1
|
Kim SH, Lee JG, Ju HM, Choi S, Yang H, Koo BN. Propofol prevents further prolongation of QT interval during liver transplantation. Sci Rep 2022; 12:4636. [PMID: 35301381 PMCID: PMC8931121 DOI: 10.1038/s41598-022-08592-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Here, we aimed to compare the effects of two anesthetic methods (desflurane inhalation anesthesia vs. propofol-based total intravenous anesthesia (TIVA)] on corrected QT interval (QTc) values during living donor liver transplantation. Altogether, 120 patients who underwent living donor liver transplantation were randomized to either the desflurane or TIVA group. The primary outcome was intraoperative QTc change. Other electrocardiogram, hemodynamic findings and postoperative outcomes were examined as secondary outcomes. QTc values were prolonged intraoperatively in both groups; however, the change was smaller in the TIVA group than in the desflurane group (PGroup × Time < 0.001). More patients had QTc values of > 500 ms in the desflurane group than in the TIVA group (63.3% vs. 28.3%, P < 0.001). In patients with preoperative QTc prolongation, QTc was further prolonged in the desflurane group, but not in the TIVA group (PGroup × Time < 0.001). Intraoperative norepinephrine and vasopressin use were higher in the desflurane group than in the TIVA group. Propofol-based TIVA may reduce QTc prolongation during living donor liver transplantation compared to that observed with desflurane inhalational anesthesia, particularly in patients with preoperative QTc prolongation. Additionally, patients managed with propofol-based TIVA required less vasopressor during the procedure as compared with those managed with desflurane inhalational anesthesia.
Collapse
Affiliation(s)
- Seung Hyun Kim
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Jae Geun Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyang Mi Ju
- Department of Anesthesiology and Pain Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - SuYoun Choi
- Department of Anesthesiology and Pain Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyukjin Yang
- Department of Anesthesiology and Pain Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bon-Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea.
| |
Collapse
|
2
|
Kowalczyk M, Guz M, Okoń E, Jeleniewicz W, Grzycka-Kowalczyk L, Kiełbus M, Dudka J, Suseł W, Dąbrowski W, Stepulak A. MMP-9 and MMP-2 regulation in patients undergoing non-oncological and non-vascular elective surgery independent of the use of propofol or sevoflurane. Pharmacol Rep 2019; 71:528-534. [PMID: 31015093 DOI: 10.1016/j.pharep.2019.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 01/04/2019] [Accepted: 02/15/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND There is debate regarding whether inhaled sevoflurane or intravenous propofol used during anesthesia achieves the best outcome. Propofol has been shown to affect expression of matrix metalloproteinases (MMPs). MMPs are enzymes that play a role in extracellular matrix remodeling, with activity balance disturbances during surgery. The goal of this study was to compare MMP-2/9 concentrations, activity, and tissue inhibitors of metalloproteinases (TIMPs) 1/2 concentrations in blood of who had undergone 2 types of anesthesia: based on volatile sevoflurane and intravenous propofol during non-oncological, non-vascular surgery. METHODS 39 patients were enrolled into analysis, 20 anesthetized with total intravenous anesthesia with propofol (P), 19 with volatile induction/maintenance of anesthesia with sevoflurane (S). Plasma samples collected before and 24 h after surgery were analyzed for MMP-2/9, and TIMP-1/2 concentrations using ELISAs. Additionally, MMP-2/9 activities were assessed by gelatin zymography. RESULTS Study revealed increased MMP-9 concentration (ELISA) (P:p = 0.011; S:p = 0.001) and activity (zymography) (P:p = 0.004; S:p = 0.008) in both groups 24 h after surgery. We noticed decreased (both groups) MMP-2 concentration (P:p = 0.044; S:p = 0.027) with MMP-2 activity increase (P:p = 0.002; S:p = 0.006) 24 h after surgery. We observed decreased TIMP-1 plasma concentrations (P:p = 0.002; S:p = 0.000) 24 h after procedures, while TIMP-2 plasma levels remain unchanged (P:p = 0.097; S:p = 0.172). There were no differences between concentration and activity of MMPs and TIMPs in regard to anesthetic used. Meperidine administration correlated with lower MMP-9 activity (R=-0.430; p = 0.006). CONCLUSIONS Concluding, neither sevoflurane nor propofol used as anesthetics modulate MMP-2 and MMP-9 concentrations and activities during non-oncological, non-vascular elective surgery. Meperidine seems to decrease MMP-9 activity.
