1
|
Fishman R, Kralj-Fišer S, Marglit S, Koren L, Vortman Y. Fathers and sons, mothers and daughters: Sex-specific genetic architecture for fetal testosterone in a wild mammal. Horm Behav 2024; 161:105525. [PMID: 38452612 DOI: 10.1016/j.yhbeh.2024.105525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/13/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Testosterone plays a critical role in mediating fitness-related traits in many species. Although it is highly responsive to environmental and social conditions, evidence from several species show a heritable component to its individual variation. Despite the known effects that in utero testosterone exposure have on adult fitness, the heritable component of individual testosterone variation in fetuses is mostly unexplored. Furthermore, testosterone has sex-differential effects on fetal development, i.e., a specific level may be beneficial for male fetuses but detrimental for females, producing sexual conflict. Such sexual conflict may be resolved by the evolution of a sex-specific genetic architecture of the trait. Here, we quantified fetal testosterone levels in a wild species, free-ranging nutrias (Myocastor coypus) using hair-testing and estimated testosterone heritability between parent and offspring from the same and opposite sex. We found that in utero accumulated hair testosterone levels were heritable between parents and offspring of the same sex. Moreover, there was a low additive genetic covariance between the sexes, and a low cross-sex genetic correlation, suggesting a potential for sex-specific trait evolution, expressed early on, in utero.
Collapse
Affiliation(s)
- Ruth Fishman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel(1); The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Simona Kralj-Fišer
- Scientific and Research Centre of the Slovenian Academy of Sciences and Arts, Jovan Hadži Institute of Biology, Evolutionary Zoology Laboratory, Ljubljana, Slovenia.
| | - Sivan Marglit
- Hula Research Center, Department of Animal Sciences, Tel-Hai College, Upper Galilee 1220800, Israel
| | - Lee Koren
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Yoni Vortman
- Hula Research Center, Department of Animal Sciences, Tel-Hai College, Upper Galilee 1220800, Israel; MIGAL-Galilee Research Institute, 11016 Kiryat Shmona, Israel
| |
Collapse
|
2
|
Ringler E, Dellefont K, Peignier M, Canoine V. Water-borne testosterone levels predict exploratory tendency in male poison frogs. Gen Comp Endocrinol 2024; 346:114416. [PMID: 38000762 DOI: 10.1016/j.ygcen.2023.114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/22/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Hormones play a fundamental role in mediating social behaviors of animals. However, it is less well understood to what extent behavioral variation between individuals can be attributed to variation in underlying hormonal profiles. The goal of the present study was to infer if individual androgen levels, and/or the modulation thereof, can explain among-individual variation in aggressiveness, boldness and exploration. We used as a model the dart-poison frog Allobates femoralis and took repeated non-invasive water-borne hormonal samples of individual males before (baseline) and after (experimental) a series of behavioral tests for assessing aggression, boldness, and exploratory tendency. Our results show that androgen levels in A. femoralis are quite stable across the reproductive season. Repeatability in wbT baseline levels was high, while time of day, age of the frog, and trial order did not show any significant impact on measured wbT levels. In general, experimental wbT levels after behavioral tests were lower compared to the respective baseline levels. However, we identified two different patterns with regard to androgen modulation in response to behavioral testing: individuals with low baseline wbT tended to have increased wbT levels after the behavioral testing, while individuals with comparatively high baseline wbT levels rather showed a decrease in hormonal levels after testing. Our results also suggest that baseline wbT levels are linked to the personality trait exploration, and that androgen modulation is linked to boldness in A. femoralis males. These results show that differences in hormonal profiles and/or hormonal modulation in response to social challenges can indeed explain among-individual differences in behavioral traits.
