1
|
Sampaio LV, Landim HRDS, Vazão AR, Fiais GA, de Freitas RN, Veras ASC, Dornelles RCM, Fakhouri WD, Lima RR, Teixeira GR, Chaves-Neto AH. Effects of a supraphysiological dose of testosterone cypionate on salivary gland function in adult male Wistar rats. J Steroid Biochem Mol Biol 2024; 243:106587. [PMID: 39004377 DOI: 10.1016/j.jsbmb.2024.106587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
The abusive use of anabolic androgenic steroids has become a serious health problem worldwide, but its effects on oral health are still poorly understood. Therefore, the objective of this study was to evaluate the effects of a supraphysiological dose of testosterone cypionate (TC) on salivary biochemical, histomorphology, immunohistochemistry, and redox state parameters of parotid and submandibular glands. Twenty male Wistar rats, 12 weeks old, were divided into two groups (n=10/group): a control group and TC group, which received a dose of 20 mg/kg, once a week, for 6 weeks. Post treatment, the saliva and glands were collected. A supraphysiological dose of TC increased plasma and salivary testosterone concentrations. Although TC did not alter salivary flow, pH, and buffering capacity, the treatment increased the salivary secretion of total protein and reduced amylase, calcium, phosphate, and potassium. TC reduced the connective tissue area in the parotid gland and acinar area of the submandibular gland, while increasing the granular convoluted tubule area in the submandibular gland. Proliferating cell nuclear antigen was higher in the acinar cells of the submandibular glands from the TC group. Moreover, TC increased concentrations of total oxidant capacity and damaged lipids in both salivary glands, while total antioxidant activity and uric acid were lower in the submandibular gland, and reduced glutathione was higher in both glands. Superoxide dismutase, catalase, and glutathione peroxidase activities were higher in the parotid gland, while only glutathione peroxidase activity was lower in the submandibular gland of the TC group. In conclusion, TC abuse may be a potential factor for dysfunction of the parotid and submandibular glands, becoming a risk factor for the oral and systemic health of users.
Collapse
Affiliation(s)
- Larissa Victorino Sampaio
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil; Multicentric Postgraduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | | | - Arieli Raymundo Vazão
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil; Postgraduate Program in Sciences, Pediatric Oral Health, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | - Gabriela Alice Fiais
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil; Multicentric Postgraduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | - Rayara Nogueira de Freitas
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil; Postgraduate Program in Sciences, Pediatric Oral Health, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | - Allice Santos Cruz Veras
- Department of Physical Education, São Paulo State University (UNESP), School of Technology and Sciences, Presidente Prudente, Brazil; Multicentric Postgraduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | - Rita Cassia Menegatti Dornelles
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil; Multicentric Postgraduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, USA
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para (UFPA), Belem, Brazil
| | - Giovana Rampazzo Teixeira
- Department of Physical Education, São Paulo State University (UNESP), School of Technology and Sciences, Presidente Prudente, Brazil; Multicentric Postgraduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | - Antonio Hernandes Chaves-Neto
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil; Multicentric Postgraduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil.
| |
Collapse
|
2
|
Wankeu-Nya M, Djeumeni ON, Nde Z, Tchamadeu MC, Kengne TI, Hatho TDH, Koloko BL, Massoma LD, Dongmo AB, Moundipa FP, Watcho P. Aphrodisiac and androgenic effects of the aqueous extract of the roots of Vepris afzelii on cyproterone acetate-induced hypogonadism in rat. Int J Impot Res 2024:10.1038/s41443-024-00892-9. [PMID: 38684852 DOI: 10.1038/s41443-024-00892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
This work aimed to evaluate the effects of the aqueous extract of Vepris afzelii roots on a rat model of hypogonadism. Phytochemical screening and acute toxicity of the extract were performed using different procedures. Hypogonadism was induced orally in adult Wistar rats using cyproterone acetate (30 mg/kg) for ten days. Besides six normal rats (10 ml/kg of distilled water, normal control), 30 hypogonadal rats were subdivided into five groups of six animals each, receiving for 14 days: distilled water (10 ml/kg, hypogonadal control), testosterone (4 mg/kg/3days) and the extract of V. afzelii (100, 200 and 400 mg/kg). Sexual behavior, sperm parameters, testes function and structure were assessed. Compared to the normal controls, significant (p = 0.0000) increases in mount (24 ± 0.94 seconds vs. 1200 ± 00 seconds) and intromission (49.16 ± 10.85 seconds vs. 1200 ± 00 seconds) latencies, and post-ejaculatory interval (381.72 ± 37.55 seconds vs. 1200 ± 00 seconds) were observed in all groups receiving cyproterone acetate on day 0. Total inhibitions of mounts (63.50 ± 8.91 vs. 00 ± 00), intromissions (36.66 ± 3.51 vs. 00 ± 00) (p = 0.0000), ejaculations (2.83 ± 00 vs. 00 ± 00, p = 0.0002) frequencies and mean copulatory interval (627.30 ± 81.80 vs. 00 ± 00, p = 0.0000) were also observed in these groups. Moreover, decreases in daily sperm production (2.65 ± 0.19 vs. 1.17 ± 0.08, p = 0.0498), percentage of sperm mobility (78.64 ± 8.41 vs. 10.12 ± 2.32), serum testosterone level (8.39 ± 0.63 ng/dl vs. 1.68 ± 0.19 ng/dl), diameter of seminiferous tubules (111.97 ± 0.51 µm vs. 94.51 ± 0.57 µm) and height of germinal epithelium (46.58 ± 0.34 µm vs. 33.74 ± 0.66 µm) (p = 0.0000) associated with increases in sperm transit (3.13 ± 0.45 vs. 11.07 ± 1.45, p = 0.0000) were also observed in these groups. Interestingly, compared to hypogonadal control and day 0, the administration of V. afzelii extract induced significant (p = 0.0000) improvements in all these altered parameters with 400 mg/kg being the most active dose. These results, attributed to saponins, flavonoids, polyphenols and triterpenes detected in this plant's extract confirm its traditional usage and could be useful for the management of patients suffering from hypogonadism.
