1
|
Vasaruchapong T, Noiphrom J, Chaiyabutr N, Thammacharoen S. Behavioral and hormonal responses in the defensive repertoire during provocation in captive monocled cobra (Naja kaouthia). Physiol Behav 2024; 287:114689. [PMID: 39255867 DOI: 10.1016/j.physbeh.2024.114689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
The hooding behavior exhibited by cobras is a distinct defensive mechanism against predators, encompassing both visual and auditory displays. This behavior can be triggered by natural predators or humans. Considering that human provocation may potentially stimulate the hypothalamic-pituitary-adrenal (HPA) axis, the present study aimed to determine the pattern of the HPA axis response following human provocation-induced hooding behavior (PV) and provide a detailed analysis of the behavioral PV displays. Our primary hypothesis was that a 5-minute PV could activate the HPA axis to a degree comparable to that in the restraint-induced stress model (RS). The PV, RS-1 (1-minute), and RS-5 (5-minute) restraint models indeed activated the HPA axis. However, the pattern of plasma corticosteroid (CORT), but not arginine vasotocin, in the PV group differed from that in the RS-1 and RS-2 groups. The present study revealed the behavioral components of the PV. The first component appeared to be related to an increase in apparent size that is an intimidation display, while the second hissing and striking component consisted of a bluff charge. Moreover, no correlation was observed between the pattern of plasma CORT and any specific PV display. Finally, the body temperature (Tb) of cobras from RS-5 gradually increased, while the Tb of cobras from PV (5 min) remained unchanged. In conclusion, the activation of the HPA axis emerges as the main physiological response after human provocation. Within 5 min of provocation, the cobras' hooding behavior comprised two display components that were not related to the pattern of plasma CORT.
Collapse
Affiliation(s)
- Taksa Vasaruchapong
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Henry Dunant Rd., Pathumwan, Bangkok 10330, Thailand; Queen Saovabha Memorial Institute, The Thai Red Cross Society, Rama 4 Rd., Pathumwan, Bangkok 10330, Thailand.
| | - Jureeporn Noiphrom
- Queen Saovabha Memorial Institute, The Thai Red Cross Society, Rama 4 Rd., Pathumwan, Bangkok 10330, Thailand.
| | - Narongsak Chaiyabutr
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Henry Dunant Rd., Pathumwan, Bangkok 10330, Thailand; Queen Saovabha Memorial Institute, The Thai Red Cross Society, Rama 4 Rd., Pathumwan, Bangkok 10330, Thailand; The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok 10300, Thailand.
| | - Sumpun Thammacharoen
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Henry Dunant Rd., Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Shankey NT, Cohen RE. Neural control of reproduction in reptiles. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:307-321. [PMID: 38247297 DOI: 10.1002/jez.2783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Reptiles display considerable diversity in reproductive behavior, making them great models to study the neuroendocrine control of reproductive behavior. Many reptile species are seasonally breeding, such that they become reproductively active during their breeding season and regress to a nonreproductive state during their nonbreeding season, with this transition often prompted by environmental cues. In this review, we will focus on summarizing the neural and neuroendocrine mechanisms controlling reproductive behavior. Three major areas of the brain are involved in reproductive behavior: the preoptic area (POA), amygdala, and ventromedial hypothalamus (VMH). The POA and VMH are sexually dimorphic areas, regulating behaviors in males and females respectively, and all three areas display seasonal plasticity. Lesions to these areas disrupt the onset and maintenance of reproductive behaviors, but the exact roles of these regions vary between sexes and species. Different hormones influence these regions to elicit seasonal transitions. Circulating testosterone (T) and estradiol (E2) peak during the breeding season and their influence on reproduction is well-documented across vertebrates. The conversion of T into E2 and 5α-dihydrotestosterone can also affect behavior. Melatonin and corticosterone have generally inhibitory effects on reproductive behavior, while serotonin and other neurohormones seem to stimulate it. In general, there is relatively little information on the neuroendocrine control of reproduction in reptiles compared to other vertebrate groups. This review highlights areas that should be considered for future areas of research.
Collapse
Affiliation(s)
- Nicholas T Shankey
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, Minnesota, USA
| | - Rachel E Cohen
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, Minnesota, USA
| |
Collapse
|
3
|
Yamagishi G, Miyagawa S. Neuroendocrinology of Reproduction and Social Behaviors in Reptiles: Advances Made in the Last Decade. Zoolog Sci 2024; 41:87-96. [PMID: 38587521 DOI: 10.2108/zs230060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/03/2023] [Indexed: 04/09/2024]
Abstract
Among amniotes, reptiles are ectothermic and are clearly distinguished from mammals and birds. Reptiles show great diversity not only in species numbers, but also in ecological and physiological features. Although their physiological diversity is an interesting research topic, less effort has been made compared to that for mammals and birds, in part due to lack of established experimental models and techniques. However, progress, especially in the field of neuroendocrinology, has been steadily made. With this process, basic data on selected reptilian species have been collected. This review article presents the progress made in the last decade, which includes 1) behavioral regulation by sex steroid hormones, 2) regulation of seasonal reproduction by melatonin and GnRH, and 3) regulation of social interaction by arginine vasotocin. Through these research topics, we provide insights into the physiology of reptiles and the latest findings in the field of amniote neuroendocrinology.
