1
|
Wren GH, Flanagan J, Underwood JFG, Thompson AR, Humby T, Davies W. Memory, mood and associated neuroanatomy in individuals with steroid sulphatase deficiency (X-linked ichthyosis). GENES, BRAIN, AND BEHAVIOR 2024; 23:e12893. [PMID: 38704684 PMCID: PMC11070068 DOI: 10.1111/gbb.12893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 05/07/2024]
Abstract
Steroid sulphatase (STS) cleaves sulphate groups from steroid hormones, and steroid (sulphate) levels correlate with mood and age-related cognitive decline. In animals, STS inhibition or deletion of the associated gene, enhances memory/neuroprotection and alters hippocampal neurochemistry. Little is known about the consequences of constitutive STS deficiency on memory-related processes in humans. We investigated self-reported memory performance (Multifactorial Memory Questionnaire), word-picture recall and recent mood (Kessler Psychological Distress Scale, K10) in adult males with STS deficiency diagnosed with the dermatological condition X-linked ichthyosis (XLI; n = 41) and in adult female carriers of XLI-associated genetic variants (n = 79); we compared results to those obtained from matched control subjects [diagnosed with ichthyosis vulgaris (IV, n = 98) or recruited from the general population (n = 250)]. Using the UK Biobank, we compared mood/memory-related neuroanatomy in carriers of genetic deletions encompassing STS (n = 28) and non-carriers (n = 34,522). We found poorer word-picture recall and lower perceived memory abilities in males with XLI and female carriers compared with control groups. XLI-associated variant carriers and individuals with IV reported more adverse mood symptoms, reduced memory contentment and greater use of memory aids, compared with general population controls. Mood and memory findings appeared largely independent. Neuroanatomical analysis only indicated a nominally-significantly larger molecular layer in the right hippocampal body of deletion carriers relative to non-carriers. In humans, constitutive STS deficiency appears associated with mood-independent impairments in memory but not with large effects on underlying brain structure; the mediating psychobiological mechanisms might be explored further in individuals with XLI and in new mammalian models lacking STS developmentally.
Collapse
Affiliation(s)
| | - Jessica Flanagan
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and GenomicsSchool of Medicine, Cardiff UniversityCardiffUK
| | - Jack F. G. Underwood
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and GenomicsSchool of Medicine, Cardiff UniversityCardiffUK
- Neuroscience and Mental Health Innovation InstituteCardiff UniversityCardiffUK
| | - Andrew R. Thompson
- School of PsychologyCardiff UniversityCardiffUK
- South Wales Clinical Psychology Doctoral ProgrammeCardiff and Vale University Health BoardCardiffUK
| | | | - William Davies
- School of PsychologyCardiff UniversityCardiffUK
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and GenomicsSchool of Medicine, Cardiff UniversityCardiffUK
- Neuroscience and Mental Health Innovation InstituteCardiff UniversityCardiffUK
| |
Collapse
|
2
|
Al-Horani RA. Steroid sulfatase inhibitors and sulfated C19 steroids for proteotoxicity-related diseases: a patent spotlight. Pharm Pat Anal 2023; 12:213-218. [PMID: 37982638 PMCID: PMC10782412 DOI: 10.4155/ppa-2023-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/11/2023] [Indexed: 11/21/2023]
Abstract
Aging and proteotoxicity go hand in hand. Inhibiting proteotoxicity has been proposed to extend lifespan. This invention describes a new strategy to limit proteotoxicity and to extend the lifespan. Loss of function of sul-2, the Caenorhabditis elegans steroid sulfatase, elevates the pool of sulfated steroid hormones, increases longevity and ameliorates protein aggregation diseases. The present invention provides a group of molecules for use in the prevention of aging-associated proteotoxicity caused by protein aggregation diseases and/or to increase the lifespan of a eukaryotic organism. These molecules are either steroid sulfatase inhibitors or sulfated C19 steroids, both of which reproduce the phenotype of sul-2 mutants. One particular representative example is STX-64. Potential applications of the claims have been demonstrated in animal models of Parkinson's disease, Huntington's disease and Alzheimer's disease.
