de Assis GG, de Sousa MBC, Murawska-Ciałowicz E. Sex Steroids and Brain-Derived Neurotrophic Factor Interactions in the Nervous System: A Comprehensive Review of Scientific Data.
Int J Mol Sci 2025;
26:2532. [PMID:
40141172 PMCID:
PMC11942429 DOI:
10.3390/ijms26062532]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Sex steroids and the neurotrophin brain-derived neurotrophic factor (BDNF) participate in neural tissue formation, phenotypic differentiation, and neuroplasticity. These processes are essential for the health and maintenance of the central nervous system.
AIM
The aim of our review is to elucidate the interaction mechanisms between BDNF and sex steroids in neuronal function.
METHOD
A series of searches were performed using Mesh terms for androgen/receptors, estrogen/receptors, and BDNF/receptors, and a collection of the scientific data available on PubMed up to February 2025 about mechanical interactions between BDNF and sex steroids was included in this literature review.
DISCUSSION
This review discussed the influence of sex steroids on the formation and/or maintenance of neural circuits via different mechanisms, including the regulation of BDNF expression and signaling. Estrogens exert a time- and region-specific effect on BDNF synthesis. The nuclear estrogen receptor can directly regulate BDNF expression, independently of the presence of estrogen, in neuronal cells, whereas progesterone and testosterone upregulate BDNF expression via their specific nuclear receptors. In addition, testosterone has a positive effect on BDNF release by glial cells, which lack androgen receptors.
Collapse