1
|
Bolton PE, Ryder TB, Dakin R, Houtz JL, Moore IT, Balakrishnan CN, Horton BM. Neurogenomic landscape associated with status-dependent cooperative behaviour. Mol Ecol 2024:e17327. [PMID: 38511765 DOI: 10.1111/mec.17327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/04/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
The neurogenomic mechanisms mediating male-male reproductive cooperative behaviours remain unknown. We leveraged extensive transcriptomic and behavioural data on a neotropical bird species (Pipra filicauda) that performs cooperative courtship displays to understand these mechanisms. In this species, the cooperative display is modulated by testosterone, which promotes cooperation in non-territorial birds, but suppresses cooperation in territory holders. We sought to understand the neurogenomic underpinnings of three related traits: social status, cooperative display behaviour and testosterone phenotype. To do this, we profiled gene expression in 10 brain nuclei spanning the social decision-making network (SDMN), and two key endocrine tissues that regulate social behaviour. We associated gene expression with each bird's behavioural and endocrine profile derived from 3 years of repeated measures taken from free-living birds in the Ecuadorian Amazon. We found distinct landscapes of constitutive gene expression were associated with social status, testosterone phenotype and cooperation, reflecting the modular organization and engagement of neuroendocrine tissues. Sex-steroid and neuropeptide signalling appeared to be important in mediating status-specific relationships between testosterone and cooperation, suggesting shared regulatory mechanisms with male aggressive and sexual behaviours. We also identified differentially regulated genes involved in cellular activity and synaptic potentiation, suggesting multiple mechanisms underpin these genomic states. Finally, we identified SDMN-wide gene expression differences between territorial and floater males that could form the basis of 'status-specific' neurophysiological phenotypes, potentially mediated by testosterone and growth hormone. Overall, our findings provide new, systems-level insights into the mechanisms of cooperative behaviour and suggest that differences in neurogenomic state are the basis for individual differences in social behaviour.
Collapse
Affiliation(s)
- Peri E Bolton
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| | - T Brandt Ryder
- Migratory Bird Center, Smithsonian National Zoological Park, Washington, District of Columbia, USA
- Bird Conservancy of the Rockies, Fort Collins, Colorado, USA
| | - Roslyn Dakin
- Migratory Bird Center, Smithsonian National Zoological Park, Washington, District of Columbia, USA
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Jennifer L Houtz
- Department of Biology, Millersville University, Millersville, Pennsylvania, USA
- Department of Biology, Allegheny College, Meadville, Pennsylvania, USA
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Brent M Horton
- Department of Biology, Millersville University, Millersville, Pennsylvania, USA
| |
Collapse
|
2
|
Fuxjager MJ, Ryder TB, Moody NM, Alfonso C, Balakrishnan CN, Barske J, Bosholn M, Boyle WA, Braun EL, Chiver I, Dakin R, Day LB, Driver R, Fusani L, Horton BM, Kimball RT, Lipshutz S, Mello CV, Miller ET, Webster MS, Wirthlin M, Wollman R, Moore IT, Schlinger BA. Systems biology as a framework to understand the physiological and endocrine bases of behavior and its evolution-From concepts to a case study in birds. Horm Behav 2023; 151:105340. [PMID: 36933440 DOI: 10.1016/j.yhbeh.2023.105340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
Organismal behavior, with its tremendous complexity and diversity, is generated by numerous physiological systems acting in coordination. Understanding how these systems evolve to support differences in behavior within and among species is a longstanding goal in biology that has captured the imagination of researchers who work on a multitude of taxa, including humans. Of particular importance are the physiological determinants of behavioral evolution, which are sometimes overlooked because we lack a robust conceptual framework to study mechanisms underlying adaptation and diversification of behavior. Here, we discuss a framework for such an analysis that applies a "systems view" to our understanding of behavioral control. This approach involves linking separate models that consider behavior and physiology as their own networks into a singular vertically integrated behavioral control system. In doing so, hormones commonly stand out as the links, or edges, among nodes within this system. To ground our discussion, we focus on studies of manakins (Pipridae), a family of Neotropical birds. These species have numerous physiological and endocrine specializations that support their elaborate reproductive displays. As a result, manakins provide a useful example to help imagine and visualize the way systems concepts can inform our appreciation of behavioral evolution. In particular, manakins help clarify how connectedness among physiological systems-which is maintained through endocrine signaling-potentiate and/or constrain the evolution of complex behavior to yield behavioral differences across taxa. Ultimately, we hope this review will continue to stimulate thought, discussion, and the emergence of research focused on integrated phenotypes in behavioral ecology and endocrinology.
