1
|
Ruehr L, Hoffmann K, May E, Münch ML, Schlögl H, Sacher J. "Estrogens and human brain networks: A systematic review of structural and functional neuroimaging studies". Front Neuroendocrinol 2024; 77:101174. [PMID: 39733923 DOI: 10.1016/j.yfrne.2024.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/23/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
Estrogen fluctuations during the menstrual cycle, puberty, postpartum, or in the menopausal transition are associated with cognitive, affective, and behavioral effects. Additionally, estrogens are essential in hormonal contraception, menopausal hormone therapy, or gender-affirming hormone therapy. This systematic review summarizes findings on the role of estrogens for structure, function, and connectivity of human brain networks. We searched PubMed, Web of Science, and ScienceDirect for neuroimaging articles assessing estrogens published since 2008. We included 54 studies (N = 2,494 participants) on endogenous estrogen, and 28 studies (N = 1,740 participants) on exogenous estrogen conditions. Estrogen-related changes were reported for emotion, reward, memory, and resting-state networks, and in regional white and gray matter, with a particular neural plasticity in the hippocampus and amygdala. By examining study designs, imaging measures, and analysis methods, this review highlights the role of neuroimaging in advancing neuroendocrine and neurocognitive research, particularly promoting brain health for women and individuals with ovaries.
Collapse
Affiliation(s)
- Livia Ruehr
- Center for Integrative Women's Health and Gender Medicine, Medical Faculty and University of Leipzig Medical Center, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103 Leipzig, Germany; Max Planck School of Cognition, Stephanstraße 1A, 04103 Leipzig, Germany; Clinic of Cognitive Neurology, University of Leipzig Medical Center, Liebigstraße 16, 04103 Leipzig, Germany.
| | - Kim Hoffmann
- Center for Integrative Women's Health and Gender Medicine, Medical Faculty and University of Leipzig Medical Center, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103 Leipzig, Germany; Clinic of Cognitive Neurology, University of Leipzig Medical Center, Liebigstraße 16, 04103 Leipzig, Germany; Humboldt-Universität zu Berlin, Berlin School of Mind and Brain, Unter den Linden 6, 10099 Berlin, Germany.
| | - Emily May
- Center for Integrative Women's Health and Gender Medicine, Medical Faculty and University of Leipzig Medical Center, Leipzig, Germany; Max Planck School of Cognition, Stephanstraße 1A, 04103 Leipzig, Germany; Clinic of Cognitive Neurology, University of Leipzig Medical Center, Liebigstraße 16, 04103 Leipzig, Germany.
| | - Marie Luise Münch
- Leipzig Reproductive Health Research Center, Liebigstraße 20A, 04103 Leipzig, Germany.
| | - Haiko Schlögl
- Department of Endocrinology, Nephrology, Rheumatology, Division of Endocrinology, University of Leipzig Medical Center, Liebigstraße 20, 04103 Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University of Leipzig Medical Center, Philipp-Rosenthal-Straße 27, 04103 Leipzig, Germany.
| | - Julia Sacher
- Center for Integrative Women's Health and Gender Medicine, Medical Faculty and University of Leipzig Medical Center, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103 Leipzig, Germany; Max Planck School of Cognition, Stephanstraße 1A, 04103 Leipzig, Germany; Clinic of Cognitive Neurology, University of Leipzig Medical Center, Liebigstraße 16, 04103 Leipzig, Germany; Department of Endocrinology, Nephrology, Rheumatology, Division of Endocrinology, University of Leipzig Medical Center, Liebigstraße 20, 04103 Leipzig, Germany.
