1
|
Vidas-Guscic N, Jonckers E, Van Audekerke J, Orije J, Hamaide J, Majumdar G, Henry L, Hausberger M, Verhoye M, Van der Linden A. Adult auditory brain responses to nestling begging calls in seasonal songbirds: an fMRI study in non-parenting male and female starlings ( Sturnus vulgaris). Front Behav Neurosci 2024; 18:1418577. [PMID: 39355542 PMCID: PMC11442251 DOI: 10.3389/fnbeh.2024.1418577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/13/2024] [Indexed: 10/03/2024] Open
Abstract
The present study aims to investigate whether begging calls elicit specific auditory responses in non-parenting birds, whether these responses are influenced by the hormonal status of the bird, and whether they reflect biparental care for offspring in the European starling (Sturnus vulgaris). An fMRI experiment was conducted to expose non-parenting male and female European starlings to recordings of conspecific nestling begging calls during both artificially induced breeding and non-breeding seasons. This response was compared with their reaction to conspecific individual warbling song motifs and artificial pure tones, serving as social species-specific and artificial control stimuli, respectively. Our findings reveal that begging calls evoke a response in non-parenting male and female starlings, with significantly higher responsiveness observed in the right Field L and the Caudomedial Nidopallium (NCM), regardless of season or sex. Moreover, a significant seasonal variation in auditory brain responses was elicited in both sexes exclusively by begging calls, not by the applied control stimuli, within a ventral midsagittal region of NCM. This heightened response to begging calls, even in non-parenting birds, in the right primary auditory system (Field L), and the photoperiod induced hormonal neuromodulation of auditory responses to offspring's begging calls in the secondary auditory system (NCM), bears resemblance to mammalian responses to hunger calls. This suggests a convergent evolution aimed at facilitating swift adult responses to such calls crucial for offspring survival.
Collapse
Affiliation(s)
- Nicholas Vidas-Guscic
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Elisabeth Jonckers
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Johan Van Audekerke
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Jasmien Orije
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Julie Hamaide
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Gaurav Majumdar
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Laurence Henry
- Université de Rennes, UMR 6552, Ethologie Animale et Humaine (EthoS), CNRS, Brittany, France
| | - Martine Hausberger
- CNRS, UMR 8002, Centre de Neuroscience et de Cognition Intégrative (INCC), Université de Paris-Cité, Paris, France
| | - Marleen Verhoye
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Annemie Van der Linden
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Azcoitia I, Mendez P, Garcia-Segura LM. Aromatase in the Human Brain. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2021; 2:189-202. [PMID: 35024691 PMCID: PMC8744447 DOI: 10.1089/andro.2021.0007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/20/2021] [Indexed: 11/30/2022]
Abstract
The aromatase cytochrome P450 (P450arom) enzyme, or estrogen synthase, which is coded by the CYP19A1 gene, is widely expressed in a subpopulation of excitatory and inhibitory neurons, astrocytes, and other cell types in the human brain. Experimental studies in laboratory animals indicate a prominent role of brain aromatization of androgens to estrogens in regulating different brain functions. However, the consequences of aromatase expression in the human brain remain poorly understood. Here, we summarize the current knowledge about aromatase expression in the human brain, abundant in the thalamus, amygdala, hypothalamus, cortex, and hippocampus and discuss its role in the regulation of sensory integration, body homeostasis, social behavior, cognition, language, and integrative functions. Since brain aromatase is affected by neurodegenerative conditions and may participate in sex-specific manifestations of autism spectrum disorders, major depressive disorder, multiple sclerosis, stroke, and Alzheimer's disease, we discuss future avenues for research and potential clinical and therapeutic implications of the expression of aromatase in the human brain.