Collapse
Affiliation(s)
- Matthew J Fuxjager
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02906, USA.
| | - T Brandt Ryder
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20013, USA
| | - Nicole M Moody
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02906, USA
| | - Camilo Alfonso
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | | | - Julia Barske
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Mariane Bosholn
- Animal Behavior Lab, Ecology Department, National Institute for Amazon Research, Manaus, Amazonas, Brazil
| | - W Alice Boyle
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Ioana Chiver
- GIGA Neurosciences, University of Liège, Liege, Belgium
| | - Roslyn Dakin
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20013, USA
| | - Lainy B Day
- Department of Biology, University of Mississippi, University, MS 38677, USA
| | - Robert Driver
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Leonida Fusani
- Department of Behavioral and Cognitive Biology, University of Vienna, and Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna
| | - Brent M Horton
- Department of Biology, Millersville University, Millersville, PA 17551, USA
| | - Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Sara Lipshutz
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | | | - Michael S Webster
- Cornell Lab of Ornithology, Ithaca, NY 14853, USA; Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Morgan Wirthlin
- Computational Biology Department, Carnegie Melon University, Pittsburgh, PA 15213, USA
| | - Roy Wollman
- Department of Physiology and Integrative Biology, University of California, Los Angeles, CA 90095, USA
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Barney A Schlinger
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA; Department of Physiology and Integrative Biology, University of California, Los Angeles, CA 90095, USA; Smithsonian Tropical Research Institute, Panama City, Panama.
| |
Collapse
|
3
|
Alfonso C, Jones BC, Vernasco BJ, Moore IT. Integrative Studies of Sexual Selection in Manakins, a Clade of Charismatic Tropical Birds. Integr Comp Biol 2021; 61:1267-1280. [PMID: 34251421 DOI: 10.1093/icb/icab158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/07/2021] [Accepted: 07/07/2021] [Indexed: 11/14/2022] Open
Abstract
The neotropical manakins (family Pipridae) provide a great opportunity for integrative studies of sexual selection as nearly all of the 51 species are lek-breeding, an extreme form of polygyny, and highly sexually dimorphic both in appearance and behavior. Male courtship displays are often elaborate and include auditory cues, both vocal and mechanical, as well as visual elements. In addition, the displays are often extremely rapid, highly acrobatic, and, in some species, multiple males perform coordinated displays that form the basis of long-term coalitions. Male manakins also exhibit unique neuroendocrine, physiological, and anatomical adaptations to support the performance of these complex displays and the maintenance of their intricate social systems. The Manakin Genomics Research Coordination Network (Manakin RCN, https://www.manakinsrcn.org) has brought together researchers (many in this symposium and this issue) from across disciplines to address the implications of sexual selection on evolution, ecology, behavior, and physiology in manakins. The objective of this paper is to present some of the most pertinent and integrative manakin research as well as introducing the papers presented in this issue. The results discussed at the manakin symposium, part of the 2021 Society for Integrative and Comparative Biology Conference, highlight the remarkable genomic, behavioral, and physiological adaptations as well as the evolutionary causes and consequences of strong sexual selection pressures that are evident in manakins.