Collapse
Affiliation(s)
- Rami A Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| |
Collapse
|
3
|
Wren GH, Davies W. X-linked ichthyosis: New insights into a multi-system disorder. SKIN HEALTH AND DISEASE 2022; 2:e179. [PMID: 36479267 PMCID: PMC9720199 DOI: 10.1002/ski2.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022]
Abstract
Background X-linked ichthyosis (XLI) is a rare genetic condition almostexclusively affecting males; it is characterised by abnormal desquamation and retentionhyperkeratosis, and presents with polygonal brown scales. Most cases resultfrom genetic deletions within Xp22.31 spanning the STS (steroid sulfatase)gene, with the remaining cases resulting from STS-specific mutations. For manyyears it has been recognised that individuals with XLI are at increased risk ofcryptorchidism and corneal opacities. Methods We discuss emerging evidence that such individuals are alsomore likely to be affected by a range of neurodevelopmental and psychiatrictraits, by cardiac arrhythmias, and by rare fibrotic and bleeding-relatedconditions. We consider candidate mechanisms that may confer elevatedlikelihood of these individual conditions, and propose a novel commonbiological risk pathway. Results Understanding the prevalence, nature and co-occurrence ofcomorbidities associated with XLI is critical for ensuring early identificationof symptoms and for providing the most effective genetic counselling andmultidisciplinary care for affected individuals. Conclusion Future work in males with XLI, and in new preclinical andcellular model systems, should further clarify underlying pathophysiologicalmechanisms amenable to therapeutic intervention.
Collapse
Affiliation(s)
| | - William Davies
- School of PsychologyCardiff UniversityCardiffUK
- School of MedicineCardiff UniversityCardiffUK
- Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUK
- Neuroscience and Mental Health Innovation InstituteCardiff UniversityCardiffUK
| |
Collapse
|
4
|
Vitku J, Hill M, Kolatorova L, Kubala Havrdova E, Kancheva R. Steroid Sulfation in Neurodegenerative Diseases. Front Mol Biosci 2022; 9:839887. [PMID: 35281259 PMCID: PMC8904904 DOI: 10.3389/fmolb.2022.839887] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Steroid sulfation and desulfation participates in the regulation of steroid bioactivity, metabolism and transport. The authors focused on sulfation and desulfation balance in three neurodegenerative diseases: Alzheimer´s disease (AD), Parkinson´s disease (PD), and multiple sclerosis (MS). Circulating steroid conjugates dominate their unconjugated counterparts, but unconjugated steroids outweigh their conjugated counterparts in the brain. Apart from the neurosteroid synthesis in the central nervous system (CNS), most brain steroids cross the blood-brain barrier (BBB) from the periphery and then may be further metabolized. Therefore, steroid levels in the periphery partly reflect the situation in the brain. The CNS steroids subsequently influence the neuronal excitability and have neuroprotective, neuroexcitatory, antidepressant and memory enhancing effects. They also exert anti-inflammatory and immunoprotective actions. Like the unconjugated steroids, the sulfated ones modulate various ligand-gated ion channels. Conjugation by sulfotransferases increases steroid water solubility and facilitates steroid transport. Steroid sulfates, having greater half-lives than their unconjugated counterparts, also serve as a steroid stock pool. Sulfotransferases are ubiquitous enzymes providing massive steroid sulfation in adrenal zona reticularis and zona fasciculata.. Steroid sulfatase hydrolyzing the steroid conjugates is exceedingly expressed in placenta but is ubiquitous in low amounts including brain capillaries of BBB which can rapidly hydrolyze the steroid sulfates coming across the BBB from the periphery. Lower dehydroepiandrosterone sulfate (DHEAS) plasma levels and reduced sulfotransferase activity are considered as risk factors in AD patients. The shifted balance towards unconjugated steroids can participate in the pathophysiology of PD and anti-inflammatory effects of DHEAS may counteract the MS.