Collapse
Affiliation(s)
- Michał Kowalczyk
- 1st Department of Anesthesiology and Intensive Care, Medical University of Lublin, Lublin, Poland.
| | - Małgorzata Guz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.
| | - Estera Okoń
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.
| | - Witold Jeleniewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.
| | - Luiza Grzycka-Kowalczyk
- 1st Department of Radiology and Nuclear Medicine, Medical University of Lublin, Lublin, Poland.
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.
| | - Jarosław Dudka
- Department of Toxicology, Medical University of Lublin, Poland.
| | - Wojciech Suseł
- Department of Anesthesiology and Intensive Care, Saint Luke's Regional Hospital in Tarnów, Tarnów, Poland.
| | - Wojciech Dąbrowski
- 1st Department of Anesthesiology and Intensive Care, Medical University of Lublin, Lublin, Poland.
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
3
|
H 2O 2 Signaling-Triggered PI3K Mediates Mitochondrial Protection to Participate in Early Cardioprotection by Exercise Preconditioning. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1916841. [PMID: 30147831 PMCID: PMC6083504 DOI: 10.1155/2018/1916841] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/05/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022]
Abstract
Previous studies have shown that early exercise preconditioning (EEP) imparts a protective effect on acute cardiovascular stress. However, how mitophagy participates in exercise preconditioning- (EP-) induced cardioprotection remains unclear. EEP may involve mitochondrial protection, which presumably crosstalks with predominant H2O2 oxidative stress. Our EEP protocol involves four periods of 10 min running with 10 min recovery intervals. We added a period of exhaustive running and a pretreatment using phosphoinositide 3-kinase (PI3K)/autophagy inhibitor wortmannin to test this protective effect. By using transmission electron microscopy (TEM), laser scanning confocal microscopy, and other molecular biotechnology methods, we detected related markers and specifically analyzed the relationship between mitophagic proteins and mitochondrial translocation. We determined that exhaustive exercise associated with various elevated injuries targeted the myocardium, oxidative stress, hypoxia-ischemia, and mitochondrial ultrastructure. However, exhaustion induced limited mitochondrial protection through a H2O2-independent manner to inhibit voltage-dependent anion channel isoform 1 (VDAC1) instead of mitophagy. EEP was apparently safe to the heart. In EEP-induced cardioprotection, EEP provided suppression to exhaustive exercise (EE) injuries by translocating Bnip3 to the mitochondria by recruiting the autophagosome protein LC3 to induce mitophagy, which is potentially triggered by H2O2 and influenced by Beclin1-dependent autophagy. Pretreatment with the wortmannin further attenuated these effects induced by EEP and resulted in the expression of proapoptotic phenotypes such as oxidative injury, elevated Beclin1/Bcl-2 ratio, cytochrome c leakage, mitochondrial dynamin-1-like protein (Drp-1) expression, and VDAC1 dephosphorylation. These observations suggest that H2O2 generation regulates mitochondrial protection in EEP-induced cardioprotection.
Collapse
|
4
|
Deng F, Ouyang M, Wang X, Yao X, Chen Y, Tao T, Sun X, Xu L, Tang J, Zhao L. Differential role of intravenous anesthetics in colorectal cancer progression: implications for clinical application. Oncotarget 2018; 7:77087-77095. [PMID: 27780923 PMCID: PMC5363570 DOI: 10.18632/oncotarget.12800] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/17/2016] [Indexed: 01/05/2023] Open
Abstract
Anesthetics are unavoidable to colorectal cancer (CRC) patients who underwent surgical treatment. Thus, the molecular mechanisms underlying the role of the intravenous anesthetics in CRC metastasis are still unclear. In this study, the effects of intravenous anesthetics, such as propofol, etomidate and dexmedetomidine, on cell migration were determined. The migration of CRC cells was inhibited by propofol in vitro, but not in vivo. Etomidate, however, promoted the migration of CRC cells both in vitro and in vivo. Epithelial-mesenchymal transition (EMT) mediated the promotive effect of propofol and etomidate on the migration of CRC cells through PI3K/AKT signaling pathway. Dexmedetomidine alone or in combination with propofol or etomidate had minor effect on the migration of CRC cells. These findings indicate that propofol inhibites CRC cell migration in vitro. Etomidate playes a role for prompting CRC metastasis progression by activating (PI3K)/AKT signaling and inducing EMT. It provides an important hint for the clinical application of these anesthetics.