Collapse
Affiliation(s)
- Camilo Alfonso
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Blake C Jones
- Science and Mathematics, Bennington College, 1 College Dr., Bennington, VT 05201, USA
| | - Ben J Vernasco
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Schaedler LM, Taylor LU, Prum RO, Anciães M. CONSTRAINT AND FUNCTION IN THE PREDEFINITIVE PLUMAGES OF MANAKINS (AVES: PIPRIDAE). Integr Comp Biol 2021; 61:1363-1377. [PMID: 33956153 DOI: 10.1093/icb/icab063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Birds with delayed plumage maturation exhibit a drab predefinitive plumage, often despite gonad maturation, before developing the definitive plumage associated with increased reproductive success. Manakins are a diverse clade of neotropical lekking birds with extreme sexual dichromatism, radical sexual displays, and a unique diversity in the predefinitive plumages of males across species. Here, we provide the first full review of the natural history of manakin predefinitive plumages as the basis for qualitatively addressing the six major hypotheses about the production and function of predefinitive plumages. We find little evidence to support the possibilities that manakin predefinitive plumages are directly constrained by inflexible molt schedules, resource limitations to definitive coloration, or hormonal ties to reproductive behaviors. There is little evidence that could support a crypsis function, although direct experimentation is needed, and mimicry is refuted except for one unusual species in which predefinitive males sire young. Instead, evidence from a handful of well-studied species suggests that predefinitive plumages help young males explicitly signal their social status, and thereby gain entry to the social hierarchies which dictate future reproductive success. Our conclusions are especially influenced by the unique fact that males of at least 11 species throughout the family exhibit multiple predefinitive plumage stages with distinctively male patches. For each hypothesis, we highlight ways in which a better knowledge of female and young male birds offers critical opportunities for the use of manakins as a model clade.
Collapse
Affiliation(s)
- Laura M Schaedler
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM 69067-375, Brazil
| | - Liam U Taylor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Richard O Prum
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Marina Anciães
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM 69067-375, Brazil
| |
Collapse
|
5
|
Wingfield JC, Ramenofsky M, Hegner RE, Ball GF. Whither the challenge hypothesis? Horm Behav 2020; 123:104588. [PMID: 31525343 DOI: 10.1016/j.yhbeh.2019.104588] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 01/09/2023]
Abstract
Almost fifty years ago the advent of assay methods to measure circulating levels of hormones revolutionized endocrinology in relation to investigations of free-living and captive animals. This new field "environmental endocrinology" revealed that endocrine profiles in animals in their natural habitat were not only different from captive animals, but often deviated from predictions. It quickly became apparent that the organization and analysis of data from the field should be sorted by life history stages such as for reproductive processes, migration, molt etc. and spaced in time according to natural duration of those processes. Presentation of data by calendar date alone gives much simpler, even misleading, patterns. Stage-organized analyses revealed species-specific patterns of hormone secretion and dramatic inter-individual differences. The "Challenge Hypothesis" sparked exploration of these results, which diverged from expectations of hormone-behavior interactions. The hypothesis led to specific predictions about how the hypothalamo-pituitary-gonad axis, and particularly circulating patterns of testosterone, might respond to social challenges such as simulated territorial intrusions. Initially, a group of studies on free-living and captive birds played a key role in the formulation of the hypothesis. Over the decades since, the effects of social challenge and environmental context on hormonal responses have been tested in all vertebrate taxa, including humans, as well as in insects. Although it is now clear that the Challenge Hypothesis in its original form is simplistic, field and laboratory tests of the hypothesis have led to other concepts that have become seminal to the development of environmental endocrinology as a field. In this special issue these developments are addressed and examples from many different taxa enrich the emerging concepts, paving the way for investigations using recent technologies for genetic and transcriptome analyses.
Collapse
Affiliation(s)
- John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA.
