1
|
Madison FN, Prior NH, Trainor BC. Special Issue: Highlights of SBN 2022. Horm Behav 2024; 160:105490. [PMID: 38320422 DOI: 10.1016/j.yhbeh.2024.105490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
|
2
|
Smiley KO, Munley KM, Aghi K, Lipshutz SE, Patton TM, Pradhan DS, Solomon-Lane TK, Sun SED. Sex diversity in the 21st century: Concepts, frameworks, and approaches for the future of neuroendocrinology. Horm Behav 2024; 157:105445. [PMID: 37979209 PMCID: PMC10842816 DOI: 10.1016/j.yhbeh.2023.105445] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023]
Abstract
Sex is ubiquitous and variable throughout the animal kingdom. Historically, scientists have used reductionist methodologies that rely on a priori sex categorizations, in which two discrete sexes are inextricably linked with gamete type. However, this binarized operationalization does not adequately reflect the diversity of sex observed in nature. This is due, in part, to the fact that sex exists across many levels of biological analysis, including genetic, molecular, cellular, morphological, behavioral, and population levels. Furthermore, the biological mechanisms governing sex are embedded in complex networks that dynamically interact with other systems. To produce the most accurate and scientifically rigorous work examining sex in neuroendocrinology and to capture the full range of sex variability and diversity present in animal systems, we must critically assess the frameworks, experimental designs, and analytical methods used in our research. In this perspective piece, we first propose a new conceptual framework to guide the integrative study of sex. Then, we provide practical guidance on research approaches for studying sex-associated variables, including factors to consider in study design, selection of model organisms, experimental methodologies, and statistical analyses. We invite fellow scientists to conscientiously apply these modernized approaches to advance our biological understanding of sex and to encourage academically and socially responsible outcomes of our work. By expanding our conceptual frameworks and methodological approaches to the study of sex, we will gain insight into the unique ways that sex exists across levels of biological organization to produce the vast array of variability and diversity observed in nature.
Collapse
Affiliation(s)
- Kristina O Smiley
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, 639 North Pleasant Street, Morrill IVN Neuroscience, Amherst, MA 01003, USA.
| | - Kathleen M Munley
- Department of Psychology, University of Houston, 3695 Cullen Boulevard, Houston, TX 77204, USA.
| | - Krisha Aghi
- Department of Integrative Biology and Physiology, University of California Los Angeles, 405 Hilgard Ave, Los Angeles, CA 90095, USA.
| | - Sara E Lipshutz
- Department of Biology, Duke University, 130 Science Drive, Durham, NC 27708, USA.
| | - Tessa M Patton
- Bioinformatics Program, Loyola University Chicago, 1032 West Sheridan Road, LSB 317, Chicago, IL 60660, USA.
| | - Devaleena S Pradhan
- Department of Biological Sciences, Idaho State University, 921 South 8th Avenue, Mail Stop 8007, Pocatello, ID 83209, USA.
| | - Tessa K Solomon-Lane
- Scripps, Pitzer, Claremont McKenna Colleges, 925 North Mills Avenue, Claremont, CA 91711, USA.
| | - Simón E D Sun
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
3
|
Demas GE, Munley KM, Jasnow AM. A seasonal switch hypothesis for the neuroendocrine control of aggression. Trends Endocrinol Metab 2023; 34:799-812. [PMID: 37722999 DOI: 10.1016/j.tem.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Aggression is a well-studied social behavior that is universally exhibited by animals across a wide range of contexts. Prevailing knowledge suggests gonadal steroids primarily mediate aggression; however, this is based mainly on studies of male-male aggression in laboratory rodents. When males and females of other species, including humans, are examined, a positive relationship between gonadal steroids and aggression is less substantiated. For instance, hamsters housed in short 'winter-like' days show increased aggression compared with long-day housed hamsters, despite relatively low circulating gonadal steroids. These results suggest alternative, non-gonadal mechanisms controlling aggression. Here, we propose the seasonal switch hypothesis, which employs a multidisciplinary approach to describe how seasonal variation in extra-gonadal steroids, orchestrated by melatonin, drives context-specific changes in aggression.
Collapse
Affiliation(s)
- Gregory E Demas
- Department of Biology, Program in Neuroscience, and Program in Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Kathleen M Munley
- Department of Psychology, University of Houston, Houston, TX 77204, USA
| | - Aaron M Jasnow
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|