Collapse
Affiliation(s)
- Fengliu Deng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingwen Ouyang
- Department of anesthesia, Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaofei Wang
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xueqing Yao
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong, China
| | - Yeming Chen
- Department of Anesthesia, Huarui Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Tao
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xuegang Sun
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Lijun Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Tang
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Oliveira-Paula GH, Pinheiro LC, Ferreira GC, Garcia WNP, Lacchini R, Garcia LV, Tanus-Santos JE. Angiotensin converting enzyme inhibitors enhance the hypotensive effects of propofol by increasing nitric oxide production. Free Radic Biol Med 2018; 115:10-17. [PMID: 29138017 DOI: 10.1016/j.freeradbiomed.2017.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/04/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
Abstract
Propofol anesthesia is usually accompanied by hypotension. Studies have shown that the hypotensive effects of propofol increase in patients treated with angiotensin-converting enzyme inhibitors (ACEi). Given that both propofol and ACEi affect nitric oxide (NO) signaling, the present study tested the hypothesis that ACEi treatment induces pronounced hypotensive responses to propofol by increasing NO bioavailability. In this study we evaluated 65 patients, divided into three groups: hypertensive patients chronically treated with ACEi (HT-ACEi; n = 21), hypertensive patients treated with other antihypertensive drugs instead of ACEi, such as angiotensin II receptor blockers, β-blockers or diuretics (HT; n = 21) and healthy normotensive subjects (NT; n = 23). Venous blood samples were collected at baseline and after 10min of anesthesia with propofol 2mg/kg administrated intravenously by bolus injection. Hemodynamic parameters were recorded at each blood sample collection. Nitrite levels were determined by using an ozone-based chemiluminescence assay, while NOx (nitrites+nitrates) levels were measured by using the Griess reaction. Additionally, experimental approaches were used to validate our clinical findings. Higher decreases in blood pressure after propofol anesthesia were observed in HT-ACEi group as compared with those found in NT and HT groups. Consistently, rats treated with the ACEi enalapril showed more intense hypotensive responses to propofol. The hypotensive effects of propofol were associated with increased NO production in both clinical and experimental approaches. Enhanced increases in nitrite levels after propofol anesthesia were observed in HT-ACEi patients compared with NT and HT groups. Accordingly, rats treated with enalapril showed increased vascular NO formation after propofol anesthesia compared with rats receiving vehicle. Our data show that ACEi enhance the hypotensive responses to propofol anesthesia and increase nitrite concentrations. These findings suggest that increased NO bioavailability may account for the enhanced hypotensive effects of propofol in ACEi-treated patients.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Graziele C Ferreira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Waynice N P Garcia
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Luis V Garcia
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
6
|
Propofol ameliorates hyperglycemia-induced cardiac hypertrophy and dysfunction via heme oxygenase-1/signal transducer and activator of transcription 3 signaling pathway in rats. Crit Care Med 2016; 42:e583-94. [PMID: 24810525 DOI: 10.1097/ccm.0000000000000415] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Heme oxygenase-1 is inducible in cardiomyocytes in response to stimuli such as oxidative stress and plays critical roles in combating cardiac hypertrophy and injury. Signal transducer and activator of transcription 3 plays a pivotal role in heme oxygenase-1-mediated protection against liver and lung injuries under oxidative stress. We hypothesized that propofol, an anesthetic with antioxidant capacity, may attenuate hyperglycemia-induced oxidative stress in cardiomyocytes via enhancing heme oxygenase-1 activation and ameliorate hyperglycemia-induced cardiac hypertrophy and apoptosis via heme oxygenase-1/signal transducer and activator of transcription 3 signaling and improve cardiac function in diabetes. DESIGN Treatment study. SETTING Research laboratory. SUBJECTS Sprague-Dawley rats. INTERVENTIONS In vivo and