| |
Collapse
|
2
|
Sex and the serotonergic underpinnings of depression and migraine. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:117-140. [PMID: 33008520 DOI: 10.1016/b978-0-444-64123-6.00009-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most psychiatric disorders demonstrate sex differences in their prevalence and symptomatology, and in their response to treatment. These differences are particularly pronounced in mood disorders. Differences in sex hormone levels are among the most overt distinctions between males and females and are thus an intuitive underpinning for these clinical observations. In fact, treatment with estrogen and testosterone was shown to exert antidepressant effects, which underscores this link. Changes to monoaminergic signaling in general, and serotonergic transmission in particular, are understood as central components of depressive pathophysiology. Thus, modulation of the serotonin system may serve as a mechanism via which sex hormones exert their clinical effects in mental health disorders. Over the past 20 years, various experimental approaches have been applied to identify modes of influence of sex and sex hormones on the serotonin system. This chapter provides an overview of different molecular components of the serotonin system, followed by a review of studies performed in animals and in humans with the purpose of elucidating sex hormone effects. Particular emphasis will be placed on studies performed with positron emission tomography, a method that allows for human in vivo molecular imaging and, therefore, assessment of effects in a clinically representative context. The studies addressed in this chapter provide a wealth of information on the interaction between sex, sex hormones, and serotonin in the brain. In general, they offer evidence for the concept that the influence of sex hormones on various components of the serotonin system may serve as an underpinning for the clinical effects these hormones demonstrate.
Collapse
|
3
|
Yang J, Huang Q, Liu H, Zhou X, Huang Z, Peng Q, Liu C. 4-Nonylphenol and 4-tert-octylphenol induce anxiety-related behaviors through alternation of 5-HT receptors and transporters in the prefrontal cortex. Comp Biochem Physiol C Toxicol Pharmacol 2020; 230:108701. [PMID: 31911191 DOI: 10.1016/j.cbpc.2020.108701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023]
Abstract
Environmental endocrine disruptors 4-nonylphenol (NP) and 4-tert-octylphenol (OP) may cast huge harm to human health. We used a rat model to observe the influence of NP or/and OP exposure on anxiety-related behaviors and the underlying mechanisms. Eighty male Sprague-Dawley (SD) rats were randomly divided into 10 groups: control group (corn oil), NP groups [30, 90, 270 mg/kg], OP groups [40, 120, 360 mg/kg] and NO groups [(mixed with the corresponding NP, OP alone exposed low, medium and high dose according to the natural environment exists NP:OP = 4:1]. The rats were orally administered every other day for 30 days. The neurobehaviors of rats were evaluated by open-field test (OFT) and elevated plus-maze test (EPM), and the concentrations of 5-HT, monoamine oxidase (MAOA), serotonin transporter (SERT), vesicular monoamine transporter 2 (VAMT2), 5-hydroxytryptamine 1A (5-HT1A), 5-hydroxytryptamine 2A (5-HT2A),and 5-hydroxytryptamine 2C (5-HT2C) in the rat prefrontal cortex were analyzed by ELISA. OFT and EPM tests showed that NP or/and OP exposure induced anxiety-related behaviors in rats. 5-HT levels were significantly increased compared with the control group. The levels of MAOA, SERT, VAMT2, 5-HT1A, 5-HT2A, and 5-HT2C in the prefrontal cortex reduced in different degrees by high-doses NP or/and OP exposure. In summary, NP or/and OP exposure might cause anxiety-related behaviors in rats through regulating neurotransmitter 5-HT levels by altering the expression of 5-HT decomposition enzyme MAOA, transporters SERT and VMAT2, and 5-HT receptors 5-HT1A, 5-HT2A, and 5-HT2C.
Collapse
Affiliation(s)
- Jiao Yang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Qingyi Huang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Huan Liu
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Xiong Zhou
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Zhuoquan Huang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Quansheng Peng
- Logistics Department, South China Agricultural University, Guangzhou 510642, China.
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China.
| |
Collapse
|
4
|
Ko BS, Ryuk JA, Hwang JT, Zhang T, Wu X, Park S. Ojayeonjonghwan, an oriental medicine composed of five seeds, protects against vasomotor and neurological disorders in estrogen-deficient rats. Exp Biol Med (Maywood) 2019; 244:193-206. [PMID: 30722698 DOI: 10.1177/1535370219827847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPACT STATEMENT Menopausal symptoms impair the quality of life of many women, and although conventional treatments are often effective, their use is limited by adverse effects. Ojayeonjonghwan, OJa, is a traditional Oriental medicine that is used for both male and female reproductive health and has a long history of safe use. We evaluated the effectiveness of two variations of OJa (OJa1 and OJa2) for treating menopausal symptoms in ovariectomized (OVX) rats. Both OJa preparations were effective for relieving indicators of hot flashes and depression, and for preventing loss of bone mineral density and lean body mass. Only OJa 2 prevented memory dysfunction. These results show that the traditional Oriental medicine, Ojayeonjonghwan, has the potential to relieve menopausal symptoms in women and should be further evaluated in human clinical trials as an alternative to convention therapies in women for whom conventional therapies are not indicated or found to be ineffective.