Collapse
Affiliation(s)
- Eva Ringler
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland; Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria; Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria.
| | - Katharina Dellefont
- Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Mélissa Peignier
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland; Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria; Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Virginie Canoine
- Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Fishman R, Koren L, Ben-Shlomo R, Shanas U, Vortman Y. Paternity share predicts sons' fetal testosterone. Sci Rep 2023; 13:16737. [PMID: 37794058 PMCID: PMC10551022 DOI: 10.1038/s41598-023-42718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023] Open
Abstract
Multiple paternity is common in many species. While its benefits for males are obvious, for females they are less clear. Female indirect benefits may include acquiring 'good genes' for offspring or increasing litter genetic diversity. The nutria (Myocastor coypus) is a successful invasive species. In its native habitat, it is polygynous, with larger and more aggressive males monopolizing paternity. Here, using culled nutria we genetically examined multiple paternity in-utero and found a high incidence of multiple paternity and maintenance of the number of fathers throughout gestation. Moreover, male fetuses sired by the prominent male have higher testosterone levels. Despite being retained, male fetuses of 'rare' fathers, siring commonly only one of the fetuses in the litter, have lower testosterone levels. Considering the reproductive skew of nutria males, if females are selected for sons with higher future reproductive success, low testosterone male fetuses are expected to be selected against. A possible ultimate explanation for maintaining multiple paternity could be that nutria females select for litter genetic diversity e.g., a bet-hedging strategy, even at the possible cost of reducing the reproductive success of some of their sons. Reproductive strategies that maintain genetic diversity may be especially beneficial for invasive species, as they often invade through a genetic bottleneck.
Collapse
Affiliation(s)
- Ruth Fishman
- Department of Brain Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel.
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel.
| | - Lee Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - Rachel Ben-Shlomo
- Faculty of Natural Sciences, University of Haifa-Oranim, 3600600, Tivon, Israel
| | - Uri Shanas
- Faculty of Natural Sciences, University of Haifa-Oranim, 3600600, Tivon, Israel
| | - Yoni Vortman
- Hula Research Center, Department of Animal Sciences, Tel-Hai College, 1220800, Upper Galilee, Israel
- MIGAL-Galilee Research Institute, 11016, Kiryat Shmona, Israel
| |
Collapse
|
4
|
Mutwill AM, Schielzeth H, Richter SH, Kaiser S, Sachser N. Conditional on the social environment? Roots of repeatability in hormone concentrations of male guinea pigs. Horm Behav 2023; 155:105423. [PMID: 37713739 DOI: 10.1016/j.yhbeh.2023.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023]
Abstract
Individual differences in behavioral and physiological traits among members of the same species are increasingly being recognized as important in animal research. On the group level, shaping of behavioral and hormonal phenotypes by environmental factors has been reported in different taxa. The extent to which the environment impacts behavior and hormones on the individual level, however, is rather unexplored. Hormonal phenotypes of guinea pigs can be shaped by the social environment on the group level: pair-housed and colony-housed males differ systematically in average testosterone and stressor-induced cortisol levels (i.e. cortisol responsiveness). The aim of the present study was to evaluate whether repeatability and individual variance components (i.e. between- and within-individual variation) of hormonal phenotypes also differ in different social environments. To test this, we determined baseline testosterone, baseline cortisol, and cortisol responsiveness after challenge in same-aged pair-housed and colony-housed guinea pig males over a period of four months. We found comparable repeatability for baseline cortisol and cortisol responsiveness in males from both social conditions. In contrast, baseline testosterone was repeatable only in males from colonies. Interestingly, this result was brought about by significantly larger between-individual variation of testosterone, that was not explained by differences in dominance rank. Individualized social niches differentiated under complex colony, but not pair housing, could be an explanation for this finding.