in vitro treatments. MEASUREMENTS AND MAIN RESULTS At 8 weeks of streptozotocin-induced type 1 diabetes in rats, myocardial 15-F2t-isoprostane was significantly increased, accompanied by cardiomyocyte hypertrophy and apoptosis and impaired left ventricular function that was coincident with reduced heme oxygenase-1 activity and signal transducer and activator of transcription 3 activation despite an increase in heme oxygenase-1 protein expression as compared to control. Propofol infusion (900 μg/kg/min) for 45 minutes significantly improved cardiac function with concomitantly enhanced heme oxygenase-1 activity and signal transducer and activator of transcription activation. Similar to the changes seen in diabetic rat hearts, high glucose (25 mmol/L) exposure for 48 hours led to cardiomyocyte hypertrophy and apoptosis, both in primary cultured neonatal rat cardiomyocytes and in H9c2 cells compared to normal glucose (5.5 mmol/L). Hypertrophy was accompanied by increased reactive oxygen species and malondialdehyde production and caspase-3 activity. Propofol, similar to the heme oxygenase-1 inducer cobalt protoporphyrin, significantly increased cardiomyocyte heme oxygenase-1 and p-signal transducer and activator of transcription protein expression and heme oxygenase-1 activity and attenuated high-glucose-mediated cardiomyocyte hypertrophy and apoptosis and reduced reactive oxygen species and malondialdehyde production (p < 0.05). These protective effects of propofol were abolished by heme oxygenase-1 inhibition with zinc protoporphyrin and by heme oxygenase-1 or signal transducer and activator of transcription 3 gene knockdown. CONCLUSIONS Heme oxygenase-1/signal transducer and activator of transcription 3 signaling plays a critical role in propofol-mediated amelioration of hyperglycemia-induced cardiomyocyte hypertrophy and apoptosis, whereby propofol improves cardiac function in diabetic rats.
Collapse
|
7
|
Lemoine S, Zhu L, Gress S, Gérard JL, Allouche S, Hanouz JL. Mitochondrial involvement in propofol-induced cardioprotection: An in vitro study in human myocardium. Exp Biol Med (Maywood) 2016; 241:527-38. [PMID: 26748397 DOI: 10.1177/1535370215622586] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/17/2015] [Indexed: 01/12/2023] Open
Abstract
Propofol has been shown to exert cardioprotection, but the underlying mechanisms remain incompletely understood. We examined: (1) whether propofol-induced cardioprotection depended on the time and the dose of administration; (2) the role of mitochondrial adenosine triphosphate-sensitive potassium channels, nitric oxide synthase, and mitochondrial respiratory chain activity in propofol-induced cardioprotection. Human right atrial trabeculae were obtained during cardiopulmonary bypass for coronary artery bypass and aortic valve replacement. Isometric force of contraction of human right atrial trabeculae hanged in an oxygenated Tyrode's solution was recorded during 30-min hypoxia and 60-min reoxygenation (Control). Propofol 0.1, 1, and 10 µM was administered: (1) 5 min before hypoxia until the end of the experiment; (2) 5 min followed by 5-min washout before hypoxia; (3) during the reoxygenation period, propofol 10 µM was administered in presence of 5-hydroxydecanoate (antagonist of mitochondrial adenosine triphosphate-sensitive potassium channels), and NG-nitro-L-arginine methyl ester (inhibitor of nitric oxide synthase). In addition, mitochondria were isolated from human right atrial at 15 min of reoxygenation. The effect of propofol on activity of the mitochondrial respiratory chain complexes was evaluated by spectrophotometry. The force of contraction (% of baseline) and the complex activity between the different groups were compared with an analysis of variance and post hoc test. Propofol 10 µM administered during the reoxygenation period significantly improved the recovery of force of contraction at the end of reoxygenation (82 ± 6% of baseline value vs. 49 ± 6% in Control; P < 0.001). The beneficial effects of propofol 10 µM were abolished by co-administration with 5-hydroxydecanoate (53 ± 8%) or NG-nitro-L-arginine methyl ester (57 ± 6%). Propofol 10 µM significantly increased enzymatic activities of the mitochondrial respiratory chain complexes, in reoxygenation period, compared to their respective untreated controls. In conclusion, in human myocardium, propofol-induced cardioprotection was mediated by mitochondrial adenosine triphosphate-sensitive potassium channels opening, nitric oxide synthase activation and stimulation of mitochondrial respiratory chain complexes, in early reoxygenation period.
