1
|
Boersma J, Enbody ED, Ketaloya S, Watts HE, Karubian J, Schwabl H. Does capacity to produce androgens underlie variation in female ornamentation and territoriality in White-shouldered Fairywren (Malurus alboscapulatus)? Horm Behav 2023; 154:105393. [PMID: 37331309 DOI: 10.1016/j.yhbeh.2023.105393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
Historic bias toward study of sex hormones and sexual ornamentation in males currently constrains our perspective of hormone-behavior-phenotype relationships. Resolving how ornamented female phenotypes evolve is particularly important for understanding the diversity of social signals across taxa. Studies of both males and females in taxa with variable female phenotypes are needed to establish whether sexes share mechanisms underlying expression of signaling phenotypes and behavior. White-shouldered Fairywren (Malurus alboscapulatus) subspecies vary in female ornamentation, baseline circulating androgens, and response to territorial intrusion. The moretoni ornamented female subspecies is characterized by higher female, but lower male baseline androgens, and a stronger pair territorial response relative to pairs from the lorentzi unornamented female subspecies. Here we address whether subspecific differences in female ornamentation, baseline androgens, and pair territoriality are associated with ability to elevate androgens following gonadotropin releasing hormone (GnRH) challenge and in response to simulated territorial intrusion. We find that subspecies do not differ in their capacity to produce androgens in either sex following GnRH or simulated territorial intrusion (STI) challenges. STI-induced androgens were predictive of degree of response to territorial intrusions in females only, but the direction of the effect was mixed. GnRH-induced androgens did not correlate with response to simulated intruders, nor did females sampled during intrusion elevate androgens relative to flushed controls, suggesting that increased androgens are not necessary for the expression of territorial defense behaviors. Collectively, our results suggest that capacity to produce androgens does not underlie subspecific patterns of female ornamentation, territoriality, and baseline plasma androgens.
Collapse
Affiliation(s)
- Jordan Boersma
- School of Biological Sciences, Washington State University, Pullman, WA, USA; Cornell Lab of Ornithology, Ithaca, NY, USA; Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| | - Erik D Enbody
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA; Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Serena Ketaloya
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA; Porotona Village, Milne Bay Province, Papua New Guinea
| | - Heather E Watts
- School of Biological Sciences, Washington State University, Pullman, WA, USA; Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Jordan Karubian
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Hubert Schwabl
- School of Biological Sciences, Washington State University, Pullman, WA, USA; Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| |
Collapse
|
2
|
Welklin JF, Lantz SM, Khalil S, Moody NM, Karubian J, Webster MS. Photoperiod and rainfall are associated with seasonal shifts in social structure in a songbird. Behav Ecol 2022. [DOI: 10.1093/beheco/arac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Seasonally breeding animals often exhibit different social structures during non-breeding and breeding periods that coincide with seasonal environmental variation and resource abundance. However, we know little about the environmental factors associated with when seasonal shifts in social structure occur. This lack of knowledge contrasts with our well-defined knowledge of the environmental cues that trigger a shift to breeding physiology in seasonally breeding species. Here, we identified some of the main environmental factors associated with seasonal shifts in social structure and initiation of breeding in the red-backed fairywren (Malurus melanocephalus), an Australian songbird. Social network analyses revealed that social groups, which are highly territorial during the breeding season, interact in social “communities” on larger home ranges during the non-breeding season. Encounter rates among non-breeding groups were related to photoperiod and rainfall, with shifting photoperiod and increased rainfall associated with a shift toward territorial breeding social structure characterized by reductions in home range size and fewer encounters among non-breeding social groups. Similarly, onset of breeding was highly seasonal and was also associated with non-breeding season rainfall, with greater rainfall leading to earlier breeding. These findings reveal that for some species, the environmental factors associated with the timing of shifts in social structure across seasonal boundaries can be similar to those that determine timing of breeding. This study increases our understanding of the environmental factors associated with seasonal variation in social structure and how the timing of these shifts may respond to changing climates.
