1
|
Hunter SK, S Angadi S, Bhargava A, Harper J, Hirschberg AL, D Levine B, L Moreau K, J Nokoff N, Stachenfeld NS, Bermon S. The Biological Basis of Sex Differences in Athletic Performance: Consensus Statement for the American College of Sports Medicine. Med Sci Sports Exerc 2023; 55:2328-2360. [PMID: 37772882 DOI: 10.1249/mss.0000000000003300] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
ABSTRACT Biological sex is a primary determinant of athletic performance because of fundamental sex differences in anatomy and physiology dictated by sex chromosomes and sex hormones. Adult men are typically stronger, more powerful, and faster than women of similar age and training status. Thus, for athletic events and sports relying on endurance, muscle strength, speed, and power, males typically outperform females by 10%-30% depending on the requirements of the event. These sex differences in performance emerge with the onset of puberty and coincide with the increase in endogenous sex steroid hormones, in particular testosterone in males, which increases 30-fold by adulthood, but remains low in females. The primary goal of this consensus statement is to provide the latest scientific knowledge and mechanisms for the sex differences in athletic performance. This review highlights the differences in anatomy and physiology between males and females that are primary determinants of the sex differences in athletic performance and in response to exercise training, and the role of sex steroid hormones (particularly testosterone and estradiol). We also identify historical and nonphysiological factors that influence the sex differences in performance. Finally, we identify gaps in the knowledge of sex differences in athletic performance and the underlying mechanisms, providing substantial opportunities for high-impact studies. A major step toward closing the knowledge gap is to include more and equitable numbers of women to that of men in mechanistic studies that determine any of the sex differences in response to an acute bout of exercise, exercise training, and athletic performance.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, and Athletic and Human Performance Center, Marquette University, Milwaukee, WI
| | | | - Aditi Bhargava
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California, San Francisco, CA
| | - Joanna Harper
- Loughborough University, Loughborough, UNITED KINGDOM
| | - Angelica Lindén Hirschberg
- Department of Women's and Children's Health, Karolinska Institutet, and Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, SWEDEN
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, and the Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kerrie L Moreau
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, and Eastern Colorado Health Care System, Geriatric Research Education and Clinical Center, Aurora, CO
| | - Natalie J Nokoff
- Department of Pediatrics, Section of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Nina S Stachenfeld
- The John B. Pierce Laboratory and Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Stéphane Bermon
- Health and Science Department, World Athletics, Monaco and the LAMHESS, University Côte d'Azur, Nice, FRANCE
| |
Collapse
|
2
|
Kheloui S, Jacmin-Park S, Larocque O, Kerr P, Rossi M, Cartier L, Juster RP. Sex/gender differences in cognitive abilities. Neurosci Biobehav Rev 2023; 152:105333. [PMID: 37517542 DOI: 10.1016/j.neubiorev.2023.105333] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Sex/gender differences in cognitive sciences are riddled by conflicting perspectives. At the center of debates are clinical, social, and political perspectives. Front and center, evolutionary and biological perspectives have often focused on 'nature' arguments, while feminist and constructivist views have often focused on 'nurture arguments regarding cognitive sex differences. In the current narrative review, we provide a comprehensive overview regarding the origins and historical advancement of these debates while providing a summary of the results in the field of sexually polymorphic cognition. In so doing, we attempt to highlight the importance of using transdisciplinary perspectives which help bridge disciplines together to provide a refined understanding the specific factors that drive sex differences a gender diversity in cognitive abilities. To summarize, biological sex (e.g., birth-assigned sex, sex hormones), socio-cultural gender (gender identity, gender roles), and sexual orientation each uniquely shape the cognitive abilities reviewed. To date, however, few studies integrate these sex and gender factors together to better understand individual differences in cognitive functioning. This has potential benefits if a broader understanding of sex and gender factors are systematically measured when researching and treating numerous conditions where cognition is altered.