Collapse
Affiliation(s)
- Sandrine Lemoine
- Department of Anesthesiology and Intensive Care, Centre Hospitalier Universitaire de Caen, Faculty of Medicine, Normandie Université, EA4650, Caen 14033, France
| | - Lan Zhu
- Department of Anesthesiology and Intensive Care, Centre Hospitalier Universitaire de Caen, Faculty of Medicine, Normandie Université, EA4650, Caen 14033, France
| | - Steeve Gress
- Department of Anesthesiology and Intensive Care, Centre Hospitalier Universitaire de Caen, Faculty of Medicine, Normandie Université, EA4650, Caen 14033, France
| | - Jean-Louis Gérard
- Department of Anesthesiology and Intensive Care, Centre Hospitalier Universitaire de Caen, Faculty of Medicine, Normandie Université, EA4650, Caen 14033, France
| | - Stéphane Allouche
- Department of Biochemistry, Centre Hospitalier Universitaire de Caen, Faculty of Medicine, Normandie Université, EA4650, Caen 14033, France
| | | |
Collapse
|
8
|
Xie CL, Pan YB, Hu LQ, Qian YN. Propofol attenuates hydrogenperoxide-induced apoptosis in human umbilical vein endothelial cells via multiple signaling pathways. Korean J Anesthesiol 2015; 68:488-95. [PMID: 26495060 PMCID: PMC4610929 DOI: 10.4097/kjae.2015.68.5.488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/21/2014] [Accepted: 09/23/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Propofol has been reported to protect vascular endothelial cells against oxidative stress. In this study we investigated its effect on hydrogen peroxide (H2O2)-induced apoptosis of human umbilical vein endothelial cells (HUVECs) and examined the possible signaling pathways. METHODS HUVECs were pretreated with propofol (1, 5, 25, and 50 µM) for 30 min and then co-incubated with 0.4 mM H2O2 for 4 h. Cell viability was assessed using a Cell Counting Kit-8. Cell apoptosis was analyzed using flow cytometry with annexin V/propidium iodide staining, and evaluated by quantifying caspase-3, Bax, and Bcl-2 expression levels. The expression levels of p38 mitogen activated protein kinase (MAPK), phosphorylated (p)-p38 MAPK, cJun-N-terminal kinases (JNK), phosphorylated (p)-JNK, Akt and phosphorylated Akt [(p)-Akt] (Ser473) were measured by western blotting. RESULTS H2O2 treatment induced the activation of caspase-3, downregulated Bcl-2 expression, and up-regulated Bax expression, all of which were dose-dependently attenuated by propofol pretreatment. Furthermore, propofol significantly ameliorated H2O2-induced phosphorylation of p38 MAPK, JNK, and Akt in HUVECs. CONCLUSIONS Propofol can protect HUVECs against H2O2-induced apoptosis via a mechanism that may involve p38 MAPK, JNK, and Akt signaling pathways.