Collapse
Affiliation(s)
- Jana Vitku
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
- *Correspondence: Jana Vitku,
| | - Martin Hill
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
| | - Lucie Kolatorova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
| | - Eva Kubala Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Radmila Kancheva
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
| |
Collapse
|
5
|
Isla AG, Balleza-Tapia H, Fisahn A. Efficacy of preclinical pharmacological interventions against alterations of neuronal network oscillations in Alzheimer's disease: A systematic review. Exp Neurol 2021; 343:113743. [PMID: 34000250 DOI: 10.1016/j.expneurol.2021.113743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/13/2021] [Accepted: 05/04/2021] [Indexed: 12/29/2022]
Abstract
Despite the development of multiple pharmacological approaches over the years aimed at treating Alzheimer's Disease (AD) only very few have been approved for clinical use in patients. To date there still exists no disease-modifying treatment that could prevent or rescue the cognitive impairment, particularly of memory aquisition, that is characteristic of AD. One of the possibilities for this state of affairs might be that the majority of drug discovery efforts focuses on outcome measures of decreased neuropathological biomarkers characteristic of AD, without taking into acount neuronal processes essential to the generation and maintenance of memory processes. Particularly, the capacity of the brain to generate theta (θ) and gamma (γ) oscillatory activity has been strongly correlated to memory performance. Using a systematic review approach, we synthesize the existing evidence in the literature on pharmacological interventions that enhance neuronal theta (θ) and/or gamma (γ) oscillations in non-pathological animal models and in AD animal models. Additionally, we synthesize the main outcomes and neurochemical systems targeted. We propose that functional biomarkers such as cognition-relevant neuronal network oscillations should be used as outcome measures during the process of research and development of novel drugs against cognitive impairment in AD.
Collapse
Affiliation(s)
- Arturo G Isla
- Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Akademiska Stråket 1, J10:30, 17164 Solna, Stockholm, Sweden
| | - Hugo Balleza-Tapia
- Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Akademiska Stråket 1, J10:30, 17164 Solna, Stockholm, Sweden
| | - André Fisahn
- Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Akademiska Stråket 1, J10:30, 17164 Solna, Stockholm, Sweden.
| |
Collapse
|
6
|
Foster PA. Steroid Sulphatase and Its Inhibitors: Past, Present, and Future. Molecules 2021; 26:2852. [PMID: 34064842 PMCID: PMC8151039 DOI: 10.3390/molecules26102852] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/22/2022] Open
Abstract
Steroid sulphatase (STS), involved in the hydrolysis of steroid sulphates, plays an important role in the formation of both active oestrogens and androgens. Since these steroids significantly impact the proliferation of both oestrogen- and androgen-dependent cancers, many research groups over the past 30 years have designed and developed STS inhibitors. One of the main contributors to this field has been Prof. Barry Potter, previously at the University of Bath and now at the University of Oxford. Upon Prof. Potter's imminent retirement, this review takes a look back at the work on STS inhibitors and their contribution to our understanding of sulphate biology and as potential therapeutic agents in hormone-dependent disease. A number of potent STS inhibitors have now been developed, one of which, Irosustat (STX64, 667Coumate, BN83495), remains the only one to have completed phase I/II clinical trials against numerous indications (breast, prostate, endometrial). These studies have provided new insights into the origins of androgens and oestrogens in women and men. In addition to the therapeutic role of STS inhibition in breast and prostate cancer, there is now good evidence to suggest they may also provide benefits in patients with colorectal and ovarian cancer, and in treating endometriosis. To explore the potential of STS inhibitors further, a number of second- and third-generation inhibitors have been developed, together with single molecules that possess aromatase-STS inhibitory properties. The further development of potent STS inhibitors will allow their potential therapeutic value to be explored in a variety of hormone-dependent cancers and possibly other non-oncological conditions.
Collapse
Affiliation(s)
- Paul A. Foster
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK; ; Tel.: +44-121-414-3776
- Centre for Endocrinology, Metabolism and Diabetes, University of Birmingham, Birmingham Health Partners, Birmingham B15 2TT, UK
| |
Collapse
|
7
|
Anbar HS, Isa Z, Elounais JJ, Jameel MA, Zib JH, Samer AM, Jawad AF, El-Gamal MI. Steroid sulfatase inhibitors: the current landscape. Expert Opin Ther Pat 2021; 31:453-472. [PMID: 33783295 DOI: 10.1080/13543776.2021.1910237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Steroid sulfatase (STS) enzyme is responsible for transforming the inactive sulfate metabolites of steroid sex hormones into the active free steroids. Both the deficiency and the over-expression of STS are associated with the pathophysiology of certain diseases. This article provides the readership with a comprehensive review about STS enzyme and its recently reported inhibitors.Areas covered: In the present article, we reviewed the structure, location, and substrates of STS enzyme, physiological functions of STS, and disease states related to over-expression or deficiency of STS enzyme. STS inhibitors reported during the last five years (2016-present) have been reviewed as well.Expert opinion: Irosustat is the most successful STS inhibitor drug candidate so far. It is currently under investigation in clinical trials for treatment of estrogen-dependent breast cancer. Non-steroidal sulfamate is the most favorable scaffold for STS inhibitor design. They can be beneficial for the treatment of hormone-dependent cancers and neurodegenerative disorders without significant estrogenic side effects. Moreover, dual-acting molecules (inhibitors of STS + another synergistic mechanism) can be therapeutically efficient.