Collapse
Affiliation(s)
- Joseph F Welklin
- Department of Neurobiology and Behavior, Cornell University , 215 Tower Rd, Ithaca, NY 14853 , USA
- Cornell Lab of Ornithology , 159 Sapsucker Woods Rd, Ithaca, NY 14850 , USA
| | - Samantha M Lantz
- Department of Ecology and Evolutionary Biology, Tulane University , 400 Lindy Boggs Center, New Orleans, LA 70118 , USA
| | - Sarah Khalil
- Cornell Lab of Ornithology , 159 Sapsucker Woods Rd, Ithaca, NY 14850 , USA
- Department of Ecology and Evolutionary Biology, Tulane University , 400 Lindy Boggs Center, New Orleans, LA 70118 , USA
| | - Nicole M Moody
- Department of Ecology and Evolutionary Biology, Tulane University , 400 Lindy Boggs Center, New Orleans, LA 70118 , USA
- Department of Ecology and Evolutionary Biology, Brown University , 80 Waterman St, Providence, RI 02912 , USA
| | - Jordan Karubian
- Department of Ecology and Evolutionary Biology, Tulane University , 400 Lindy Boggs Center, New Orleans, LA 70118 , USA
| | - Michael S Webster
- Department of Neurobiology and Behavior, Cornell University , 215 Tower Rd, Ithaca, NY 14853 , USA
- Cornell Lab of Ornithology , 159 Sapsucker Woods Rd, Ithaca, NY 14850 , USA
| |
Collapse
|
3
|
Enbody ED, Sin SYW, Boersma J, Edwards SV, Ketaloya S, Schwabl H, Webster MS, Karubian J. The evolutionary history and mechanistic basis of female ornamentation in a tropical songbird. Evolution 2022; 76:1720-1736. [PMID: 35748580 PMCID: PMC9543242 DOI: 10.1111/evo.14545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 01/22/2023]
Abstract
Ornamentation, such as the showy plumage of birds, is widespread among female vertebrates, yet the evolutionary pressures shaping female ornamentation remain uncertain. In part this is due to a poor understanding of the mechanistic route to ornamentation in females. To address this issue, we evaluated the evolutionary history of ornament expression in a tropical passerine bird, the White-shouldered Fairywren, whose females, but not males, strongly vary between populations in occurrence of ornamented black-and-white plumage. We first use phylogenomic analysis to demonstrate that female ornamentation is derived and that female ornamentation evolves independently of changes in male plumage. We then use exogenous testosterone in a field experiment to induce partial ornamentation in naturally unornamented females. By sequencing the transcriptome of experimentally induced ornamented and natural feathers, we identify genes expressed during ornament production and evaluate the degree to which female ornamentation in this system is associated with elevated testosterone, as is common in males. We reveal that some ornamentation in females is linked to testosterone and that sexes differ in ornament-linked gene expression. Lastly, using genomic outlier analysis we identify a candidate melanogenesis gene that lies in a region of high genomic divergence among populations that is also differentially expressed in feather follicles of different female plumages. Taken together, these findings are consistent with sex-specific selection favoring the evolution of female ornaments and demonstrate a key role for testosterone in generating population divergence in female ornamentation through gene regulation. More broadly, our work highlights similarities and differences in how ornamentation evolves in the sexes.
Collapse
Affiliation(s)
- Erik D. Enbody
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisiana70118,Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSE‐75123Sweden
| | - Simon Y. W. Sin
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusetts02138,School of Biological SciencesThe University of Hong KongPok Fu Lam RoadHong Kong
| | - Jordan Boersma
- School of Biological Sciences, Center for Reproductive BiologyWashington State UniversityPullmanWashington99164,Department of Neurobiology and BehaviorCornell UniversityIthacaNew York14853,Macaulay LibraryCornell Lab of OrnithologyIthacaNew York14850
| | - Scott V. Edwards
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusetts02138
| | - Serena Ketaloya
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisiana70118
| | - Hubert Schwabl
- School of Biological Sciences, Center for Reproductive BiologyWashington State UniversityPullmanWashington99164
| | - Michael S. Webster
- Department of Neurobiology and BehaviorCornell UniversityIthacaNew York14853,Macaulay LibraryCornell Lab of OrnithologyIthacaNew York14850
| | - Jordan Karubian
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisiana70118
| |
Collapse
|