Collapse
Affiliation(s)
- Sarah Kheloui
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Silke Jacmin-Park
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Ophélie Larocque
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Philippe Kerr
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Mathias Rossi
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Louis Cartier
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Robert-Paul Juster
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada.
| |
Collapse
|
3
|
Reiss AB, Saeedullah U, Grossfeld DJ, Glass AD, Pinkhasov A, Katz AE. Prostate cancer treatment and the relationship of androgen deprivation therapy to cognitive function. Clin Transl Oncol 2021; 24:733-741. [PMID: 34743290 DOI: 10.1007/s12094-021-02727-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/23/2021] [Indexed: 02/01/2023]
Abstract
Prostate cancer is the second most common form of cancer in men. For advanced, high risk prostate cancer, androgen deprivation therapy (ADT) is the preferred treatment and can induce remission, but resistance to ADT brings biochemical recurrence and progression of cancer. ADT brings adverse effects such as erectile dysfunction, decreased libido, and diminished physical strength. It is estimated that between 25 and 50% of men on ADT manifest some form of cognitive dysfunction that may be self-reported or reported by a family member. There is concern that impaired cognitive function with ADT is due to loss of testosterone support. Testosterone and its metabolites are known to possess neuroprotective properties. While a direct causal relationship between ADT and cognitive decline in prostate cancer patients has not been established, this review describes the controversy surrounding the possible connection between ADT and neurocognitive deterioration. The cellular and molecular mechanisms believed to underlie the protection of neuronal integrity by androgens are discussed. Results from animal models and human clinical studies are presented. Finally, we call attention to lifestyle modifications that may minimize cognitive issues in prostate cancer patients.
Collapse
Affiliation(s)
- A B Reiss
- Biomedical Research Institute, NYU Long Island School of Medicine, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA.
| | - U Saeedullah
- Biomedical Research Institute, NYU Long Island School of Medicine, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA
| | - D J Grossfeld
- Biomedical Research Institute, NYU Long Island School of Medicine, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA
| | - A D Glass
- Biomedical Research Institute, NYU Long Island School of Medicine, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA
| | - A Pinkhasov
- Biomedical Research Institute, NYU Long Island School of Medicine, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA
| | - A E Katz
- Biomedical Research Institute, NYU Long Island School of Medicine, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA
| |
Collapse
|
4
|
Li J, Yu Y, Zhao J, Zhang J, Wang Y, Ding K, Gao X, Zhang K. Genetic variants of the type-3 metabotropic glutamate receptor gene associated with human spatial localization ability. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Méndez-Couz M, Manahan-Vaughan D, Silva AP, González-Pardo H, Arias JL, Conejo NM. Metaplastic contribution of neuropeptide Y receptors to spatial memory acquisition. Behav Brain Res 2020; 396:112864. [PMID: 32827566 DOI: 10.1016/j.bbr.2020.112864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022]
Abstract
Neuropeptide Y (NPY) is highly abundant in the brain and is released as a co-transmitter with plasticity-related neurotransmitters such as glutamate, GABA and noradrenaline. Functionally, its release is associated with appetite, anxiety, and stress regulation. NPY acting on Y2 receptors (Y2R), facilitates fear extinction, suggesting a role in associative memory. Here, we explored to what extent NPY action at Y2R contributes to hippocampus-dependent spatial memory and found that dorsal intrahippocampal receptor antagonism improved spatial reference memory acquired in a water maze in rats, without affecting anxiety levels, or spontaneous motor activity. Water maze training resulted in an increase of Y2R, but not Y1R expression in the hippocampus. By contrast, in the prefrontal cortex there was a decrease in Y2R, and an increase of Y1R expression. Our results indicate that neuropeptide Y2R are significantly involved in hippocampus-dependent spatial memory and that receptor expression is dynamically regulated by this learning experience. Effects are consistent with a metaplastic contribution of NPY receptors to cumulative spatial learning.
Collapse
Affiliation(s)
- Marta Méndez-Couz
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Spain; Ruhr University Bochum, Medical Faculty, Dept. Neurophysiology, Bochum, Germany.
| | | | - Ana Paula Silva
- Laboratory of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Spain
| | - Jorge Luis Arias
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Spain
| | - Nélida María Conejo
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Spain
| |
Collapse
|
6
|
Torromino G, Maggi A, De Leonibus E. Estrogen-dependent hippocampal wiring as a risk factor for age-related dementia in women. Prog Neurobiol 2020; 197:101895. [PMID: 32781107 DOI: 10.1016/j.pneurobio.2020.101895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/22/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Women are more prone than men to develop age-related dementia, such as Alzheimer's disease (AD). This has been linked to the marked decrease in circulating estrogens during menopause. This review proposes to change this perspective and consider women's vulnerability to developing AD as a consequence of sex differences in the neurobiology of memory, focusing on the hippocampus. The hippocampus of cognitively impaired subjects tends to shrink with age; however, in many cases, this can be prevented by exercise or cognitive training, suggesting that if you do not use the hippocampus you lose it. We will review the developmental trajectory of sex steroids-regulated differences on the hippocampus, proposing that the overall shaping action of sex-steroids results in a lower usage of the hippocampus in females, which in turn makes them more vulnerable to the effects of ageing, the "network fragility hypothesis". To explain why women rely less on hippocampus-dependent strategies, we propose a "computational hypothesis" that is based on experimental evidence suggesting that the direct effects of estrogens on hippocampal synaptic and structural plasticity during the estrous-cycle confers instability to the memory-dependent hippocampal network. Finally, we propose to counteract AD with training and/or treatments, such as orienteering, which specifically favour the use of the hippocampus.