Collapse
Affiliation(s)
- Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Zahraa Isa
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Jana J Elounais
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Mariam A Jameel
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Joudi H Zib
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Aya M Samer
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Aya F Jawad
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Mohammed I El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| |
Collapse
|
8
|
Steroid hormones sulfatase inactivation extends lifespan and ameliorates age-related diseases. Nat Commun 2021; 12:49. [PMID: 33397961 PMCID: PMC7782729 DOI: 10.1038/s41467-020-20269-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Aging and fertility are two interconnected processes. From invertebrates to mammals, absence of the germline increases longevity. Here we show that loss of function of sul-2, the Caenorhabditis elegans steroid sulfatase (STS), raises the pool of sulfated steroid hormones, increases longevity and ameliorates protein aggregation diseases. This increased longevity requires factors involved in germline-mediated longevity (daf-16, daf-12, kri-1, tcer-1 and daf-36 genes) although sul-2 mutations do not affect fertility. Interestingly, sul-2 is only expressed in sensory neurons, suggesting a regulation of sulfated hormones state by environmental cues. Treatment with the specific STS inhibitor STX64, as well as with testosterone-derived sulfated hormones reproduces the longevity phenotype of sul-2 mutants. Remarkably, those treatments ameliorate protein aggregation diseases in C. elegans, and STX64 also Alzheimer’s disease in a mammalian model. These results open the possibility of reallocating steroid sulfatase inhibitors or derivates for the treatment of aging and aging related diseases. Sul-2 is a steroid sulfatase in c.elegans. Here the authors show that, in the absence of sul-2 enzymatic activity, worm lifespan is increased, and that chemical inhibition ameliorates symptoms of neurodegenerative disorders in worms and mice.
Collapse
|
9
|
Thippeswamy H, Davies W. A new molecular risk pathway for postpartum mood disorders: clues from steroid sulfatase-deficient individuals. Arch Womens Ment Health 2021; 24:391-401. [PMID: 33219387 PMCID: PMC8116278 DOI: 10.1007/s00737-020-01093-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
Postpartum mood disorders develop shortly after childbirth in a significant proportion of women. These conditions are associated with a range of symptoms including abnormally high or low mood, irritability, cognitive disorganisation, disrupted sleep, hallucinations/delusions, and occasionally suicidal or infanticidal ideation; if not treated promptly, they can substantially impact upon the mother's health, mother-infant bonding, and family dynamics. The biological precipitants of such disorders remain unclear, although large changes in maternal immune and hormonal physiology following childbirth are likely to play a role. Pharmacological therapies for postpartum mood disorders can be effective, but may be associated with side effects, concerns relating to breastfeeding, and teratogenicity risks when used prophylactically. Furthermore, most of the drugs that are used to treat postpartum mood disorders are the same ones that are used to treat mood episodes during non-postpartum periods. A better understanding of the biological factors predisposing to postpartum mood disorders would allow for rational drug development, and the identification of predictive biomarkers to ensure that 'at risk' mothers receive earlier and more effective clinical management. We describe new findings relating to the role of the enzyme steroid sulfatase in maternal postpartum behavioural processes, and discuss how these point to a novel molecular risk pathway underlying postpartum mood disorders. Specifically, we suggest that aberrant steroid hormone-dependent regulation of neuronal calcium influx via extracellular matrix proteins and membrane receptors involved in responding to the cell's microenvironment might be important. Testing of this hypothesis might identify novel therapeutic targets and predictive biomarkers.