Collapse
Affiliation(s)
- Cheng Lan Xie
- Department of Anesthesiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Department of Anesthesiology, Huai'an Second Hospital Affiliated to Xuzhou Medical College, Huai'an, China
| | - Yin Bing Pan
- Department of Anesthesiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Liu Qing Hu
- Department of Anesthesiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Ning Qian
- Department of Anesthesiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Cardioprotective effect of propofol against oxygen glucose deprivation and reperfusion injury in H9c2 cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:184938. [PMID: 25821553 PMCID: PMC4364303 DOI: 10.1155/2015/184938] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/18/2015] [Accepted: 02/25/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND The intravenous anesthetic propofol is reported to be a cardioprotective agent against ischemic-reperfusion injury in the heart. However, the regulatory mechanism still remains unclear. METHODS In this study, we used H9c2 cell line under condition of oxygen glucose deprivation (OGD) followed by reperfusion (OGD/R) to induce in vitro cardiomyocytes ischemia-reperfusion injury. Propofol (5, 10, and 20 μM) was added to the cell cultures before and during the OGD/R phases to investigate the underlying mechanism. RESULTS Our data showed that OGD/R decreased cell viability, and increased lactate dehydrogenase leakage, and reactive oxygen species and malondialdehyde production in H9c2 cells, all of which were significantly reversed by propofol. Moreover, we found that propofol increased both the activities and protein expressions of superoxide dismutase and catalase. In addition, propofol increased FoxO1 expression in a dose-dependent manner and inhibited p-AMPK formation significantly. CONCLUSIONS These results indicate that the propofol might exert its antioxidative effect through FoxO1 in H9c2 cells, and it has a potential therapeutic effect on cardiac disorders involved in oxidative stress.
Collapse
|
10
|
Lu CH, Yeh CC, Huang YS, Lee MS, Hsieh CB, Cherng CH, Wu ZF. Hemodynamic and biochemical changes in liver transplantation: A retrospective comparison of desflurane and total intravenous anesthesia by target-controlled infusion under auditory evoked potential guide. ACTA ACUST UNITED AC 2014; 52:6-12. [PMID: 24999212 DOI: 10.1016/j.aat.2014.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Propofol-based total intravenous anesthesia (TIVA) has been used successfully for liver transplantation (LT) in recent years. However, there are few discourses in the literature which focus on the merits and weakness in perioperative management, biochemical changes, and postoperative recovery between TIVA and desflurane anesthesia (DES). METHODS We retrospectively compared the circumstances of liver transplantation recipients who had the surgery carried out under propofol-based TIVA or DES in the period from September 2007 to August 2010. Preoperative characteristics, date of intraoperative management, hemodynamic profiles, concentration of anesthetics, biochemical changes, and circumstances of postoperative recovery were retrieved from the hospital database for analysis. RESULTS We included 111 patients who received the surgery under either TIVA (n = 66) or DES (n = 45). Patient demographics, baseline laboratory data, operation time, and fluid management did not differ between the two groups. In comparison with the DES group, fewer patients had to be administered norepinephrine (21.2% vs. 42.2%; p = 0.020) in the TIVA group; moreover, the total dosage of norepinephrine was lower (0.003 ± 0.005 mg vs. 0.006 ± 0.008 mg; p = 0.012) in the TIVA group during liver reperfusion phase. Blood lactate level was higher in the DES group than in the TIVA group after the anhepatic phase. TIVA patients woke up faster than those in the DES group (54.0 ± 33.4 minutes vs. 95.0 ± 78.3 minutes; p = 0.034). CONCLUSION Our results suggest that propofol-based TIVA may provide better hemodynamics and microcirculation during the anhepatic phase in liver transplantation.
Collapse
Affiliation(s)
- Chueng-He Lu
- Department of Anesthesiology, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan, ROC
| | - Chun-Chang Yeh
- Department of Anesthesiology, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan, ROC
| | - Yuan-Shiou Huang
- Department of Anesthesiology, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan, ROC
| | - Meei-Shyuan Lee
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chung-Bao Hsieh
- Division of General Surgery, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan, ROC
| | - Chen-Hwan Cherng
- Department of Anesthesiology, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan, ROC
| | - Zhi-Fu Wu
- Department of Anesthesiology, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan, ROC.
