1
|
Pavić V, Viljetić B, Blažetić S, Labak I, Has-Schön E, Heffer M. Temperature-Induced Seasonal Dynamics of Brain Gangliosides in Rainbow Trout ( Oncorhynchus mykiss Walbaum) and Common Carp ( Cyprinus carpio L.). Life (Basel) 2024; 14:1273. [PMID: 39459573 PMCID: PMC11509357 DOI: 10.3390/life14101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
This study aimed to determine the expression and distribution of gangliosides in specific regions of the brains of rainbow trout (Oncorhynchus mykiss Walbaum) and common carp (Cyprinus carpio L.) with regard to seasonal temperature changes. Seasonal changes in ganglioside expression and distribution within the species were expected. The natural ecosystems of these fishes differ significantly due to their distinct habitat preferences, geographic distributions, and environmental requirements. Based on the fact that the common carp is eurythermic and adapts to a wide range of temperatures, while the rainbow trout is stenothermic and thrives in a narrower temperature range, it was expected that these species would exhibit distinct patterns of ganglioside modification as part of their adaptive response to temperature fluctuations. Immunohistochemistry using specific antibodies for the major brain gangliosides (GM1, GD1a, GD1b, GT1b), along with the Svennerholm method for quantifying sialic acid bound to gangliosides, revealed that cold acclimatization led to an increase in polysialylated gangliosides in the common carp brain and an increase in trisialogangliosides in the rainbow trout brain. Immunohistochemical analysis also identified region-specific changes in ganglioside expression, suggesting specific functional roles in neuronal adaptation. These results supported the hypothesis that the composition and distribution of brain gangliosides change in response to seasonal thermal shifts as part of the adaptive response. The results underscore the importance of gangliosides in neuronal function and adaptation to environmental stimuli, with implications for understanding fish resilience to temperature changes. This study offers valuable insights into species' temperature adaptation, with implications for physiological and ecological management and improved aquaculture practices. Future research could expand the species scale, study molecular mechanisms and regulatory pathways in ganglioside metabolism, and examine ganglioside interactions with membrane proteins and lipids for a deeper understanding of thermal adaptation.
Collapse
Affiliation(s)
- Valentina Pavić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia; (V.P.); (S.B.); (E.H.-S.)
| | - Barbara Viljetić
- Department of Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Senka Blažetić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia; (V.P.); (S.B.); (E.H.-S.)
| | - Irena Labak
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia; (V.P.); (S.B.); (E.H.-S.)
| | - Elizabeta Has-Schön
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia; (V.P.); (S.B.); (E.H.-S.)
| | - Marija Heffer
- Department of Medical Biology, School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| |
Collapse
|
2
|
Curry HN, Huynh R, Rouhana L. Melastatin subfamily Transient Receptor Potential channels support spermatogenesis in planarian flatworms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.01.610670. [PMID: 39282438 PMCID: PMC11398416 DOI: 10.1101/2024.09.01.610670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The Transient Receptor Potential superfamily of proteins (TRPs) form cation channels that are abundant in animal sensory systems. Amongst TRPs, the Melastatin-related subfamily (TRPMs) is composed of members that respond to temperature, pH, sex hormones, and various other stimuli. Some TRPMs exhibit enriched expression in gonads of vertebrate and invertebrate species, but their contributions to germline development remain to be determined. We identified twenty-one potential TRPMs in the planarian flatworm Schmidtea mediterranea and analyzed their anatomical distribution of expression by whole-mount in situ hybridization. Enriched expression of two TRPMs (Smed-TRPM-c and Smed-TRPM-l) was detected in testis, whereas eight TRPM genes had detectable expression in patterns representative of neuronal and/or sensory cell types. Functional analysis of TRPM homologs by RNA-interference (RNAi) revealed that disruption of Smed-TRPM-c expression results in reduced sperm development, indicating a role for this receptor in supporting spermatogenesis. Smed-TRPM-l RNAi did not result in a detectable phenotype, but it increased sperm development deficiencies when combined with Smed-TRPM-c RNAi. Fluorescence in situ hybridization revealed expression of Smed-TRPM-c in early spermatogenic cells within testes, suggesting cell-autonomous regulatory functions in germ cells for this gene. In addition, Smed-TRPM-c RNAi resulted in reduced numbers of presumptive germline stem cell clusters in asexual planarians, suggesting that Smed-TRPM-c supports establishment, maintenance, and/or expansion of spermatogonial germline stem cells. While further research is needed to identify the factors that trigger Smed-TRPM-c activity, these findings reveal one of few known examples for TRPM function in direct regulation of sperm development.