Collapse
Affiliation(s)
- Harish Thippeswamy
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - William Davies
- Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK. .,School of Psychology, Cardiff University, Tower Building, 70, Park Place, Cardiff, CF10 3AT, UK. .,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK.
| |
Collapse
|
10
|
Daśko M, Demkowicz S, Biernacki K, Ciupak O, Kozak W, Masłyk M, Rachon J. Recent progress in the development of steroid sulphatase inhibitors - examples of the novel and most promising compounds from the last decade. J Enzyme Inhib Med Chem 2020; 35:1163-1184. [PMID: 32363947 PMCID: PMC7241464 DOI: 10.1080/14756366.2020.1758692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 01/08/2023] Open
Abstract
The purpose of this review article is to provide an overview of recent achievements in the synthesis of novel steroid sulphatase (STS) inhibitors. STS is a crucial enzyme in the biosynthesis of active hormones (including oestrogens and androgens) and, therefore, represents an extremely attractive molecular target for the development of hormone-dependent cancer therapies. The inhibition of STS may effectively reduce the availability of active hormones for cancer cells, causing a positive therapeutic effect. Herein, we report examples of novel STS inhibitors based on steroidal and nonsteroidal cores that contain various functional groups (e.g. sulphamate and phosphorus moieties) and halogen atoms, which may potentially be used in therapies for hormone-dependent cancers. The presented work also includes examples of multitargeting agents with STS inhibitory activities. Furthermore, the fundamental discoveries in the development of the most promising drug candidates exhibiting STS inhibitory activities are highlighted.
Collapse
Affiliation(s)
- Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Karol Biernacki
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Olga Ciupak
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Witold Kozak
- Department of Physical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Biotechnology and Environment Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Janusz Rachon
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
11
|
Davies W. SULFATION PATHWAYS: The steroid sulfate axis and its relationship to maternal behaviour and mental health. J Mol Endocrinol 2018; 61:T199-T210. [PMID: 29440314 DOI: 10.1530/jme-17-0219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022]
Abstract
Steroid hormones can exist in functionally dissociable sulfated and non-sulfated (free) forms and can exert profound effects on numerous aspects of mammalian physiology; the ratio of free-to-sulfated steroids is governed by the antagonistic actions of steroid sulfatase (STS) and sulfotransferase (SULT) enzymes. Here, I examine evidence from human and animal model studies, which suggests that STS and its major substrate (dehydroepiandrosterone sulfate, DHEAS) and product (DHEA) can influence brain function, behaviour and mental health, before summarising how the activity of this axis varies throughout mammalian pregnancy and the postpartum period. I then consider how the steroid sulfate axis might impact upon normal maternal behaviour and how its dysfunction might contribute towards risk of postpartum psychiatric illness. Understanding the biological substrates underlying normal and abnormal maternal behaviour will be important for maximising the wellbeing of new mothers and their offspring.
Collapse
Affiliation(s)
- William Davies
- School of PsychologyCardiff University, Cardiff, UK
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical NeurosciencesSchool of Medicine, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Research InstituteCardiff University, Cardiff, UK
| |
Collapse
|
12
|
Foster PA, Mueller JW. SULFATION PATHWAYS: Insights into steroid sulfation and desulfation pathways. J Mol Endocrinol 2018; 61:T271-T283. [PMID: 29764919 DOI: 10.1530/jme-18-0086] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022]
Abstract
Sulfation and desulfation pathways represent highly dynamic ways of shuttling, repressing and re-activating steroid hormones, thus controlling their immense biological potency at the very heart of endocrinology. This theme currently experiences growing research interest from various sides, including, but not limited to, novel insights about phospho-adenosine-5'-phosphosulfate synthase and sulfotransferase function and regulation, novel analytics for steroid conjugate detection and quantification. Within this review, we will also define how sulfation pathways are ripe for drug development strategies, which have translational potential to treat a number of conditions, including chronic inflammatory diseases and steroid-dependent cancers.