| |
Collapse
|
11
|
Lin C, Sui H, Gu J, Yang X, Deng L, Li W, Ding W, Li D, Yang Y. Effect and mechanism of propofol on myocardial ischemia reperfusion injury in type 2 diabetic rats. Microvasc Res 2013; 90:162-8. [DOI: 10.1016/j.mvr.2013.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 08/06/2013] [Accepted: 08/12/2013] [Indexed: 11/25/2022]
|
12
|
Bell D, Campbell M, Ferguson M, Sayers L, Donaghy L, O'Regan A, Jewhurst V, Harbinson M. AM₁-receptor-dependent protection by intermedin of human vascular and cardiac non-vascular cells from ischaemia-reperfusion injury. J Physiol 2011; 590:1181-97. [PMID: 22183724 DOI: 10.1113/jphysiol.2011.221895] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Intermedin (IMD) protects rodent heart and vasculature from oxidative stress and ischaemia. Less is known about distribution of IMD and its receptors and the potential for similar protection in man. Expression of IMD and receptor components were studied in human aortic endothelium cells (HAECs), smooth muscle cells (HASMCs), cardiac microvascular endothelium cells (HMVECs) and fibroblasts (v-HCFs). Receptor subtype involvement in protection by IMD against injury by hydrogen peroxide (H₂O₂, 1 mmol l⁻¹) and simulated ischaemia and reperfusion were investigated using receptor component-specific siRNAs. IMD and CRLR, RAMP1, RAMP2 and RAMP3 were expressed in all cell types.When cells were treated with 1 nmol l⁻¹ IMD during exposure to 1 mmol l⁻¹ H₂O₂ for 4 h, viability was greater vs. H2O2 alone (P<0.05 for all cell types). Viabilities under 6 h simulated ischaemia differed (P<0.05) in the absence and presence of 1 nmol l⁻¹ IMD: HAECs 63% and 85%; HMVECs 51% and 68%; v-HCFs 42% and 96%. IMD 1 nmol l⁻¹ present throughout ischaemia (3 h) and reperfusion (1 h) attenuated injury (P<0.05): viabilities were 95%, 74% and 82% for HAECs, HMVECs and v-HCFs, respectively, relative to those in the absence of IMD (62%, 35%, 32%, respectively). When IMD 1 nmol l⁻¹ was present during reperfusion only, protection was still evident (P<0.05, 79%, 55%, 48%, respectively). Cytoskeletal disruption and protein carbonyl formation followed similar patterns. Pre-treatment (4 days) of HAECs with CRLR or RAMP2, but not RAMP1 or RAMP3, siRNAs abolished protection by IMD (1 nmol l⁻¹) against ischaemia-reperfusion injury. IMD protects human vascular and cardiac non-vascular cells from oxidative stress and ischaemia-reperfusion,predominantly via AM1 receptors.
Collapse
Affiliation(s)
- David Bell
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen J, Chen W, Zhu M, Zhu Y, Yin H, Tan Z. Propofol attenuates angiotensin II-induced apoptosis in human coronary artery endothelial cells. Br J Anaesth 2011; 107:525-32. [DOI: 10.1093/bja/aer197] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
14
|
Jun J, Cho J, Shim Y, Shim J, Kwak Y. Effects of propofol on the expression of matric metalloproteinases in rat cardiac fibroblasts after hypoxia and reoxygenation. Br J Anaesth 2011; 106:650-8. [DOI: 10.1093/bja/aer006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
15
|
Pardo M, Tirosh O. Protective signalling effect of manganese superoxide dismutase in hypoxia-reoxygenation of hepatocytes. Free Radic Res 2010; 43:1225-39. [PMID: 19905985 DOI: 10.3109/10715760903271256] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study investigates the mechanism by which MnSOD exerts its protective effect in hypoxia-reoxygenation (H/R) injury in hepatocytes. Following induction of H/R, MnSOD expression and activity levels increased and remained high for over 24 h. Hepatocytes silenced for MnSOD (siMnSOD) demonstrated increased susceptibility to H/R-induced apoptotic cell death and a lower capacity to generate mitochondrial reactive oxygen species. Microarray and real time PCR analysis of gene expression from siMnSOD cells revealed a number of down-regulated protective genes, including hemeoxygenase-1, glutamate-cysteine ligase and Nrf2, a master regulator of cellular adaptation to stress. Decreased Nrf2 protein expression and nuclear translocation were also confirmed in siMnSOD cells. siMnSOD cells showed low glutathione (GSH) content with no oxidation to GSSG, lower lipid peroxidation levels than their controls and lower mitochondrial membrane potential, which all were even more salient after H/R. Therefore, MnSOD appears to act as a signalling mediator for the activation of survival genes following H/R injury in hepatocytes.