Collapse
Affiliation(s)
- Haley Nicole Curry
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH 45435, USA
| | - Roger Huynh
- Department of Biology, University of Massachusetts Boston, 100 William T. Morrissey Blvd., Boston, MA 02125-3393, USA
| | - Labib Rouhana
- Department of Biology, University of Massachusetts Boston, 100 William T. Morrissey Blvd., Boston, MA 02125-3393, USA
| |
Collapse
|
3
|
Lutterschmidt DI, Stratton K, Winters TJ, Martin S, Merlino LJ. Neural thyroid hormone metabolism integrates seasonal changes in environmental temperature with the neuroendocrine reproductive axis. Horm Behav 2024; 161:105517. [PMID: 38422864 DOI: 10.1016/j.yhbeh.2024.105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
We asked if environmental temperature alters thyroid hormone metabolism within the hypothalamus, thereby providing a neuroendocrine mechanism by which temperature could be integrated with photoperiod to regulate seasonal rhythms. We used immunohistochemistry to assess the effects of low-temperature winter dormancy at 4 °C or 12 °C on thyroid-stimulating hormone (TSH) within the infundibulum of the pituitary as well as deiodinase 2 (Dio2) and 3 (Dio3) within the hypothalamus of red-sided garter snakes (Thamnophis sirtalis). Both the duration and, in males, magnitude of low-temperature dormancy altered deiodinase immunoreactivity within the hypothalamus, increasing the area of Dio2-immunoreactivity in males and females and decreasing the number of Dio3-immunoreactive cells in males after 8-16 weeks. Reciprocal changes in Dio2/3 favor the accumulation of triiodothyronine within the hypothalamus. Whether TSH mediates these effects requires further study, as significant changes in TSH-immunoreactive cell number were not observed. Temporal changes in deiodinase immunoreactivity coincided with an increase in the proportion of males exhibiting courtship behavior as well as changes in the temporal pattern of courtship behavior after emergence. Our findings mirror those of previous studies, in which males require low-temperature exposure for at least 8 weeks before significant changes in gonadotropin-releasing hormone immunoreactivity and sex steroid hormones are observed. Collectively, these data provide evidence that the neuroendocrine pathway regulating the reproductive axis via thyroid hormone metabolism is capable of transducing temperature information. Because all vertebrates can potentially use temperature as a supplementary cue, these results are broadly applicable to understanding how environment-organism interactions mediate seasonally adaptive responses.
Collapse
Affiliation(s)
| | - Kalera Stratton
- Department of Biology, Portland State University, OR, United States
| | - Treven J Winters
- Department of Biology, Portland State University, OR, United States
| | - Stephanie Martin
- Department of Biology, Portland State University, OR, United States
| | - Lauren J Merlino
- Department of Biology, Portland State University, OR, United States
| |
Collapse
|
4
|
Lindner M, Ramakers JJ, Verhagen I, Tomotani BM, Mateman AC, Gienapp P, Visser ME. Genotypes selected for early and late avian lay date differ in their phenotype, but not fitness, in the wild. SCIENCE ADVANCES 2023; 9:eade6350. [PMID: 37285433 DOI: 10.1126/sciadv.ade6350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/01/2023] [Indexed: 06/09/2023]
Abstract
Global warming has shifted phenological traits in many species, but whether species are able to track further increasing temperatures depends on the fitness consequences of additional shifts in phenological traits. To test this, we measured phenology and fitness of great tits (Parus major) with genotypes for extremely early and late egg lay dates, obtained from a genomic selection experiment. Females with early genotypes advanced lay dates relative to females with late genotypes, but not relative to nonselected females. Females with early and late genotypes did not differ in the number of fledglings produced, in line with the weak effect of lay date on the number of fledglings produced by nonselected females in the years of the experiment. Our study is the first application of genomic selection in the wild and led to an asymmetric phenotypic response that indicates the presence of constraints toward early, but not late, lay dates.
