1
|
Igonina T, Lebedeva D, Tsybko A, Rozhkova I, Babochkina T, Levinson A, Amstislavsky S. Chronic psychosocial stress affects insulin-like growth factor 1 and its receptors in mouse ovaries. Reprod Fertil Dev 2024; 36:RD24101. [PMID: 39466740 DOI: 10.1071/rd24101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Context Chronic psychosocial stress negatively affects folliculogenesis and oogenesis. Intraovarian mechanisms mediating these effects are poorly understood. Aims This work aimed to find out how chronic psychosocial stress affects ovarian IGF1 and its receptor (IGF1R), as well as Igf1 and Igf1r gene expression in cumulus-oocyte complexes (COCs). It also aimed to address possible protective effects of gonadotropin stimulation on IGF1 ovarian signalling. Methods Female CD1 mice experienced chronic psychosocial stress of 11-day isolation followed by overcrowding for 10days. To verify the model, blood corticosterone levels and the quality of oocytes were evaluated in stressed females. The levels of IGF1/IGF1R, blood IGF1 concentration, and expression of Igf1 /Igf1r in the ovaries were compared in stressed and unstressed females. Key results Psychosocial stress caused an elevation of corticosterone level, which was alleviated by gonadotropin treatment. The stressed mice showed a decreased IGF1 level in the ovaries and a decreased expression of Igf1 and Igf1r in COCs. In the unstressed females, gonadotropin injection decreased the expression of Igf1 and Igf1r ; in the stressed females, the same treatment increased Igf1r expression. Neither stress nor ovarian stimulation with gonadotropins affected the serum IGF1 level. Conclusions Psychosocial stress suppresses IGF1 signalling in the ovaries. Gonadotropin treatment modulates these effects differently in stressed and unstressed animals. Implications The results may have translational value for human reproduction. Ovarian IGF1 can be considered a candidate for further improvement of IVF results in women under conditions of chronic stress.
Collapse
Affiliation(s)
- Tatyana Igonina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Siberia, Russia
| | - Daria Lebedeva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Siberia, Russia
| | - Anton Tsybko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Siberia, Russia
| | - Irina Rozhkova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Siberia, Russia
| | - Tatyana Babochkina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Siberia, Russia
| | - Alisa Levinson
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Siberia, Russia
| | - Sergei Amstislavsky
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Siberia, Russia
| |
Collapse
|
2
|
Gonçalves BSM, Mariotti FFN, Ponsone G, Soares TAA, Perão PCBG, Mônico-Neto M, Cariste LM, Maluf A, Nascimento GDSS, Antunes HKM, Céspedes IC, Viana MDB, Le Sueur-Maluf L. High and fluctuating levels of ovarian hormones induce an anxiogenic effect, which can be modulated under stress conditions: Evidence from an assisted reproductive rodent model. Horm Behav 2022; 137:105087. [PMID: 34826650 DOI: 10.1016/j.yhbeh.2021.105087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/24/2021] [Accepted: 11/14/2021] [Indexed: 11/22/2022]
Abstract
Elevated levels of endogenous ovarian hormones are conditions commonly experienced by women undergoing assisted reproductive technologies (ART). Additionally, infertility-associated stress and treatment routines are factors that together may have a highly negative impact on female emotionality, which can be aggravated when several cycles of ART are needed to attempt pregnancy. This study aimed to investigate the effect of high and fluctuating levels of gonadal hormones induced by repeated ovarian stimulation on the stress response in rodents. To mimic the context of ART, female rats were exposed to an unpredictable chronic mild stress (UCMS) paradigm for four weeks. During this time, three cycles of ovarian stimulation (superovulation) (150 IU/Kg of PMSG and 75 IU/Kg of hCG) were applied, with intervals of two estrous cycles between them. The rats were distributed into four groups: Repeated Superovulation/UCMS; Repeated Superovulation/No Stress; Saline/UCMS; and Saline/No Stress. Anxiety-like and depressive-like behaviors were evaluated in a light-dark transition box and by splash test, respectively. Corticosterone, estradiol, progesterone, and biometric parameters were assessed. Data were analyzed using a two-way Generalized Linear Model (GzLM). Our results showed that repeated ovarian stimulation exerts by itself an expressive anxiogenic effect. Surprisingly, when high and fluctuating levels of ovarian hormones were combined with chronic stress, anxiety-like behavior was no longer observed, and a depressive-like state was not detected. Our findings suggest that females subjected to emotional overload induced by repeated ovarian stimulation and chronic stress seem to trigger the elaboration of adaptive coping strategies.
Collapse
Affiliation(s)
| | | | - Giovana Ponsone
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil
| | | | | | - Marcos Mônico-Neto
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil
| | - Leonardo Moro Cariste
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil
| | - Auro Maluf
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, UNIFESP, 11070-102 Santos, SP, Brazil
| | | | | | - Isabel Cristina Céspedes
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil
| | - Milena de Barros Viana
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil
| | - Luciana Le Sueur-Maluf
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil.
| |
Collapse
|