Collapse
Affiliation(s)
- Alexandra M Mutwill
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany.
| | - Holger Schielzeth
- Population Ecology Group, Institute of Ecology, Friedrich Schiller University, Dornburgerstr. 159, 07743 Jena, Germany
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| |
Collapse
|
5
|
Lilie ND, Riyahi S, Kalinowski A, Salazar SM, Kaiser S, Schmoll T, Korsten P. Male social niche conformance? Effects of manipulated opportunity for extra-pair mating on behavior and hormones of male zebra finches. Horm Behav 2022; 146:105243. [PMID: 35998552 DOI: 10.1016/j.yhbeh.2022.105243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/21/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022]
Abstract
Success in sperm competition is an important determinant of male fitness in mating systems with female multiple mating. Thus, sperm competition risk represents a key dimension of the male social environment to which individual males are expected to adaptively adjust their reproductive phenotype. Such adaptive phenotypic adjustment we here refer to as male social niche conformance. In this pre-registered study, we investigated how male zebra finches, Taeniopygia guttata, adjust their behavior to sperm competition risk. We experimentally manipulated the opportunity for extra-pair mating to create two levels of sperm competition risk: 1) Single-pair, no sperm competition risk; 2) Double-pair, sperm competition risk. We compared male courtship, mate guarding, copulation rates, and aggression between the treatment groups. To identify hormonal correlates of male behavioral adjustment, we measured plasma testosterone and corticosterone levels before and after the social treatment started. Contrary to our pre-registered predictions, males from the Double-pair treatment group decreased courtship rates compared to those from the Single-pair group, and Double-pair males responded less aggressively towards intruders than Single-pair males. Testosterone levels decreased over the breeding cycle, but social treatment had no effect on either testosterone or corticosterone levels. Our results indicate that male zebra finches do not intensify courtship or competitive reproductive behaviors, or upregulate key hormones when another breeding pair is present. Although we found no evidence for the predicted adaptive behavioral responses to sperm competition risk, we show that male zebra finches plastically adjust their behavior to their social environment.
Collapse
Affiliation(s)
- Navina D Lilie
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany; Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany.
| | - Sepand Riyahi
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany; Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - Arne Kalinowski
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - Stephen M Salazar
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany; Behavioural & Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Badestraße 13, 48149 Münster, Germany
| | - Tim Schmoll
- Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - Peter Korsten
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany.
| |
Collapse
|
6
|
Hunt KE, Buck CL, Ferguson SH, Fernández Ajo A, Heide-Jørgensen MP, Matthews CJD. Male Bowhead Whale Reproductive Histories Inferred from Baleen Testosterone and Stable Isotopes. Integr Org Biol 2022; 4:obac014. [PMID: 35617113 PMCID: PMC9125798 DOI: 10.1093/iob/obac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Synopsis
Male mammals of seasonally reproducing species typically have annual testosterone (T) cycles, with T usually peaking during the breeding season, but occurrence of such cycles in male mysticete whales has been difficult to confirm. Baleen, a keratinized filter-feeding apparatus of mysticetes, incorporates hormones as it grows, such that a single baleen plate can record years of endocrine history with sufficient temporal resolution to discern seasonal patterns. We analyzed patterns of T every 2 cm across the full length of baleen plates from nine male bowhead whales (Balaena mysticetus) to investigate occurrence and regularity of T cycles and potential inferences about timing of breeding season, sexual maturation, and reproductive senescence. Baleen specimens ranged from 181–330 cm in length, representing an estimated 11 years (smallest whale) to 22 years (largest whale) of continuous baleen growth, as indicated by annual cycles in stable isotopes. All baleen specimens contained regularly spaced areas of high T content (T peaks) confirmed by time series analysis to be cyclic, with periods matching annual stable isotope cycles of the same individuals. In 8 of the 9 whales, T peaks preceded putative summer isotope peaks by a mean of 2.8 months, suggesting a mating season in late winter / early spring. The only exception to this pattern was the smallest and youngest male, which had T peaks synchronous with isotope peaks. This smallest, youngest whale also did not have T peaks in the first half of the plate, suggesting initiation of T cycling during the period of baleen growth. Linear mixed effect models suggest that whale age influences T concentrations, with the two largest and oldest males exhibiting a dramatic decline in T peak concentration across the period of baleen growth. Overall, these patterns are consistent with onset of sexual maturity in younger males and possible reproductive senescence in older males. We conclude that adult male bowheads undergo annual T cycles, and that analyses of T in baleen may enable investigation of reproductive seasonality, timing of the breeding season, and life history of male whales.
