |
Collapse
|
2
|
Zhao H, Wei Y, Zhang J, Zhang K, Tian L, Liu Y, Zhang S, Zhou Y, Wang Z, Shi S, Fu Z, Fu J, Zhao J, Li X, Zhang L, Zhao L, Liu K. HPV16 infection promotes the malignant transformation of the esophagus and progression of esophageal squamous cell carcinoma. J Med Virol 2023; 95:e29132. [PMID: 37792307 DOI: 10.1002/jmv.29132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/27/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) may be correlated with HPV infection, and the mechanism underlying the ESCC formation induced by HPV16 infection remains elusive. Here, we overexpressed HPV16 E6 and E7 and coordinated the overexpression of these two genes in EPC2 and ESCC cells. We found that E7 and coordinated expression of E6 and E7 promoted the proliferation of EPC2 cells, and upregulation of shh was responsible for cell proliferation since the use of vismodegib led to the failure of organoid formation. Meanwhile, overexpression of E6 and E7 in ESCC cells promoted cell proliferation, migration, and invasion in vitro. Importantly, E6 and E7 coordinately increased the capability of tumor growth in nude mice, while vismodegib slowed the growth of tumors in NCG mice. Moreover, a series of genes and proteins changed in cell lines after overexpression of the E6 and E7 genes, the potential biological processes and pathways were systematically analyzed using a bioinformatics assay. Together, these findings suggest that the activation of the hedgehog pathway induced by HPV16 infection may initially transform basal cells in the esophagus and promote following malignant processes in ESCC cells. The application of hedgehog inhibitors may represent a therapeutic avenue for ESCC treatment.
Collapse
Affiliation(s)
- Hongzhou Zhao
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Yuxuan Wei
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Jiaying Zhang
- School of Life Science, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Kun Zhang
- Department of General Surgery, The First Hospital of Fuzhou, Fuzhou, Fujian, People's Republic of China
| | - Liming Tian
- Department of Gynecology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yongpan Liu
- School of Life Science, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Shihui Zhang
- Centre for Translational Stem Cell Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Yijian Zhou
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Zhuo Wang
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Songlin Shi
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Zhichao Fu
- Department of Radiotherapy, 900 Hospital of the Joint Logistics Team (Dongfang Hospital, Xiamen University), Fuzhou, Fujian, People's Republic of China
| | - Jianqian Fu
- Department of Medical Oncology, The Fifth Hospital of Xiamen, Xiamen, Fujian, People's Republic of China
| | - Jing Zhao
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Xinxin Li
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Lijia Zhang
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Liran Zhao
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Kuancan Liu
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
- School of Life Science, Nanchang Normal University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|