Collapse
Affiliation(s)
- Melanie Lindner
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| | - Jip Jc Ramakers
- Mathematical and Statistical Methods-Biometris, Wageningen University & Research (WUR), Wageningen, Netherlands
| | - Irene Verhagen
- Wageningen University & Research (WUR) Library, Wageningen, Netherlands
| | - Barbara M Tomotani
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - A Christa Mateman
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | | | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| |
Collapse
|
5
|
Chmura HE, Duncan C, Burrell G, Barnes BM, Buck CL, Williams CT. Climate change is altering the physiology and phenology of an arctic hibernator. Science 2023; 380:846-849. [PMID: 37228197 DOI: 10.1126/science.adf5341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
Climate warming is rapid in the Arctic, yet impacts to biological systems are unclear because few long-term studies linking biophysiological processes with environmental conditions exist for this data-poor region. In our study spanning 25 years in the Alaskan Arctic, we demonstrate that climate change is affecting the timing of freeze-thaw cycles in the active layer of permafrost soils and altering the physiology of arctic ground squirrels (Urocitellus parryii). Soil freeze has been delayed and, in response, arctic ground squirrels have delayed when they up-regulate heat production during torpor to prevent freezing. Further, the termination of hibernation in spring has advanced 4 days per decade in females but not males. Continued warming and phenological shifts will alter hibernation energetics, change the seasonal availability of this important prey species, and potentially disrupt intraspecific interactions.
Collapse
Affiliation(s)
- Helen E Chmura
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
- Rocky Mountain Research Station, United States Forest Service, Missoula, MT 59801, USA
| | - Cassandra Duncan
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Grace Burrell
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Brian M Barnes
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Cory T Williams
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
6
|
Demas G, Greives T, Lutterschmidt D. Introduction to a brain for all seasons: Using seasonality as a model to uncover brain-behavior mechanisms across species. Horm Behav 2023; 150:105328. [PMID: 36805608 DOI: 10.1016/j.yhbeh.2023.105328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Gregory Demas
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - Timothy Greives
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Deborah Lutterschmidt
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
7
|
Aubry LM, Williams CT. Vertebrate Phenological Plasticity: from Molecular Mechanisms to Ecological and Evolutionary Implications. Integr Comp Biol 2022; 62:958-971. [PMID: 35867980 DOI: 10.1093/icb/icac121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/12/2022] Open
Abstract
Seasonal variation in the availability of essential resources is one of the most important drivers of natural selection on the phasing and duration of annually recurring life-cycle events. Shifts in seasonal timing are among the most commonly reported responses to climate change and the capacity of organisms to adjust their timing, either through phenotypic plasticity or evolution, is a critical component of resilience. Despite growing interest in documenting and forecasting the impacts of climate change on phenology, our ability to predict how individuals, populations, and species might alter their seasonal timing in response to their changing environments is constrained by limited knowledge regarding the cues animals use to adjust timing, the endogenous genetic and molecular mechanisms that transduce cues into neural and endocrine signals, and the inherent capacity of animals to alter their timing and phasing within annual cycles. Further, the fitness consequences of phenological responses are often due to biotic interactions within and across trophic levels, rather than being simple outcomes of responses to changes in the abiotic environment. Here, we review the current state of knowledge regarding the mechanisms that control seasonal timing in vertebrates, as well as the ecological and evolutionary consequences of individual, population, and species-level variation in phenological responsiveness. Understanding the causes and consequences of climate-driven phenological shifts requires combining ecological, evolutionary, and mechanistic approaches at individual, populational, and community scales. Thus, to make progress in forecasting phenological responses and demographic consequences, we need to further develop interdisciplinary networks focused on climate change science.