Collapse
Affiliation(s)
- Giulia Torromino
- Telethon Institute of Genetics and Medicine (TIGEM), Telethon Foundation, Pozzuoli, Naples, Italy; Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Monterotondo, Rome, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), Telethon Foundation, Pozzuoli, Naples, Italy; Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Monterotondo, Rome, Italy.
| |
Collapse
|
7
|
Chen W, Liu B, Li X, Wang P, Wang B. Sex Differences in Spatial Memory. Neuroscience 2020; 443:140-147. [PMID: 32710913 DOI: 10.1016/j.neuroscience.2020.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 01/01/2023]
Abstract
Spatial memory is an essential ability for living. Some studies have demonstrated the finding of sex differences in spatial memory. However, the results are diverse, ranging from "significant difference" to "no difference". In this study, we sought to determine the underlying sex differences observed during spatial memory by examining neurofunctional differences in the distinct cortical regions that lay within the spatial memory network. Functional magnetic resonance imaging (fMRI) was used to measure neural responses while healthy young adults were engaged in spatial memory tasks with different levels of memory load. Our results not only illustrate consistent spatial memory networks between the female and male groups but also find a functional interaction between sex and difficulty in left superior frontal gyrus (lSFG) during the encoding phase. In addition, sex divergences in spatial memory appear when task difficulty increases. In sum, our study supports the existence of sex differences in spatial memory and demonstrates the role of task-difficulty expressed in terms of spatial memory involvement.
Collapse
Affiliation(s)
- Wenfei Chen
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin 300350, PR China
| | - Baolin Liu
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Xianglin Li
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Peiyuan Wang
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Bin Wang
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong 264003, PR China
| |
Collapse
|
8
|
Effects of glucocorticoid and noradrenergic activity on spatial learning and spatial memory in healthy young adults. Behav Brain Res 2019; 373:112072. [PMID: 31279794 DOI: 10.1016/j.bbr.2019.112072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Acute stress leads to a rapid release of noradrenaline and glucocorticoids, which in turn influence cognitive functions such as spatial learning and memory. However, few studies have investigated noradrenergic and glucocorticoid effects on spatial learning and memory in humans. Therefore, we examined the separate and combined effects of noradrenergic and glucocorticoid stimulation on spatial learning and memory. METHODS One hundred and four healthy men (mean age = 24.1 years ±SD 3.5) underwent the virtual Morris Water Maze (vMWM) task to test spatial learning and spatial memory retrieval after receiving either 10 mg hydrocortisone or 10 mg yohimbine (an alpha 2-adrenergic receptor antagonist that increases noradrenergic activity), 10 mg hydrocortisone and 10 mg yohimbine combined, or placebo. The vMWM task took place 90 min after yohimbine was administered and 75 min after hydrocortisone was administered. Placebo was given at the same times. Salivary cortisol and alpha amylase levels were measured to check pharmacological stimulation. RESULTS Hydrocortisone and yohimbine increased salivary cortisol and alpha amylase levels. Participants' task performance improved over time, suggesting successful spatial learning. However, separate and combined noradrenergic and glucocorticoid stimulation had no effect on spatial learning and spatial memory retrieval compared with placebo. CONCLUSIONS In healthy young men, hydrocortisone and/or yohimbine did not alter spatial learning or spatial memory retrieval. Importantly, pharmacological stimulation took place prior to learning. Further studies should examine the effects of glucocorticoid and noradrenergic stimulation during encoding, consolidation, and retrieval.