Collapse
Affiliation(s)
- Byoung-Seob Ko
- 1 Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea
| | - Jin Ah Ryuk
- 1 Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea
| | - Joo Tae Hwang
- 1 Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea
| | - Ting Zhang
- 2 Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, Korea
| | - Xuangao Wu
- 2 Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, Korea
| | - Sunmin Park
- 2 Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, Korea
| |
Collapse
|
5
|
Barth C, Villringer A, Sacher J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front Neurosci 2015; 9:37. [PMID: 25750611 PMCID: PMC4335177 DOI: 10.3389/fnins.2015.00037] [Citation(s) in RCA: 404] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/26/2015] [Indexed: 12/21/2022] Open
Abstract
Sex hormones have been implicated in neurite outgrowth, synaptogenesis, dendritic branching, myelination and other important mechanisms of neural plasticity. Here we review the evidence from animal experiments and human studies reporting interactions between sex hormones and the dominant neurotransmitters, such as serotonin, dopamine, GABA and glutamate. We provide an overview of accumulating data during physiological and pathological conditions and discuss currently conceptualized theories on how sex hormones potentially trigger neuroplasticity changes through these four neurochemical systems. Many brain regions have been demonstrated to express high densities for estrogen- and progesterone receptors, such as the amygdala, the hypothalamus, and the hippocampus. As the hippocampus is of particular relevance in the context of mediating structural plasticity in the adult brain, we put particular emphasis on what evidence could be gathered thus far that links differences in behavior, neurochemical patterns and hippocampal structure to a changing hormonal environment. Finally, we discuss how physiologically occurring hormonal transition periods in humans can be used to model how changes in sex hormones influence functional connectivity, neurotransmission and brain structure in vivo.
Collapse
Affiliation(s)
- Claudia Barth
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Clinic of Cognitive Neurology, University of Leipzig Leipzig, Germany ; Leipzig Research Center for Civilization Diseases, University of Leipzig Leipzig, Germany ; Integrated Research and Treatment Center Adiposity Diseases, University of Leipzig Leipzig, Germany ; Berlin School of Mind and Brain, Mind and Brain Institute Berlin, Germany
| | - Julia Sacher
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Clinic of Cognitive Neurology, University of Leipzig Leipzig, Germany
| |
Collapse
|
6
|
Comasco E, Frokjaer VG, Sundström-Poromaa I. Functional and molecular neuroimaging of menopause and hormone replacement therapy. Front Neurosci 2014; 8:388. [PMID: 25538545 PMCID: PMC4259109 DOI: 10.3389/fnins.2014.00388] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/12/2014] [Indexed: 01/30/2023] Open
Abstract
The level of gonadal hormones to which the female brain is exposed considerably changes across the menopausal transition, which in turn, is likely to be of great relevance for neurodegenerative diseases and psychiatric disorders. However, the neurobiological consequences of these hormone fluctuations and of hormone replacement therapy in the menopause have only begun to be understood. The present review summarizes the findings of thirty-five studies of human brain function, including functional magnetic resonance imaging, positron and single-photon computed emission tomography studies, in peri- and postmenopausal women treated with estrogen, or estrogen-progestagen replacement therapy. Seven studies using gonadotropin-releasing hormone agonist intervention as a model of hormonal withdrawal are also included. Cognitive paradigms are employed by the majority of studies evaluating the effect of unopposed estrogen or estrogen-progestagen treatment on peri- and postmenopausal women's brain. In randomized-controlled trials, estrogen treatment enhances activation of fronto-cingulate regions during cognitive functioning, though in many cases no difference in cognitive performance was present. Progestagens seems to counteract the effects of estrogens. Findings on cognitive functioning during acute ovarian hormone withdrawal suggest a decrease in activation of the left inferior frontal gyrus, thus essentially corroborating the findings in postmenopausal women. Studies of the cholinergic and serotonergic systems indicate these systems as biological mediators of hormonal influences on the brain. More, hormonal replacement appears to increase cerebral blood flow in several cortical regions. On the other hand, studies on emotion processing in postmenopausal women are lacking. These results call for well-powered randomized-controlled multi-modal prospective neuroimaging studies as well as investigation on the related molecular mechanisms of effects of menopausal hormonal variations on the brain.