| | - Marilyn Ramenofsky
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA
| | - Robert E Hegner
- ICF Incorporated, 27 Tanglewood Road, Amherst, MA 01002, USA
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
6
|
Termignoni-Garcia F, Louder MIM, Balakrishnan CN, O’Connell L, Edwards SV. Prospects for sociogenomics in avian cooperative breeding and parental care. Curr Zool 2020; 66:293-306. [PMID: 32440290 PMCID: PMC7233861 DOI: 10.1093/cz/zoz057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/20/2019] [Indexed: 01/08/2023] Open
Abstract
For the last 40 years, the study of cooperative breeding (CB) in birds has proceeded primarily in the context of discovering the ecological, geographical, and behavioral drivers of helping. The advent of molecular tools in the early 1990s assisted in clarifying the relatedness of helpers to those helped, in some cases, confirming predictions of kin selection theory. Methods for genome-wide analysis of sequence variation, gene expression, and epigenetics promise to add new dimensions to our understanding of avian CB, primarily in the area of molecular and developmental correlates of delayed breeding and dispersal, as well as the ontogeny of achieving parental status in nature. Here, we outline key ways in which modern -omics approaches, in particular genome sequencing, transcriptomics, and epigenetic profiling such as ATAC-seq, can be used to add a new level of analysis of avian CB. Building on recent and ongoing studies of avian social behavior and sociogenomics, we review how high-throughput sequencing of a focal species or clade can provide a robust foundation for downstream, context-dependent destructive and non-destructive sampling of specific tissues or physiological states in the field for analysis of gene expression and epigenetics. -Omics approaches have the potential to inform not only studies of the diversification of CB over evolutionary time, but real-time analyses of behavioral interactions in the field or lab. Sociogenomics of birds represents a new branch in the network of methods used to study CB, and can help clarify ways in which the different levels of analysis of CB ultimately interact in novel and unexpected ways.
Collapse
Affiliation(s)
- Flavia Termignoni-Garcia
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Matthew I M Louder
- International Research Center for Neurointelligence, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | - Lauren O’Connell
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
7
|
Vernasco BJ, Moore IT. Testosterone as a mediator of the tradeoff between cooperation and competition in the context of cooperative reproductive behaviors. Gen Comp Endocrinol 2020; 288:113369. [PMID: 31857075 DOI: 10.1016/j.ygcen.2019.113369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/18/2019] [Accepted: 12/13/2019] [Indexed: 11/20/2022]
Abstract
Behavioral tradeoffs occur when the expression of one behavior detracts from the expression of another. Understanding the proximate mediators of behavioral tradeoffs is important as these tradeoffs can act as potential constraints on evolutionary responses to selection. Here, we describe the tradeoff between cooperation and competition faced by species that exhibit cooperative reproductive behaviors and propose that testosterone is a key hormonal mediator of the tradeoff. Cooperative reproductive behaviors occur when multiple individuals coordinate their efforts to gain a reproductive advantage over other individuals and/or those individuals attempting to reproduce in absence of cooperation. We propose that testosterone, a sex steroid known to mediate a number of physiological and behavioral actions associated with reproductive competition, is involved in mediating the tradeoff between cooperation and competition. To support this proposition, we first describe the importance of individual variation in behavior to the evolution of cooperative behaviors. We then describe how proximate mechanisms represent a prominent source of individual variation in social behaviors and highlight evidence suggesting testosterone mediates variation in cooperative behaviors. Two case studies in which the relationship between testosterone and cooperative behaviors have been investigated in detail are then summarized. Throughout we highlight the importance of studying individual variation to understand the mechanistic basis of behaviors, behavioral tradeoffs, and the evolution of cooperative reproductive behaviors more broadly.
Collapse
Affiliation(s)
- Ben J Vernasco
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA; School of Biological Sciences, Washington State University, Pullman, WA, USA.
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
8
|
Schlinger BA. Multidisciplinary science and the growth and future of behavioral neuroendocrinology: A perspective. Horm Behav 2020; 118:104618. [PMID: 31783027 DOI: 10.1016/j.yhbeh.2019.104618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Barney A Schlinger
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA; Smithsonian Tropical Research Institute, Panama City, Panama.