Collapse
|
9
|
Strandqvist A, Herlitz A, Nordenskjöld A, Örtqvist L, Frisén L, Hirschberg AL, Nordenström A. Cognitive abilities in women with complete androgen insensitivity syndrome and women with gonadal dysgenesis. Psychoneuroendocrinology 2018; 98:233-241. [PMID: 29884451 DOI: 10.1016/j.psyneuen.2018.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Many questions regarding the mechanisms behind sex differences in cognitive abilities are still unanswered. On a group level, men typically outperform women on certain spatial tasks, whereas women perform better on certain tests of memory and verbal ability. The prevailing theories concerning the biological predispositions for these and other differences in behaviour and brain function focus on early and prolonged exposure to sex hormones. There is, however, evidence of direct effects of sex chromosomes on sex-typical behaviour in other species. OBJECTIVES To study the influence of sex hormones and sex chromosomes on cognition in women with Complete androgen insensitivity (CAIS) and Gonadal dysgenesis (GD). METHODS Eighteen women with CAIS, 6 women with 46,XYGD, and 7 women with 46,XXGD were compared with age-matched male and female controls on tests of spatial and verbal abilities, memory functions, and emotion recognition. RESULTS Women with CAIS, XYGD, and XXGD performed similar to female controls on cognitive tasks. However, on a test of emotion recognition, women with XXGD outperformed the other groups, whereas women with CAIS and XYGD performed similar to male controls. CONCLUSION Our results support theories of androgen effects on cognitive abilities and suggest that factors related to sex chromosomes may influence emotion recognition. Implications of an atypical sex hormone situation and sex chromosome variation are discussed.
Collapse
Affiliation(s)
- Anna Strandqvist
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Pediatric Endocrinology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.
| | - Agneta Herlitz
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Agneta Nordenskjöld
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.
| | - Lisa Örtqvist
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.
| | - Louise Frisén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Child and Adolescent Psychiatry Research Center, Stockholm, Sweden.
| | - Angelica Lindén Hirschberg
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | - Anna Nordenström
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Pediatric Endocrinology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
10
|
|
11
|
van Hemmen J, Saris IMJ, Cohen-Kettenis PT, Veltman DJ, Pouwels PJW, Bakker J. Sex Differences in White Matter Microstructure in the Human Brain Predominantly Reflect Differences in Sex Hormone Exposure. Cereb Cortex 2018; 27:2994-3001. [PMID: 27226438 DOI: 10.1093/cercor/bhw156] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sex differences have been described regarding several aspects of human brain morphology; however, the exact biological mechanisms underlying these differences remain unclear in humans. Women with the complete androgen insensitivity syndrome (CAIS), who lack androgen action in the presence of a 46,XY karyotype, offer the unique opportunity to study isolated effects of sex hormones and sex chromosomes on human neural sexual differentiation. In the present study, we used diffusion tensor imaging to investigate white matter (WM) microstructure in 46,XY women with CAIS (n = 20), 46,XY comparison men (n = 30), and 46,XX comparison women (n = 30). Widespread sex differences in fractional anisotropy (FA), with higher FA in comparison men than in comparison women, were observed. Women with CAIS showed female-typical FA throughout extended WM regions, predominantly due to female-typical radial diffusivity. These findings indicate a predominant role of sex hormones in the sexual differentiation of WM microstructure, although sex chromosome genes and/or masculinizing androgen effects not mediated by the androgen receptor might also play a role.
Collapse
Affiliation(s)
- J van Hemmen
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.,Department of Medical Psychology.,Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - I M J Saris
- Department of Psychiatry, GGZ inGeest, Amsterdam, The Netherlands
| | | | - D J Veltman
- Department of Psychiatry.,Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - P J W Pouwels
- Department of Physics and Medical Technology and.,Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - J Bakker
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.,Department of Medical Psychology.,GIGA Neurosciences, University of Liège, Liège, Belgium
| |
Collapse
|
12
|
Piber D, Nowacki J, Mueller SC, Wingenfeld K, Otte C. Sex effects on spatial learning but not on spatial memory retrieval in healthy young adults. Behav Brain Res 2017; 336:44-50. [PMID: 28847444 DOI: 10.1016/j.bbr.2017.08.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/04/2017] [Accepted: 08/12/2017] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Sex differences have been found in spatial learning and spatial memory, with several studies indicating that males outperform females. We tested in the virtual Morris Water Maze (vMWM) task, whether sex differences in spatial cognitive processes are attributable to differences in spatial learning or spatial memory retrieval in a large student sample. METHODS We tested 90 healthy students (45 women and 45 men) with a mean age of 23.5 years (SD=3.5). Spatial learning and spatial memory retrieval were measured by using the vMWM task, during which participants had to search a virtual pool for a hidden platform, facilitated by visual cues surrounding the pool. Several learning trials assessed spatial learning, while a separate probe trial assessed spatial memory retrieval. RESULTS We found a significant sex effect during spatial learning, with males showing shorter latency and shorter path length, as compared to females (all p<0.001). Yet, there was no significant sex effect in spatial memory retrieval (p=0.615). Furthermore, post-hoc analyses revealed significant sex differences in spatial search strategies (p<0.05), but no difference in the number of platform crossings (p=0.375). CONCLUSION Our results indicate that in healthy young adults, males show faster spatial learning in a virtual environment, as compared to females. Interestingly, we found no significant sex differences during spatial memory retrieval. Our study raises the question, whether men and women use different learning strategies, which nevertheless result in equal performances of spatial memory retrieval.