Collapse
Affiliation(s)
- Erika Comasco
- Department of Neuroscience, Uppsala University Uppsala, Sweden ; Department of Women's and Children's Health, Uppsala University Uppsala, Sweden
| | - Vibe G Frokjaer
- Department of Neurology, Center for Integrated Molecular Brain Imaging and Neurobiology Research Unit 6931, Copenhagen University Hospital Copenhagen, Denmark
| | | |
Collapse
|
7
|
Abstract
Background:5-hydroxytryptamine receptor 2A (5-HT2A) participates in diverse psychiatric disorders by regulating the activity of serotonin. Some previous studies have also suggested that the receptor is involved in cognitive abilities of disease groups. We hypothesize that some functional genetic variants in 5-HT2A have certain specific influences on cognitive abilities in a normal population.Method:To confirm this hypothesis, two polymorphisms (rs6313 and rs4941573) in 5-HT2A were selected, and a population-based study was performed in a young healthy Chinese Han cohort.Results:The results indicated that the rs6313 and rs4941573 were associated with touching blocks and mental rotation-3D error ratio in males, and the rs4941573 was associated with visuo-spatial working memory in the whole cohort.Conclusion:All the findings suggest that 5-HT2A participates in human spatial cognitive abilities and spatial working memory.
Collapse
|
8
|
Abstract
There are sex differences in the prevalence and presentation of many psychiatric disorders. Various trends in symptomatology have emerged that are thought to be linked to periods of hormonal fluctuations such as with menses, pregnancy or menopause. With data from animal and human studies, it has become clear that there is an important interplay between the serotonergic system and gonadal hormones. The majority of the research to date has focused on the influence that estrogen has within the CNS and, in particular, how it leads to an overall increase in serotonin synthesis and availability. In reviewing this female-specific topic we hope to raise awareness to sex/gender differences in psychopathology, help identify at-risk populations and consider development of new treatment options. Future research will also need to consider the influence that progesterone and oxytocin may have on sex-specific psychopathology as well as incorporate neuroimaging and consider the influence of hormones on the serotonergic system at a genetic level.
Collapse
Affiliation(s)
- Elise Hall
- Department of Psychiatry & Behavioural Neurosciences, Centre for Mountain Health Services, McMaster University, 100 West 5th, Box 585, Hamilton, ON, Canada
| | - Meir Steiner
- Women's Health Concerns Clinic, St Joseph's Healthcare, Hamilton, ON, Canada
| |
Collapse
|
9
|
Kelemen LE, Atkinson EJ, de Andrade M, Pankratz VS, Cunningham JM, Wang A, Hilker CA, Couch FJ, Sellers TA, Vachon CM. Linkage analysis of obesity phenotypes in pre- and post-menopausal women from a United States mid-western population. BMC MEDICAL GENETICS 2010; 11:156. [PMID: 21062459 PMCID: PMC2992490 DOI: 10.1186/1471-2350-11-156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 11/09/2010] [Indexed: 12/28/2022]
Abstract
Background Obesity has a strong genetic influence, with some variants showing stronger associations among women than men. Women are also more likely to distribute weight in the abdomen following menopause. We investigated whether genetic loci link with obesity-related phenotypes differently by menopausal status. Methods We performed univariate and bivariate linkage analysis for the phenotypes of body mass index (BMI), waist (W) and hip (H) circumferences (WC, HC), and WH ratio (WHR) separately among 172 pre-menopausal and 405 post-menopausal women from 90 multigenerational families using a genome scan with 403 microsatellite markers. Bivariate analysis used pair-wise combinations of obesity phenotypes to detect linkage at loci with pleiotropic effects for genetically correlated traits. BMI was adjusted in models of WC, HC and WHR. Results Pre-menopausal women, compared to post-menopausal women, had higher heritability for BMI (h2 = 94% versus h2 = 39%, respectively) and for HC (h2 = 99% versus h2 = 43%, respectively), and lower heritability for WC (h2 = 29% versus h2 = 61%, respectively) and for WHR (h2 = 39% versus h2 = 57%, respectively). Among pre-menopausal women, the strongest evidence for linkage was for the combination of BMI and HC traits at 3p26 (bivariate LOD = 3.65) and at 13q13-q14 (bivariate LOD = 3.59). Among post-menopausal women, the highest level of evidence for genetic linkage was for HC at 4p15.3 (univariate LOD = 2.70) and 14q13 (univariate LOD = 2.51). WC was not clearly linked to any locus. Conclusions These results support a genetic basis for fat deposition that differs by menopausal status, and suggest that the same loci encode genes that influence general obesity (BMI) and HC, specifically, among pre-menopausal women. However, lower heritability among pre-menopausal women for WC and WHR suggests that pre-menopausal waist girth may be influenced to a greater extent by controllable environmental factors than post-menopausal waist girth. Possibly, targeted interventions for weight control among pre-menopausal women may prevent or attenuate post-menopausal abdominal weight deposition.