Collapse
Affiliation(s)
- Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid and Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Mendez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Luis M. Garcia-Segura
- Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid and Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
3
|
Krentzel AA, Ikeda MZ, Oliver TJ, Koroveshi E, Remage-Healey L. Acute neuroestrogen blockade attenuates song-induced immediate early gene expression in auditory regions of male and female zebra finches. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:15-31. [PMID: 31781892 DOI: 10.1007/s00359-019-01382-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/20/2019] [Accepted: 11/11/2019] [Indexed: 02/04/2023]
Abstract
Neuron-derived estrogens are synthesized by aromatase and act through membrane receptors to modulate neuronal physiology. In many systems, long-lasting hormone treatments can alter sensory-evoked neuronal activation. However, the significance of acute neuroestrogen production is less understood. Both sexes of zebra finches can synthesize estrogens rapidly in the auditory cortex, yet it is unclear how this modulates neuronal cell signaling. We examined whether acute estrogen synthesis blockade attenuates auditory-induced expression of early growth response 1 (Egr-1) in the auditory cortex of both sexes. cAMP response element-binding protein phosphorylation (pCREB) induction by song stimuli and acute estrogen synthesis was also examined. We administered the aromatase inhibitor fadrozole prior to song exposure and measured Egr-1 across several auditory regions. Fadrozole attenuated Egr-1 in the auditory cortex greater in males than females. Females had greater expression and clustering of aromatase cells than males in high vocal center (HVC) shelf. Auditory-induced Egr-1 expression exhibited a large sex difference following fadrozole treatment. We did not observe changes in pCREB expression with song presentation or aromatase blockade. These findings are consistent with the hypothesis that acute neuroestrogen synthesis can drive downstream transcriptional responses in several cortical auditory regions, and that this mechanism is more prominent in males.
Collapse
Affiliation(s)
- Amanda A Krentzel
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, Amherst, MA, 01003, USA. .,Psychological and Brain Sciences, University of Massachusetts, Amherst, Amherst, MA, 01003, USA. .,Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Amherst, MA, 01003, USA. .,Department of Biological Sciences, North Carolina State University, 166 David Clark Labs, Campus Box 7617, Raleigh, NC, 27695-7617, USA.
| | - Maaya Z Ikeda
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, MA, 01003, USA.,Psychological and Brain Sciences, University of Massachusetts, Amherst, Amherst, MA, 01003, USA.,Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Amherst, MA, 01003, USA
| | - Tessa J Oliver
- Psychological and Brain Sciences, University of Massachusetts, Amherst, Amherst, MA, 01003, USA
| | - Era Koroveshi
- Psychological and Brain Sciences, University of Massachusetts, Amherst, Amherst, MA, 01003, USA
| | - Luke Remage-Healey
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, Amherst, MA, 01003, USA.,Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, MA, 01003, USA.,Psychological and Brain Sciences, University of Massachusetts, Amherst, Amherst, MA, 01003, USA.,Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
4
|
Brocca ME, Garcia-Segura LM. Non-reproductive Functions of Aromatase in the Central Nervous System Under Physiological and Pathological Conditions. Cell Mol Neurobiol 2019; 39:473-481. [PMID: 30084008 DOI: 10.1007/s10571-018-0607-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
Abstract
The modulation of brain function and behavior by steroid hormones was classically associated with their secretion by peripheral endocrine glands. The discovery that the brain expresses the enzyme aromatase, which produces estradiol from testosterone, expanded this traditional concept. One of the best-studied roles of brain estradiol synthesis is the control of reproductive behavior. In addition, there is increasing evidence that estradiol from neural origin is also involved in a variety of non-reproductive functions. These include the regulation of neurogenesis, neuronal development, synaptic transmission, and plasticity in brain regions not directly related with the control of reproduction. Central aromatase is also involved in the modulation of cognition, mood, and non-reproductive behaviors. Furthermore, under pathological conditions aromatase is upregulated in the central nervous system. This upregulation represents a neuroprotective and likely also a reparative response by increasing local estradiol levels in order to maintain the homeostasis of the neural tissue. In this paper, we review the non-reproductive functions of neural aromatase and neural-derived estradiol under physiological and pathological conditions. We also consider the existence of sex differences in the role of the enzyme in both contexts.
Collapse
Affiliation(s)
- Maria Elvira Brocca
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Remage-Healey L, Choleris E, Balthazart J. Rapid effects of steroids in the brain: Introduction to special issue. Horm Behav 2018; 104:1-3. [PMID: 29913141 DOI: 10.1016/j.yhbeh.2018.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Luke Remage-Healey
- Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | |
Collapse
|