Collapse
Affiliation(s)
- Lise M Aubry
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, 1474 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Cory T Williams
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| |
Collapse
|
8
|
Chmura HE, Duncan C, Saer B, Moore JT, Barnes BM, Buck CL, Loudon ASI, Williams CT. Effects of spring warming on seasonal neuroendocrinology and activation of the reproductive axis in hibernating arctic ground squirrels. Integr Comp Biol 2022; 62:1012-1021. [PMID: 35790133 DOI: 10.1093/icb/icac112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/14/2022] Open
Abstract
Many animals adjust the timing of seasonal events, such as reproduction, molt, migration, and hibernation, in response to interannual variation and directional climate-driven changes in temperature. However, the mechanisms by which temperature influences seasonal timing are relatively under-explored. Seasonal timing involves retrograde signaling in which thyrotropin (TSH) in the pars tuberalis (PT) alters expression of thyroid hormone (TH) deiodinases (Dio2/Dio3) in tanycyte cells lining the third ventricle of the hypothalamus. This, in turn, affects the availability of triiodothyronine (T3) within the mediobasal hypothalamus - increased hypothalamic T3 restores a summer phenotype and activates the reproductive axis in long-day breeders. Recently, we showed that retrograde TH signaling is activated during late hibernation in arctic ground squirrels (Urocitellus parryii) held in constant darkness and constant ambient temperature. Sensitivity of seasonal pathways to non-photic cues, such as temperature, is likely particularly important to hibernating species that are sequestered in hibernacula during spring. To address this issue, we exposed captive arctic ground squirrels of both sexes to an ecologically relevant increase in ambient temperature (from -6°C to -1°C) late in hibernation and examined the effects of warming on the seasonal retrograde TSH/Dio/T3 signaling pathway, as well as downstream elements of the reproductive axis. We found that warmed males tended to have higher PT TSHβ expression and significantly heavier testis mass whereas the TSH/Dio/T3 signaling pathway was unaffected by warming in females, although warmed females exhibited a slight decrease in ovarian mass. Our findings suggest that temperature could have different effects on gonadal growth in male and female arctic ground squirrels, which could lead to mismatched timing in response to rapid climate change.
Collapse
Affiliation(s)
- Helen E Chmura
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK 99775, USA.,Rocky Mountain Research Station, United States Forest Service, 800 E. Beckwith, Missoula, MT 59801, USA
| | - Cassandra Duncan
- Department of Biology and Wildlife, University of Alaska Fairbanks, 2090 Koyukuk Drive, Fairbanks, AK 99775, USA
| | - Ben Saer
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jeanette T Moore
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK 99775, USA
| | - Brian M Barnes
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK 99775, USA
| | - C Loren Buck
- Northern Arizona University, Department of Biological Sciences, 227 Building 21, 617 S Beaver, Flagstaff, Arizona 86011, USA
| | - Andrew S I Loudon
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Cory T Williams
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK 99775, USA.,Department of Biology and Wildlife, University of Alaska Fairbanks, 2090 Koyukuk Drive, Fairbanks, AK 99775, USA.,Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| |
Collapse
|
9
|
Williams CT, Chmura HE, Deal CK, Wilsterman K. Sex-differences in Phenology: A Tinbergian Perspective. Integr Comp Biol 2022; 62:980-997. [PMID: 35587379 DOI: 10.1093/icb/icac035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 11/13/2022] Open
Abstract
Shifts in the timing of cyclic seasonal life-history events are among the most commonly reported responses to climate change, with differences in response rates among interacting species leading to phenological mismatches. Within a species, however, males and females can also exhibit differential sensitivity to environmental cues and may therefore differ in their responsiveness to climate change, potentially leading to phenological mismatches between the sexes. This occurs because males differ from females in when and how energy is allocated to reproduction, resulting in marked sex-differences in life-history timing across the annual cycle. In this review, we take a Tinbergian perspective and examine sex differences in timing of vertebrates from adaptive, ontogenetic, mechanistic, and phylogenetic viewpoints with the goal of informing and motivating more integrative research on sexually dimorphic phenologies. We argue that sexual and natural selection lead to sex-differences in life-history-timing and that understanding the ecological and evolutionary drivers of these differences is critical for connecting climate-driven phenological shifts to population resilience. Ontogeny may influence how and when sex differences in life-history timing arise because the early-life environment can profoundly affect developmental trajectory, rates of reproductive maturation, and seasonal timing. The molecular mechanisms underlying these organismal traits are relevant to identifying the diversity and genetic basis of population- and species-level responses to climate change, and promisingly, the molecular basis of phenology is becoming increasingly well-understood. However, because most studies focus on a single sex, the causes of sex-differences in phenology critical to population resilience often remain unclear. New sequencing tools and analyses informed by phylogeny may help generate hypotheses about mechanism as well as insight into the general "evolvability" of sex differences across phylogenetic scales, especially as trait and genome resources grow. We recommend that greater attention be placed on determining sex-differences in timing mechanisms and monitoring climate change responses in both sexes, and we discuss how new tools may provide key insights into sex-differences in phenology from all four Tinbergian domains.
Collapse
Affiliation(s)
- Cory T Williams
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| | - Helen E Chmura
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK 99775, USA.,Rocky Mountain Research Station, United States Forest Service, 800 E. Beckwith Ave, Missoula, MT 59801, USA
| | - Cole K Deal
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| | - Kathryn Wilsterman
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| |
Collapse
|