Collapse
Affiliation(s)
- Michal Pardo
- Department of Biochemistry and Nutrition, Institute of Biochemistry, Food Science and Nutrition, Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | | |
Collapse
|
16
|
Krzych LJ, Szurlej D, Bochenek A. Rationale for Propofol Use in Cardiac Surgery. J Cardiothorac Vasc Anesth 2009; 23:878-85. [DOI: 10.1053/j.jvca.2009.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Indexed: 11/11/2022]
|
17
|
Zou XJ, Yang L, Yao SL. Propofol depresses angiotensin II-induced cardiomyocyte hypertrophy in vitro. Exp Biol Med (Maywood) 2008; 233:200-8. [PMID: 18222975 DOI: 10.3181/0707-rm-206] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cardiomyocyte hypertrophy is formed in response to pressure or volume overload, injury, or neurohormonal activation. The most important vascular hormone that contributes to the development of hypertrophy is angiotensin II (Ang II). Accumulating studies have suggested that reactive oxygen species (ROS) may play an important role in cardiac hypertrophy. Propofol is a general anesthetic that possesses antioxidant action. We therefore examined whether propofol inhibited Ang II-induced cardiomyocyte hypertrophy. Our results showed that both ROS formation and hypertrophic responses induced by Ang II in cardiomyocytes were partially blocked by propofol. Further studies showed that propofol inhibited the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and mitogen-activated protein kinase/ERK kinase 1/2 (MEK1/2) induced by Ang II via a decrease in ROS production. In addition, propofol also markedly attenuated Ang II-stimulated nuclear factor-kappaB (NF-kappaB) activation via a decrease in ROS production. In conclusion, propofol prevents cardiomyocyte hypertrophy by interfering with the generation of ROS and involves the inhibition of the MEK/ERK signaling transduction pathway and NF-kappaB activation.
Collapse
Affiliation(s)
- Xiao-Jing Zou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | | | | |
Collapse
|
18
|
Propofol attenuation of hydrogen peroxide-mediated oxidative stress and apoptosis in cultured cardiomyocytes involves haeme oxygenase-1. Eur J Anaesthesiol 2008; 25:395-402. [PMID: 18289444 DOI: 10.1017/s0265021508003542] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND OBJECTIVE Our aim was to investigate the cytoprotective effect of propofol against hydrogen peroxide (H2O2)-mediated injury and the effects on the haeme oxygenase-1 system, which is a possible new cytoprotective pathway of propofol. METHODS Primary cultured newborn rat cardiomyocytes were divided into five groups: (1) untreated (Group control); (2) treated with 200 micromol L(-1) H2O2 (Group H) and treated with 200 micromol L(-1) H2O2 in the presence of propofol (25, 50 and 100 micromol L(-1), (3) Group 25P + H, (4) Group 50P + H and (5) Group 100P + H, respectively); added with zinc protoporphyrin IX (ZnPPIX) (10 micromol L(-1)), a potent inhibitor of haeme oxygenase activity, or SC-3060 (0.2 micromol L(-1)), a specific synthetic inhibitor of nuclear factor kappaB. All were incubated for 6 h. The protective effects of propofol were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide cytotoxicity assay, the concentration of malondialdehyde, superoxide dismutase activity and cell apoptosis by enzyme-linked immunosorbent assay (ELISA). Reverse transcription polymerase chain reaction (RT-PCR) and western blot analysis were used to detect haeme oxygenase-1 expression. RESULTS Compared with H2O2, propofol concentrations (ranging from 50 to 100 micromol L(-1)) significantly increased haeme oxygenase-1 expression and decreased cardiomyocytes apoptosis, accompanied with a decrease in malondialdehyde, but with an increase in superoxide dismutase activity and cell activity (P < 0.05 and P < 0.01, respectively). The protective effects of propofol were mitigated by the addition of ZnPPIX. The addition of SC-3060 reversed propofol-induced haeme oxygenase-1 expression. CONCLUSION Propofol can protect cardiomyocytes against H2O2-mediated cytotoxicity in a dose-dependent manner and increase haeme oxygenase-1 expression, which may partly mediate the cytoprotective effects of propofol.
Collapse
|