Collapse
Affiliation(s)
- Kathleen E Hunt
- Smithsonian-Mason School of Conservation & Department of Biology, George Mason University, 1500 Remount Rd, Front Royal, VA 22630, USA
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Steven H Ferguson
- Fisheries and Oceans Canada, Arctic Aquatic Research Division, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada
| | - Alejandro Fernández Ajo
- Marine Mammal Institute, Fisheries and Wildlife Department, Oregon State University, Newport, OR 97365, USA
| | | | - Cory J D Matthews
- Fisheries and Oceans Canada, Arctic Aquatic Research Division, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada
| |
Collapse
|
7
|
Těšický M, Krajzingrová T, Eliáš J, Velová H, Svobodová J, Bauerová P, Albrecht T, Vinkler M. Inter-annual repeatability and age-dependent changes in plasma testosterone levels in a longitudinally monitored free-living passerine bird. Oecologia 2021; 198:53-66. [PMID: 34800165 DOI: 10.1007/s00442-021-05077-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/04/2021] [Indexed: 11/28/2022]
Abstract
While seasonal trends in testosterone levels are known from cross-cohort studies, data on testosterone inter-annual individual repeatability in wild birds are rare. Also, our understanding of hormonal age-dependent changes in testosterone levels is limited. We assessed plasma testosterone levels in 105 samples originating from 49 repeatedly captured free-living great tits (Parus major) sampled during the nesting to investigate their relative long-term repeatability and within-individual changes. Furthermore, we examined the inter-annual repeatability of condition-related traits (carotenoid- and melanin-based plumage ornamentation, ptilochronological feather growth rate, body mass, and haematological heterophil/lymphocyte ratio) and their relationships to testosterone levels. We show that testosterone levels are inter-annually repeatable in females, with a non-significant pattern in males, both in absolute values and individual ranks (indicating the maintenance of relative status in a population). In males, we found a quadratic dependence of testosterone levels on age, with a peak in midlife. In contrast, female testosterone levels showed no age-dependent trends. The inter-annual repeatability of condition-related traits ranged from zero to moderate and was mostly unrelated to plasma testosterone concentrations. However, males with elevated testosterone had significantly higher carotenoid-pigmented yellow plumage brightness, a trait presumably involved in mating. Showing inter-annual repeatability in testosterone levels, this research opens the way to further understanding the causes of variation in condition-related traits. Based on a longitudinal dataset, this study demonstrates that male plasma testosterone undergoes age-related changes that may regulate resource allocation. Our results thus suggest that, unlike females, male birds undergo hormonal senescence similar to mammals.
Collapse
Affiliation(s)
- Martin Těšický
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 43, Prague, Czech Republic.