Collapse
Affiliation(s)
- Paul A Foster
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| |
Collapse
|
13
|
Schverer M, Lanfumey L, Baulieu EE, Froger N, Villey I. Neurosteroids: non-genomic pathways in neuroplasticity and involvement in neurological diseases. Pharmacol Ther 2018; 191:190-206. [PMID: 29953900 DOI: 10.1016/j.pharmthera.2018.06.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurosteroids are neuroactive brain-born steroids. They can act through non-genomic and/or through genomic pathways. Genomic pathways are largely described for steroid hormones: the binding to nuclear receptors leads to transcription regulation. Pregnenolone, Dehydroepiandrosterone, their respective sulfate esters and Allopregnanolone have no corresponding nuclear receptor identified so far whereas some of their non-genomic targets have been identified. Neuroplasticity is the capacity that neuronal networks have to change their structure and function in response to biological and/or environmental signals; it is regulated by several mechanisms, including those that involve neurosteroids. In this review, after a description of their biosynthesis, the effects of Pregnenolone, Dehydroepiandrosterone, their respective sulfate esters and Allopregnanolone on their targets will be exposed. We then shall highlight that neurosteroids, by acting on these targets, can regulate neurogenesis, structural and functional plasticity. Finally, we will discuss the therapeutic potential of neurosteroids in the pathophysiology of neurological diseases in which alterations of neuroplasticity are associated with changes in neurosteroid levels.
Collapse
Affiliation(s)
- Marina Schverer
- Inserm U894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014 Paris, France
| | - Laurence Lanfumey
- Inserm U894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014 Paris, France.
| | - Etienne-Emile Baulieu
- MAPREG SAS, Le Kremlin-Bicêtre, France; Inserm UMR 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | | | | |
Collapse
|
14
|
Treadmill Exercise Ameliorates Spatial Learning and Memory Deficits Through Improving the Clearance of Peripheral and Central Amyloid-Beta Levels. Neurochem Res 2018; 43:1561-1574. [DOI: 10.1007/s11064-018-2571-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 12/30/2022]
|
15
|
Humby T, Fisher A, Allen C, Reynolds M, Hartman A, Giegling I, Rujescu D, Davies W. A genetic variant within STS previously associated with inattention in boys with attention deficit hyperactivity disorder is associated with enhanced cognition in healthy adult males. Brain Behav 2017; 7:e00646. [PMID: 28293481 PMCID: PMC5346528 DOI: 10.1002/brb3.646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION The enzyme steroid sulfatase (STS) converts sulfated steroids to their non-sulfated forms. Deficiency for this enzyme is associated with inattention but preserved response control. The polymorphism rs17268988 within the X-linked STS gene is associated with inattentive, but not other, symptoms in boys with attention deficit hyperactivity disorder (ADHD). METHODS We initially tested whether rs17268988 genotype was associated with attention, response control, and underlying aspects of cognition, using questionnaires and neuropsychological tasks, in two independent cohorts of healthy adult males. In an additional analysis based upon existing data, the performance of mice with genetic or pharmacological manipulations of the STS axis under attentionally demanding conditions was investigated. RESULTS G-allele carriers at rs17268988 exhibited reduced reaction time, enhanced attention, and reduced reaction time variability relative to C-allele carriers. Mice with genetic or pharmacological manipulations of the STS axis were shown to have perturbed reaction time variability. DISCUSSION Our findings provide additional support for an association between rs17268988 genotype and attention, which may be partially mediated by reaction time variability; they also indicate that, in contrast to the situation in boys with ADHD, in healthy men, the G-allele at rs17268988 is associated with enhanced cognition. As reaction time variability is a predictor of well-being, rs17268988 genotype may represent a biomarker for long-term health.
Collapse
Affiliation(s)
- Trevor Humby
- School of Psychology Cardiff University Cardiff UK
| | - Amelia Fisher
- Division of Psychological Medicine and Clinical Neurosciences Medical Research Council Centre for Neuropsychiatric Genetics and Genomics School of Medicine Cardiff University Cardiff UK
| | | | | | - Annette Hartman
- Department of Psychiatry Martin Luther University of Halle Halle Germany
| | - Ina Giegling
- Department of Psychiatry Martin Luther University of Halle Halle Germany
| | - Dan Rujescu
- Department of Psychiatry Martin Luther University of Halle Halle Germany
| | - William Davies
- School of Psychology Cardiff University Cardiff UK; Division of Psychological Medicine and Clinical Neurosciences Medical Research Council Centre for Neuropsychiatric Genetics and Genomics School of Medicine Cardiff University Cardiff UK; Neuroscience and Mental Health Research Institute Cardiff University Cardiff UK
| |
Collapse
|