Collapse
Affiliation(s)
- Dominique Piber
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Germany.
| | - Jan Nowacki
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Germany
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium
| | - Katja Wingenfeld
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Germany
| | - Christian Otte
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW During the last decades androgens have been used illicitly by athletes of both genders. Because of some obvious ethical limitations, mechanisms underlying the performance-enhancing effects of these hormone or drugs, as well as the magnitude of their effects, have been poorly addressed. This review aims to combine findings from field and from the laboratory to provide new insights into the ergogenic properties of endogenous or exogenous androgens on female athletes. RECENT FINDINGS Results obtained from recent neuropsychological studies indicated that testosterone, and not the sex chromosomes, is responsible for the sexual differentiation of visuospatial neural activation. These findings could explain how males and hyperandrogenic females benefit from androgens performance-enhancing effects in sports where visuospatial abilities are closely linked to better performance. Another study conducted on elite female athletes showed that, in some athletic events, where muscle power is of critical importance, individuals with the highest free testosterone concentration significantly outperformed competitors with the lowest free testosterone concentration. SUMMARY In some sport events, female athletes with high or very high androgen levels (whether it is from endogenous or exogenous origin) have an estimated competitive benefit of 2-5% over those with androgen levels within the normal female range. These findings are to be taken into account in the actual controversy about eligibility of females with hyperandrogenism to compete in women's sports.
Collapse
Affiliation(s)
- Stéphane Bermon
- Monaco Institute for Sports Medicine and Surgery, Monaco, and Université Côte d'Azur, LAMHESS, Nice, France
| |
Collapse
|
14
|
Piber D, Schultebraucks K, Mueller SC, Deuter CE, Wingenfeld K, Otte C. Mineralocorticoid receptor stimulation effects on spatial memory in healthy young adults: A study using the virtual Morris Water Maze task. Neurobiol Learn Mem 2016; 136:139-146. [PMID: 27725248 DOI: 10.1016/j.nlm.2016.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/10/2016] [Accepted: 10/06/2016] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Stress hormones such as cortisol are known to influence a wide range of cognitive functions, including hippocampal based spatial memory. In the brain, cortisol acts via two different receptors: the glucocorticoid (GR) and the mineralocorticoid receptor (MR). As the MR has a high density in the hippocampus, we examined the effects of pharmacological MR stimulation on spatial memory. METHODS Eighty healthy participants (40 women, 40 men, mean age=23.9years±SD=3.3) completed the virtual Morris Water Maze (vMWM) task to test spatial encoding and spatial memory retrieval after receiving 0.4mg fludrocortisone, a MR agonist, or placebo. RESULTS There was no effect of MR stimulation on spatial encoding during the vMWM task. However, participants who received fludrocortisone exhibited improved spatial memory retrieval performance. There was neither a main effect of sex nor a sex-by-treatment interaction. CONCLUSION In young healthy participants, MR stimulation improved hippocampal based spatial memory retrieval in a virtual Morris Water Maze task. Our study not only confirms the importance of MR function in spatial memory, but suggests beneficial effects of acute MR stimulation on spatial memory retrieval in humans.
Collapse
Affiliation(s)
- Dominique Piber
- Department of Psychiatry and Psychotherapy, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany.
| | - Katharina Schultebraucks
- Department of Psychiatry and Psychotherapy, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Christian Eric Deuter
- Department of Psychiatry and Psychotherapy, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Katja Wingenfeld
- Department of Psychiatry and Psychotherapy, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Christian Otte
- Department of Psychiatry and Psychotherapy, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|