| |
Collapse
|
9
|
Vernasco BJ, Horton BM, Moore IT, Ryder TB. Reduced cooperative behavior as a cost of high testosterone in a lekking passerine bird. Behav Ecol 2019. [DOI: 10.1093/beheco/arz201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Abstract
Many studies have identified the reproductive benefits of cooperative behaviors, yet few have identified the mechanisms that underlie these behaviors. Mechanistic studies can inform our understanding of why some individuals are more or less cooperative, as well as identify the physiological constraints imposed upon the evolution of reproductive traits. Male wire-tailed manakins (Pipra filicauda) exhibit cooperative courtship behaviors and more cooperative territory holders have been shown to exhibit higher reproductive success. To begin to understand the proximate basis of cooperative display behaviors, we conducted both an observational study and an experimental study. Because coordinated courtship displays underlie this form of cooperation, our study also examined both the hormonal and social drivers of individual variation in courtship behavior more broadly (e.g., courtship display rates). Our observational study revealed that males with higher testosterone levels performed fewer cooperative display bouts. In addition, our experimental study demonstrated that the proportion of a male’s courtship displays that were cooperative decreased after being administered a testosterone-filled hormone implant. We found no relationship between an individual’s courtship display effort (i.e., display rate and time spent performing courtship displays) and circulating testosterone in either study. However, more cooperative males spent a greater proportion of time performing courtship displays than did less cooperative males, suggesting that testosterone may indirectly mediate courtship display behaviors by influencing a territory holder’s cooperative behavior. Overall, both our observational and experimental results suggest that reduced cooperative behavior is a cost of maintaining high levels of testosterone for territory-holding males.
Collapse
Affiliation(s)
- Ben J Vernasco
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Brent M Horton
- Department of Biology, Millersville University, Millersville, PA, USA
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - T Brandt Ryder
- Migratory Bird Center, Smithsonian Conservation Biology Institute,, Washington DC, USA
| |
Collapse
|
10
|
Vernasco BJ, Horton BM, Ryder TB, Moore IT. Sampling baseline androgens in free-living passerines: Methodological considerations and solutions. Gen Comp Endocrinol 2019; 273:202-208. [PMID: 30056137 DOI: 10.1016/j.ygcen.2018.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/18/2018] [Accepted: 07/25/2018] [Indexed: 12/28/2022]
Abstract
Obtaining baseline hormone samples can be challenging because circulating hormone levels often change rapidly due to the acute stress of capture. Although field protocols are established for accurately sampling baseline glucocorticoid concentrations, fewer studies have examined how common sampling techniques affect androgens levels. Indeed, many studies focused on understanding the functional significance of baseline androgen levels use sampling methods known to activate the endocrine responses to stress. To understand how different field sampling protocols affect plasma androgen levels, we measured the androgen response to two types of capture stressors in a free-living tropical bird, the wire-tailed manakin (Pipra filicauda). First, we subjected males to a standardized capture and restraint protocol lasting either 15 or 30 min. Second, males were passively captured in nets that were filmed (to establish exact duration of time between capture and blood sampling) and checked every 30 min. The first study showed that circulating plasma androgen levels decreased significantly following both 15 and 30 min of restraint in a cloth bag, with a trend for the 30 min samples to be lower than the 15 min samples. Further, the change in androgen levels was dependent on an individual's initial androgen levels, with the individuals with the highest initial levels registering the largest declines. The results of the second study suggest that hanging in a mist net for extended periods of time also leads to a decrease in circulating androgen levels, but this effect was weaker than that of capture and restraint in a cloth bag. Our findings demonstrate that, overall, circulating androgen levels decrease in response to common sampling techniques; a finding that has important implications for studies measuring baseline androgen levels in free-living birds. Future studies should prioritize sampling individuals immediately upon removal from the mist net, as handling and restraint have a strong negative effect on circulating androgen levels. When constant monitoring of the mist net is not possible, investigators should use video cameras to record the amount of time an individual spends in the net prior to blood sampling and then statistically control for the effect of this variable in analyses.