Collapse
Affiliation(s)
- Modeste Wankeu-Nya
- Laboratory of Biology and Physiology of Animal Organisms, Department of Animal Organisms Biology, Faculty of Science, University of Douala, Douala, Cameroon.
| | - Ornéla Néely Djeumeni
- Laboratory of Biology and Physiology of Animal Organisms, Department of Animal Organisms Biology, Faculty of Science, University of Douala, Douala, Cameroon
| | - Zacharie Nde
- Laboratory of Biology and Physiology of Animal Organisms, Department of Animal Organisms Biology, Faculty of Science, University of Douala, Douala, Cameroon
| | - Marie Claire Tchamadeu
- Laboratory of Biology and Physiology of Animal Organisms, Department of Animal Organisms Biology, Faculty of Science, University of Douala, Douala, Cameroon
| | - Tomutou Inès Kengne
- Laboratory of Biology and Physiology of Animal Organisms, Department of Animal Organisms Biology, Faculty of Science, University of Douala, Douala, Cameroon
| | - Towo Dominique Hyacinthe Hatho
- Laboratory of Biology and Physiology of Animal Organisms, Department of Animal Organisms Biology, Faculty of Science, University of Douala, Douala, Cameroon
| | - Brice Landry Koloko
- Laboratory of Biotechnologies, Department of Thermal Engineering and Energy, University Institute of Technology, University of Douala, Douala, Cameroon
| | - Lembè Dieudonné Massoma
- Laboratory of Biology and Physiology of Animal Organisms, Department of Animal Organisms Biology, Faculty of Science, University of Douala, Douala, Cameroon
| | - Alain Bertrand Dongmo
- Laboratory of Biology and Physiology of Animal Organisms, Department of Animal Organisms Biology, Faculty of Science, University of Douala, Douala, Cameroon
| | - Fewou Paul Moundipa
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Pierre Watcho
- Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| |
Collapse
|
3
|
Mullen C, Whalley BJ, Schifano F, Baker JS. Anabolic androgenic steroid abuse in the United Kingdom: An update. Br J Pharmacol 2020; 177:2180-2198. [PMID: 31989581 PMCID: PMC7174889 DOI: 10.1111/bph.14995] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/03/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
Anabolic androgenic steroids (AASs) are prescribed for medical conditions related to low testosterone. Abuse of AASs has surged as they become recognised as potent image enhancement drugs. The primary goal of most abusers is to obtain a more attractive outward appearance. Abuse is complex. There are a vast range of AAS substances illegally available, the nature of their true composition is difficult to evaluate. Users follow dosing patterns which incorporate a number of different AASs, in addition to other pharmaceutical substances believed to complement the desired physical effects or manage unwanted effects. Animal work and medical case reports suggest potential to cause serious hepatotoxicity, plus possible neurotoxicity, nephrotoxicity and damage to the cardiovascular and reproductive systems. As the long-term AASs users reach maturity, further controlled experimentation, with larger sample sizes, is required. Data gathering should be directed towards the most vulnerable group of AAS users, females and adolescent boys.