Collapse
Affiliation(s)
- Linda E Kelemen
- Department of Population Health Research, Alberta Health Services-Cancer Care, Calgary, AB, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Previous studies in postmenopausal women have reported that estrogen treatment (ET) modulates the risk for developing Alzheimer's disease (AD). It has recently been hypothesized that there may be a "critical period" around the time of menopause during which the prescription of ET may reduce the risk of developing AD in later life. This effect may be most significant in women under 49 years old. Furthermore, prescription of ET after this point may have a neutral or negative effect, particularly when initiated in women over 60-65 years old. In this paper, we review recent studies that use in vivo techniques to analyze the neurobiological mechanisms that might underpin estrogen's effects on the brain postmenopause. Consistent with the "critical period" hypothesis, these studies suggest that the positive effects of estrogen are most robust in young women and in older women who had initiated ET around the time of menopause.
Collapse
Affiliation(s)
- Michael C Craig
- Centre for Female Health and Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Kings College London, London, United Kingdom.
| | | |
Collapse
|
11
|
Sassarini J, Lumsden MA. Hot flushes: are there effective alternatives to estrogen? ACTA ACUST UNITED AC 2010; 16:81-8. [DOI: 10.1258/mi.2010.010007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hot flushes are the most common indication for the prescription of hormone replacement therapy (HRT) since it is effective in over 80% of cases. In 1995, 37% of American women took HRT, principally for this purpose. However, over the last five years, publications such as those from the Women's Health Initiative (WHI) have caused concern among women since they perceive that the risks outweigh the benefits. Following this publication, half of the women taking HRT in the UK, USA and New Zealand discontinued HRT. With the discontinuation of estrogen many women re-developed hot flushes; however only a small number (18%) of women report restarting hormone therapy. The majority of these (76%) for the recurrence of severe hot flushes or night sweats. Alternatives are available, but limited knowledge on aetiology and mechanisms of hot flushing represents a major obstacle for the development of new, targeted, non-hormonal treatments, and no current alternatives are as effective as estrogen.
Collapse
Affiliation(s)
- Jenifer Sassarini
- Department of Developmental Medicine, University of Glasgow, Glasgow, UK
| | - Mary Ann Lumsden
- Department of Developmental Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
12
|
Overexpression of serotonin receptor and transporter mRNA in blood leukocytes of antipsychotic-free and antipsychotic-naïve schizophrenic patients: gender differences. Schizophr Res 2010; 121:160-71. [PMID: 20451351 DOI: 10.1016/j.schres.2010.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 03/23/2010] [Accepted: 03/29/2010] [Indexed: 11/20/2022]
Abstract
BACKGROUND Abnormal serotonin (5-HT) activity has been implicated in schizophrenia. However, the role of 5-HT receptors and transporter (5-HTT) in male and female schizophrenia remains largely unknown. Recent studies suggest that 5-HT system expressed in the peripheral leukocyte could be a marker of the illness. METHODS 46 acute schizophrenic patients (male=35, female=11) that were antipsychotic-naïve or antipsychotic-free for at least three months (average=27.3 months) and 44 age- and sex-matched healthy subjects (male=24, female=20) were included for blood leukocytes expression of 5-HT(1A), 5-HT(2A) and 5-HT(7) receptor and 5-HTT mRNA, using real-time PCR technique. RESULTS ANOVA analysis showed a significant increase of 5HT(2A) mRNA and 5-HTT mRNA (each >2-fold, P<0.01) and a trend increase of 5HT(1A) mRNA (P<0.15) and 5-HT(7) mRNA (P<0.09) level in blood leukocytes of pooled schizophrenic patients than in the healthy subjects. The elevation was mainly found in the male patients. Within-sex analysis showed that the male antipsychotic-free schizophrenic patients exhibited greater 5-HT(1A) and 5-HT(7) mRNA expression (P<0.05, each ) whereas female antipsychotic-free patients showed decreased 5-HT(1A) mRNA expression (P<0.05) when compared with the male and female healthy subjects, respectively. The correlations between 5-HT mRNA and clinical symptoms (PANSS scales) were calculated. CONCLUSIONS The present findings showed an abnormal expression of leukocyte 5-HT system in antipsychotic-free and antipsychotic-naïve schizophrenia especially in the male patients. Because of the greater accumulative dose of antipsychotics in the relatively smaller number of the female patients of the study, further study is needed to confirm the present findings. If replicated, blood serotonergic markers could add to the diagnosis and individualized pharmacotherapy of schizophrenic patients, especially the male patients.