Collapse
Affiliation(s)
- Ben J Vernasco
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Brent M Horton
- Department of Biology, Millersville University, Millersville, PA 17551, USA
| | - T Brandt Ryder
- Migratory Bird Center, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
11
|
Moore IT, Vernasco BJ, Escallón C, Small TW, Ryder TB, Horton BM. Tales of testosterone: Advancing our understanding of environmental endocrinology through studies of neotropical birds. Gen Comp Endocrinol 2019; 273:184-191. [PMID: 29990493 DOI: 10.1016/j.ygcen.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/21/2018] [Accepted: 07/06/2018] [Indexed: 01/29/2023]
Abstract
Studies of birds have greatly advanced our understanding of how testosterone modulates complex phenotypes, specifically its role in mediating male reproductive and associated behaviors. Yet most of the foundational studies have been limited to northern latitude breeding species despite the fact that they represent only a small fraction of worldwide avian diversity. In contrast, phylogenetic, life-history, and mating system diversity all reach their apex in neotropical avifauna and yet these birds, along with more southern latitude species, remain very poorly understood from an endocrine perspective. Despite the relatively limited previous work on taxa breeding in Central and South America, empirical findings have had a disproportionately large impact on our understanding of testosterone's role in everything from geographic variation to behavioral roles and neuroplasticity. Here, we synthesize how studies of neotropical breeding avifauna have advanced our understanding of how testosterone's actions can and are associated with the broad patterns of phenotypic diversity that we see in birds. In addition, we outline how these studies can be used individually or in a comparative context to address fundamental questions about the environmental endocrinology of testosterone and to understand the diversity of roles that testosterone plays in mediating behavioral variation, reproductive strategies, and associated life-history trade-offs.
Collapse
Affiliation(s)
- I T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - B J Vernasco
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - C Escallón
- Departamento de Ciencias Básicas, Universidad de la Salle, Cra 2 No. 10-70, Bogotá, Colombia
| | - T W Small
- Department of Biology, University of Memphis, Memphis, TN 38152, USA
| | - T B Ryder
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, PO Box 37012, MRC 5503, Washington DC 20013, USA
| | - B M Horton
- Department of Biology, Millersville University of Pennsylvania, Millersville, PA 17551, USA
| |
Collapse
|
12
|
Pikus AE, Guindre-Parker S, Rubenstein DR. Testosterone, social status and parental care in a cooperatively breeding bird. Horm Behav 2018; 97:85-93. [PMID: 29054796 DOI: 10.1016/j.yhbeh.2017.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 01/14/2023]
Abstract
The steroid hormone testosterone not only plays an important role in gamete production, but also influences social and aggressive behavior. Testosterone varies seasonally, peaking when competition for mates is high and declining during parental care. Surprisingly, little is known about how testosterone mediates social conflict and parental care behavior in highly social species like cooperative breeders, where group members compete for breeding opportunities and provide parental or alloparental care. We examined how testosterone differs across breeding roles in the tropical cooperatively breeding superb starling, Lamprotornis superbus. We determined whether testosterone was elevated in larger groups, and whether testosterone was negatively related to total levels of parental and alloparental care. We found that male breeders had higher testosterone than male helpers and female breeders and helpers during incubation. However, breeding males exhibited a significant decline in testosterone from incubation to chick rearing, and all individuals had similar levels during the chick rearing stage. Additionally, helpers-but not breeders-in large social groups had higher testosterone than those in small groups. Finally, testosterone was not correlated with nestling provisioning rates during chick rearing, suggesting that natural variation in the low levels of testosterone observed during periods of high parental care does not affect nestling provisioning. Together, these results offer insight into how testosterone is related to breeding roles, intra-group conflict, and parental care in a highly social species.