| | - Tereza Krajzingrová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 43, Prague, Czech Republic
| | - Jiří Eliáš
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Hana Velová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 43, Prague, Czech Republic
| | - Jana Svobodová
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Petra Bauerová
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, 165 00, Prague, Czech Republic.,Division of Air Quality, Czech Hydrometeorological Institute, Tušimice Observatory, Tušimice 6, 432 01, Kadaň, Czech Republic
| | - Tomáš Albrecht
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 43, Prague, Czech Republic.,Institute of Vertebrate Biology, v.v.i., The Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 43, Prague, Czech Republic
| |
Collapse
|
8
|
Mutwill AM, Schielzeth H, Zimmermann TD, Richter SH, Kaiser S, Sachser N. Individuality meets plasticity: Endocrine phenotypes across male dominance rank acquisition in guinea pigs living in a complex social environment. Horm Behav 2021; 131:104967. [PMID: 33862349 DOI: 10.1016/j.yhbeh.2021.104967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/28/2022]
Abstract
The time of dominance rank acquisition is a crucial phase in male life history that often affects reproductive success and hence fitness. Hormones such as testosterone and glucocorticoids can influence as well as be affected by this process. At the same time, hormone concentrations can show large individual variation. The extent to which such variation is repeatable, particularly in dynamic social settings, is a question of current interest. The aim of the present study was therefore to investigate how dominance rank and individual differences contribute to variance in hormone concentrations during male rank acquisition in a complex social environment. For this purpose, dominance rank as well as baseline testosterone, baseline cortisol, and cortisol responsiveness after exposure to a novel environment were determined in colony-housed guinea pig males from late adolescence through adulthood. Hormone-dominance relationships and repeatability of hormone measures beyond their relation to rank were assessed. There was a significant positive relationship between baseline testosterone and rank, but this link became weaker with increasing age. Baseline cortisol or cortisol responsiveness, in contrast, were not significantly related to dominance. Notably, all three endocrine parameters were significantly repeatable independent of dominance rank from late adolescence through adulthood. Baseline testosterone and cortisol responsiveness showed a significantly higher repeatability than baseline cortisol. This suggests that testosterone titres and cortisol responsiveness represent stable individual attributes even under complex social conditions.
Collapse
Affiliation(s)
- Alexandra M Mutwill
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany; Münster Graduate School of Evolution, University of Münster, Hüfferstr. 1a, 48149 Münster, Germany.
| | - Holger Schielzeth
- Population Ecology Group, Institute of Ecology, Friedrich Schiller University, Dornburgerstr. 159, 07743 Jena, Germany
| | - Tobias D Zimmermann
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany; Münster Graduate School of Evolution, University of Münster, Hüfferstr. 1a, 48149 Münster, Germany
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany; Münster Graduate School of Evolution, University of Münster, Hüfferstr. 1a, 48149 Münster, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany; Münster Graduate School of Evolution, University of Münster, Hüfferstr. 1a, 48149 Münster, Germany
| |
Collapse
|
9
|
de Bruijn R, Wright-Lichter JX, Khoshaba E, Holloway F, Lopes PC. Baseline corticosterone is associated with parental care in virgin Japanese quail (Coturnix japonica). Horm Behav 2020; 124:104781. [PMID: 32511968 DOI: 10.1016/j.yhbeh.2020.104781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Glucocorticoids (GCs) are thought to impact reproductive success, and ultimately fitness. In this study we focus specifically on the relationship between GCs and parental care. Captive bred Japanese quail (Coturnix japonica) do not show spontaneous parental care behavior, however this behavior can be induced through a sensitization procedure. We investigated how the GC status of Japanese quail relates to parental care in animals of both sexes exposed or not to a chick sensitization treatment. To assess GC status, we obtained baseline plasma and feather cort samples, and used the HPA-axis function test to assess stress responsiveness by examining the response to a standardized stressor as well as negative feedback efficacy through dexamethasone injection. Next, birds were either exposed to chicks overnight in a small enclosure (sensitization treatment) or were enclosed but not exposed to chicks (control). The following morning, adult behaviors were filmed in the presence of a fresh set of chicks for 20 min. A final serum GC sample was obtained to assess if exposure to novel chicks was perceived as stressful. In control animals, baseline GCs were associated with increased total parental care duration and decreased latency to first parental care event. Interestingly, the opposite relationship was found in the sensitization group. Finally, exposure to novel chicks was not associated with an increase in corticosterone in either group. Overall it appears that baseline GCs are correlated with parental care in captive bred Japanese quail, and that the relationship changes direction depending on whether or not sensitization has occurred.
Collapse
Affiliation(s)
- Robert de Bruijn
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA.
| | | | - Edena Khoshaba
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Faith Holloway
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Patricia C Lopes
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| |
Collapse
|