Collapse
|
13
|
Maki PM, Dumas J. Mechanisms of action of estrogen in the brain: insights from human neuroimaging and psychopharmacologic studies. Semin Reprod Med 2009; 27:250-9. [PMID: 19401956 DOI: 10.1055/s-0029-1216278] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Use of estrogen therapy in the perimenopausal and postmenopausal periods has been shown in several clinical trials to help women maintain a premenopausal level of cognitive function. What is not yet fully understood is how the neurobiological effects of estrogen contribute to these cognitive effects. This review explores data from two related bodies of human literature that provide compelling evidence in support of the biological plausibility that estrogen treatment can benefit cognition. The first half of the literature review focuses on studies from the estrogen neuroimaging literature, and the second half focuses on pharmacologic challenge studies assessing estrogen-neurotransmitter interactions. We integrate these two bodies of literature by focusing on the neurophysiologic underpinnings of estrogen effects on cognition and linking these clinical studies to preclinical studies. The focus on verbal memory is important because it is a cognitive function that has been shown to change with estrogen treatment and predict Alzheimer's disease risk but is not addressed by preclinical studies. Overall, we conclude that estrogen interacts with cholinergic and serotonergic systems to affect hippocampal and frontal cortical brain areas and thereby enhance memory, particularly at the retrieval stage.
Collapse
Affiliation(s)
- Pauline M Maki
- Departments of Psychiatry and Psychology, Center for Cognitive Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
14
|
Perez-Garcia G, Meneses A. Memory formation, amnesia, improved memory and reversed amnesia: 5-HT role. Behav Brain Res 2008; 195:17-29. [DOI: 10.1016/j.bbr.2007.11.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Revised: 11/27/2007] [Accepted: 11/27/2007] [Indexed: 11/16/2022]
|
15
|
Frey BN, Lord C, Soares CN. Depression during menopausal transition: a review of treatment strategies and pathophysiological correlates. ACTA ACUST UNITED AC 2008; 14:123-8. [PMID: 18714078 DOI: 10.1258/mi.2008.008019] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It has long been recognized that women are at a higher risk than men to develop depression and that such risk is particularly associated with reproductive cycle events. Recent long-term, prospective studies have demonstrated that the transition to menopause is associated with higher risk for new onset and recurrent depression. A number of biological and environmental factors are independent predictors for depression in this population, including the presence of hot flushes, sleep disturbance, history of severe premenstrual syndrome or postpartum blues, ethnicity, history of stressful life events, past history of depression, body mass index, socioeconomic status and the use of hormones and antidepressants. Accumulated evidence suggests that ovarian hormones modulate serotonin and noradrenaline neurotransmission, a process that may be associated with underlying pathophysiological processes involved in the emergence of depressive symptoms during periods of hormonal fluctuation in biologically predisposed subpopulations. Transdermal estradiol and serotonergic and noradrenergic antidepressants are efficacious in the treatment of depression and vasomotor symptoms in symptomatic, midlife women. The identification of individuals whom might be at a higher risk for depression during menopausal transition could guide preventive strategies for this population.
Collapse
Affiliation(s)
- Benicio N Frey
- Women's Health Concerns Clinic (WHCC), Department of Psychiatry and Behavioural Neurosciences, McMaster University, James Street South, FB 638, Hamilton, ON L8P 3B6, Canada
| | | | | |
Collapse
|