Collapse
Affiliation(s)
- Alyxandra E Pikus
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Sarah Guindre-Parker
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA; Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Dustin R Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA; Center for Integrative Animal Behavior, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
13
|
Schwabl H, Dowling J, Baldassarre DT, Gahr M, Lindsay WR, Webster MS. Variation in song system anatomy and androgen levels does not correspond to song characteristics in a tropical songbird. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Fuxjager MJ, Eaton J, Lindsay WR, Salwiczek LH, Rensel MA, Barske J, Sorenson L, Day LB, Schlinger BA. Evolutionary patterns of adaptive acrobatics and physical performance predict expression profiles of androgen receptor - but not oestrogen receptor - in the forelimb musculature. Funct Ecol 2015; 29:1197-1208. [PMID: 26538789 DOI: 10.1111/1365-2435.12438] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1. Superior physical competence is vital to the adaptive behavioral routines of many animals, particularly those that engage in elaborate socio-sexual displays. How such traits evolve across species remains unclear. 2. Recent work suggests that activation of sex steroid receptors in neuromuscular systems is necessary for the fine motor skills needed to execute physically elaborate displays. Thus, using passerine birds as models, we test whether interspecific variation in display complexity predicts species differences in the abundance of androgen and estrogen receptors (AR and ERα) expressed in the forelimb musculature and spinal cord. 3. We find that small-scale evolutionary patterns in physical display complexity positively predict expression of the AR in the main muscles that lift and retract the wings. No such relationship is detected in the spinal cord, and we do not find a correlation between display behavior and neuromuscular expression of ERα. Also, we find that AR expression levels in different androgen targets throughout the body - namely the wing muscles, spinal cord, and testes - are not necessarily correlated, providing evidence that evolutionary forces may drive AR expression in a tissue-specific manner. 4. These results suggest co-evolution between the physical prowess necessary for display performance and levels of AR expression in avian forelimb muscles. Moreover, this relationship appears to be specific to muscle and AR-mediated, but not ERα-mediated, signaling. 5. Given that prior work suggests that activation of muscular AR is a necessary component of physical display performance, our current data support the hypothesis that sexual selection shapes levels of AR expressed in the forelimb skeletal muscles to help drive the evolution of adaptive motor abilities.
Collapse
Affiliation(s)
- Matthew J Fuxjager
- Department of Biology, Wake Forest University, 228 Winston Hall, Winston-Salem, NC 27109, USA ; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA ; Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joy Eaton
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Willow R Lindsay
- Department of Biology, University of Mississippi, University, MS 38677, USA
| | - Lucie H Salwiczek
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA ; Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Michelle A Rensel
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Julia Barske
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Laurie Sorenson
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lainy B Day
- Department of Biology, University of Mississippi, University, MS 38677, USA
| | - Barney A Schlinger
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA ; Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA ; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA ; Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancón, Panama
| |
Collapse
|
15
|
Hattori T, Wilczynski W. Differences in forebrain androgen receptor expression in winners and losers of male anole aggressive interactions. Brain Res 2014; 1582:45-54. [PMID: 25069090 DOI: 10.1016/j.brainres.2014.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 01/22/2023]
Abstract
Size matched male green anoles (Anolis carolinensis) were paired in a neutral setting and allowed to engage in aggressive displays. Winners and losers were apparent in each pair within 90min, resulting in stable dominant/subordinate dyads. Androgen receptor (AR) expression was assessed at three time points after the initial pairing, 2h, 3 days, and 10 days in dominants, subordinates, and two groups of control males housed alone or with a female for an equal period of time. Expression was quantified in three forebrain areas that have been implicated in aggression and reproductive social behavior in this species, the preoptic area (POA), the anterior hypothalamus (AH), septal area (SEP), and ventromedial nucleus of the posterior division of the dorsal ventricular ridge (PDVRVM ). There were significant overall group differences in AR mRNA expression in the POA and AH that appeared to result from higher POA AR expression in dominant males compared to other groups, and generally lower AR expression in subordinate males. Pairwise comparison revealed that dominants' AR mRNA expression in the POA was significantly higher in the 2h and 3 day groups compared to that of subordinates, with a similar, but nonsignificant, difference in the 10 day group. Dominants had significantly higher AR mRNA expression in the AH compared to that of subordinates in the 2h group, but differences were not significant at later times. The results suggest that POA and AH sensitivity to androgens is increased in dominants compared to subordinates, and that the difference can be seen soon after the agonistic interaction establishing winners and losers.
Collapse
Affiliation(s)
- Tomoko Hattori
- Department of Psychology and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA.
| | - Walter Wilczynski
- Department of Psychology and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Neuroscience Institute, Georgia State University, PO Box 5010, Atlanta, GA 30302-5010, USA.