Collapse
Affiliation(s)
- Carrie Mullen
- School of Computing, Engineering and Physical SciencesUniversity of the West of ScotlandPaisleyUK
| | - Benjamin J. Whalley
- School of Chemistry, Food and Nutritional Sciences, and PharmacyThe University of ReadingReadingUK
| | - Fabrizio Schifano
- School of Life and Medical SciencesUniversity of HertfordshireHatfieldUK
| | - Julien S. Baker
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and HealthHong Kong Baptist UniversityKowloon TongHong Kong
| |
Collapse
|
4
|
Mad men, women and steroid cocktails: a review of the impact of sex and other factors on anabolic androgenic steroids effects on affective behaviors. Psychopharmacology (Berl) 2016; 233:549-69. [PMID: 26758282 PMCID: PMC4751878 DOI: 10.1007/s00213-015-4193-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/11/2015] [Indexed: 12/26/2022]
Abstract
RATIONALE For several decades, elite athletes and a growing number of recreational consumers have used anabolic androgenic steroids (AAS) as performance enhancing drugs. Despite mounting evidence that illicit use of these synthetic steroids has detrimental effects on affective states, information available on sex-specific actions of these drugs is lacking. OBJECTIVES The focus of this review is to assess information to date on the importance of sex and its interaction with other environmental factors on affective behaviors, with an emphasis on data derived from non-human studies. METHODS The PubMed database was searched for relevant studies in both sexes. RESULTS Studies examining AAS use in females are limited, reflecting the lower prevalence of use in this sex. Data, however, indicate significant sex-specific differences in AAS effects on anxiety-like and aggressive behaviors, interactions with other drugs of abuse, and the interplay of AAS with other environmental factors such as diet and exercise. CONCLUSIONS Current methods for assessing AAS use have limitations that suggest biases of both under- and over-reporting, which may be amplified for females who are poorly represented in self-report studies of human subjects and are rarely used in animal studies. Data from animal literature suggest that there are significant sex-specific differences in the impact of AAS on aggression, anxiety, and concomitant use of other abused substances. These results have relevance for human females who take these drugs as performance-enhancing substances and for transgender XX individuals who may illicitly self-administer AAS as they transition to a male gender identity.
Collapse
|
5
|
Allouh MZ, Daradka HM, Ghaida JHA. Influence of Cyperus esculentus tubers (tiger nut) on male rat copulatory behavior. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:331. [PMID: 26400055 PMCID: PMC4579607 DOI: 10.1186/s12906-015-0851-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 09/07/2015] [Indexed: 05/12/2024]
Abstract
Background Cyperus esculentus tubers (tiger nut) are one of the ancient food sources known to humanity. It is traditionally used in the Middle East to stimulate sexual arousal in men. However, there has been no scientific evidence about its assumed aphrodisiac properties. This study aimed to investigate the influence of tiger nut on the copulatory behavior of sexually active male rats. Methods Two sets of sexually active male rats -highly active and moderately active- were identified depending on baseline sexual activity. Rats in each set were randomly divided into a control and treated groups. Highly active rats were treated with doses of 1 and 2 g/kg/d of raw tiger nut powder, while moderately active rats were treated with a dose of 2 g/kg/d. After 30 days’ treatment, copulatory behavior and serum hormonal levels were measured and compared between the groups within each experimental set. Phytochemical analyses including liquid chromatography/mass spectrometry and atomic absorption were performed to elucidate the main constituents of tiger nut that may be responsible for altering serum hormones. Results Tiger nut stimulated sexual motivation in both highly and moderately active rats, indicated by reduced mount and intromission latencies in these rats compared to controls. Furthermore, tiger nut improved sexual performance, indicated by increased intromission frequency and ratio, in treated moderately active rats compared to controls. Serum testosterone levels increased significantly after tiger nut administration. Lastly, phytochemical analyses revealed the presence of quercetin, vitamin C, vitamin E, and mineral zinc in tiger nut. Conclusions Tiger nut has positive effects on the copulatory behavior of adult male rats.
Collapse
|
6
|
Sexual risk behaviors and steroid use among sexual minority adolescent boys. Drug Alcohol Depend 2015; 154:287-90. [PMID: 26144592 PMCID: PMC4646078 DOI: 10.1016/j.drugalcdep.2015.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/04/2015] [Accepted: 06/20/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND Previous research has extensively examined the relationship between the use of alcohol and illicit substances with sexual risk behaviors among sexual minority (i.e., gay and bisexual) male youth; however, no known studies have assessed the association of steroid use to risk behaviors among this population. METHODS Participants were 556 sexually active sexual minority adolescent boys (M age=16.2, SD=1.3), taken from a pooled dataset of the 14 jurisdictions from the 2005 and 2007 Youth Risk Behavior Surveys that assessed sexual orientation. The association between lifetime use of steroids and sexual risk behaviors were examined. RESULTS Controlling for number of sexual partners, depression, victimization, and race, boys who reported increased steroid use were at increased odds of engaging in condomless sex, OR=1.55, p=.003, and use of alcohol/drugs during sex, OR=1.48, p=.002. CONCLUSIONS Steroid use among sexual minority adolescent boys is prevalent and associated with HIV/STI sexual transmission risk behaviors.
Collapse
|