Collapse
Affiliation(s)
- Genki Yamagishi
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan,
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan,
| |
Collapse
|
4
|
Prior NH, Haakenson CM, Clough S, Ball GF, Sandkam BA. Varied impacts of social relationships on neuroendocrine state. Horm Behav 2023; 155:105403. [PMID: 37678093 DOI: 10.1016/j.yhbeh.2023.105403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 09/09/2023]
Abstract
Social relationships, affiliative social attachments, are important for many species. The best studied types of relationships are monogamous pair bonds. However, it remains unclear how generalizable models of pair bonding are across types of social attachments. Zebra finches are a fascinating system to explore the neurobiology of social relationships because they form various adult bonds with both same- and opposite-sex partners. To test whether different bonds are supported by a single brain network, we quantified individuals' neuroendocrine state after either 24 h or 2 weeks of co-housing with a novel same- or opposite-sex partner. We defined neuroendocrine state by the expression of 22 genes related to 4 major signaling pathways (dopamine, steroid, nonapeptide, and opioid) in six brain regions associated with affiliation or communication [nucleus accumbens (NAc), nucleus taeniae of the amygdala (TnA), medial preoptic area (POM), and periaqueductal gray (PAG), ventral tegmental area, and auditory cortex]. Overall, we found dissociable effects of social contexts (same- or opposite-sex partnerships) and duration of co-housing. Social bonding impacted the neuroendocrine state of four regions in males (NAc, TnA, POM, and PAG) and three regions in females (NAc, TnA, and POM). Monogamous pair bonding specifically appeared to impact male NAc. However, the patterns of gene expression in zebra finches were different than has previously been reported in mammals. Together, our results support the view that there are numerous mechanisms regulating social relationships and highlight the need to further our understanding of how social interactions shape social bonds.
Collapse
Affiliation(s)
- Nora H Prior
- Department of Psychology, Cornell University, Ithaca, NY, United States of America.
| | - Chelsea M Haakenson
- Neuroscience and Cognitive Science Program, Department of Psychology, University of Maryland, College Park, MD, United States of America
| | - Savannah Clough
- Neuroscience and Cognitive Science Program, Department of Psychology, University of Maryland, College Park, MD, United States of America
| | - Gregory F Ball
- Neuroscience and Cognitive Science Program, Department of Psychology, University of Maryland, College Park, MD, United States of America
| | - Benjamin A Sandkam
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
5
|
Edwards PD, Holmes MM. Introduction to the Special Issue "Hormones and Hierarchies". Horm Behav 2023; 148:105299. [PMID: 36621292 DOI: 10.1016/j.yhbeh.2022.105299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Phoebe D Edwards
- Department of Psychology, University of Toronto, Toronto, ON, Canada.
| | - Melissa M Holmes
- Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Campos SM, Erley A, Ashraf Z, Wilczynski W. Signaler's Vasotocin Alters the Relationship between the Responder's Forebrain Catecholamines and Communication Behavior in Lizards (Anolis carolinensis). BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:184-196. [PMID: 35320812 DOI: 10.1159/000524217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Dynamic fluctuations in the distribution of catecholamines across the brain modulate the responsiveness of vertebrates to social stimuli. Previous work demonstrates that green anoles (Anolis carolinensis) increase chemosensory behavior in response to males treated with exogenous arginine vasotocin (AVT), but the neurochemical mechanisms underlying this behavioral shift remains unclear. Since central catecholamine systems, including dopamine, rapidly activate in response to social stimuli, we tested whether exogenous AVT in signalers (stimulus animals) impacts catecholamine concentrations in the forebrain (where olfactory and visual information are integrated and processed) of untreated lizard responders. We also tested whether AVT influences the relationship between forebrain catecholamine concentrations and communication behavior in untreated receivers. We measured global catecholamine (dopamine = DA, epinephrine = Epi, and norepinephrine = NE) concentrations in the forebrain of untreated responders using high-performance liquid chromatography-mass spectrometry following either a 30-min social interaction with a stimulus male or a period of social isolation. Stimulus males were injected with exogenous AVT or vehicle saline (SAL). We found that global DA, but not Epi or NE, concentrations were elevated in lizards responding to SAL-males relative to isolated lizards. Lizards interacting with AVT-males had DA, Epi and NE concentrations that were not significantly different from SAL or isolated groups. For behavior, we found a significant effect of social treatment (AVT vs. SAL) on the relationships between (1) DA concentrations and the motivation to perform a chemical display (latency to tongue flick) and (2) Epi concentrations and time spent displaying mostly green body coloration. We also found a significant negative correlation between DA concentrations and the latency to perform a visual display but found no effect of social treatment on this relationship. These data suggest that catecholamine concentrations in the forebrain of untreated responders are associated with chemical and visual communication in lizards and that signaler AVT alters this relationship for some, but not all, aspects of social communication.
Collapse
Affiliation(s)
- Stephanie M Campos
- Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, USA
| | | | - Zoha Ashraf
- Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
| | - Walter Wilczynski
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|