| |
Collapse
|
16
|
Schlinger BA, Barske J, Day L, Fusani L, Fuxjager MJ. Hormones and the neuromuscular control of courtship in the golden-collared manakin (Manacus vitellinus). Front Neuroendocrinol 2013; 34:143-56. [PMID: 23624091 PMCID: PMC3995001 DOI: 10.1016/j.yfrne.2013.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/16/2022]
Abstract
Many animals engage in spectacular courtship displays, likely recruiting specialized neural, hormonal and muscular systems to facilitate these performances. Male golden-collared manakins (Manacus vitellinus) of Panamanian rainforests perform physically elaborate courtship displays that include novel forms of visual and acoustic signaling. We study the behavioral neuroendocrinology of this male's courtship, combining field behavioral observations with anatomical, biochemical and molecular laboratory-based studies. Seasonally, male courtship is activated by testosterone with little correspondence between testosterone levels and display intensity. Females prefer males whose displays are exceptionally frequent, fast and accurate. The activation of androgen receptors (AR) is crucial for optimal display performance, with AR expressed at elevated levels in several neuromuscular tissues. Apparently, courtship enlists an elaborate androgen-dependent network that includes spinal motoneurons, skeletal muscles and somatosensory systems. This work highlights the value of studying non-traditional species to illuminate physiological adaptations and, hopefully, stimulates future research on other species with complex behaviors.
Collapse
Affiliation(s)
- Barney A Schlinger
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
17
|
Voigt C, Leitner S. Testosterone-dependency of male solo song in a duetting songbird--evidence from females. Horm Behav 2013; 63:122-7. [PMID: 23085444 DOI: 10.1016/j.yhbeh.2012.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 09/04/2012] [Accepted: 10/10/2012] [Indexed: 12/24/2022]
Abstract
For male songbirds of the temperate zone there is a tight link between seasonal song behaviour and circulating testosterone levels. Such a relationship does not seem to hold for tropical species where singing can occur year-round and breeding seasons are often extended. White-browed sparrow weavers (Plocepasser mahali) are cooperatively breeding songbirds with a dominant breeding pair and male and female subordinates found in eastern and southern Africa. Each group defends an all-purpose territory year-round. While all group members sing duets and choruses, the most dominant male additionally sings a solo song that comprises a distinct and large syllable repertoire. Previous studies suggested this type of song being associated with reproduction but failed to support a relationship with males' circulating testosterone levels. The present study aimed to investigate the steroid hormone sensitivity of the solo song in more detail. We found that dominant males had significantly higher circulating testosterone levels than subordinates during the early and late breeding seasons. No changes in solo song characteristics were found between both time points. Further, experimental implantation of captive adult females with exogenous testosterone induced solo singing within one week of treatment. Such females produced male-typical song regarding overall structure and syllable composition. Sex differences existed, however, concerning singing activity, repertoire size and temporal organisation of song. These results suggest that solo singing in white-browed sparrow weavers is under the control of gonadal steroid hormones. Moreover, the behaviour is not male-specific but can be activated in females under certain conditions.
Collapse
Affiliation(s)
- Cornelia Voigt
- Max Planck Institute for Ornithology, Department of Behavioural Neurobiology, Eberhard-Gwinner-Strasse, D-82319 Seewiesen, Germany.
| | | |
Collapse
|
18
|
Ryder TB, Horton BM, Moore IT. Understanding testosterone variation in a tropical lek-breeding bird. Biol Lett 2011; 7:506-9. [PMID: 21325306 DOI: 10.1098/rsbl.2010.1219] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Male reproductive coalitions, in which males cooperate to attract females, are a rare strategy among vertebrates. While some studies have investigated ultimate aspects of these relationships, little is known about the mechanistic role that hormones play in modulating cooperative behaviours. Here, we examined male testosterone variation in a tropical lekking bird, the wire-tailed manakin (Pipra filicauda), which exhibits cooperative male-male display coalitions. We found that testosterone levels in territorial males were comparable to those of temperate breeding birds, a surprising result given their environmental, social and reproductive dynamics. In addition, social status rather than plumage was a strong predictor of testosterone variation. Territorial males had significantly higher testosterone levels than did two other plumage classes of floater males, who do not hold territories. We hypothesize that testosterone variation plays an important role in the establishment of male dominance hierarchies (competition), while concurrently facilitating stable display partnerships (cooperation).
Collapse
Affiliation(s)
- Thomas B Ryder
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, PO Box 37012-MRC5503, Washington, DC 20008, USA.
| | | | | |
Collapse
|