1
|
Vicenzetto C, Giordani AS, Menghi C, Baritussio A, Peloso Cattini MG, Pontara E, Bison E, Rizzo S, De Gaspari M, Basso C, Thiene G, Iliceto S, Marcolongo R, Caforio ALP. The Role of the Immune System in Pathobiology and Therapy of Myocarditis: A Review. Biomedicines 2024; 12:1156. [PMID: 38927363 PMCID: PMC11200507 DOI: 10.3390/biomedicines12061156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/18/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
The role of the immune system in myocarditis onset and progression involves a range of complex cellular and molecular pathways. Both innate and adaptive immunity contribute to myocarditis pathogenesis, regardless of its infectious or non-infectious nature and across different histological and clinical subtypes. The heterogeneity of myocarditis etiologies and molecular effectors is one of the determinants of its clinical variability, manifesting as a spectrum of disease phenotype and progression. This spectrum ranges from a fulminant presentation with spontaneous recovery to a slowly progressing, refractory heart failure with ventricular dysfunction, to arrhythmic storm and sudden cardiac death. In this review, we first examine the updated definition and classification of myocarditis at clinical, biomolecular and histopathological levels. We then discuss recent insights on the role of specific immune cell populations in myocarditis pathogenesis, with particular emphasis on established or potential therapeutic applications. Besides the well-known immunosuppressive agents, whose efficacy has been already demonstrated in human clinical trials, we discuss the immunomodulatory effects of other drugs commonly used in clinical practice for myocarditis management. The immunological complexity of myocarditis, while presenting a challenge to simplistic understanding, also represents an opportunity for the development of different therapeutic approaches with promising results.
Collapse
Affiliation(s)
- Cristina Vicenzetto
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Andrea Silvio Giordani
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Caterina Menghi
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Anna Baritussio
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Maria Grazia Peloso Cattini
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Elena Pontara
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Elisa Bison
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Stefania Rizzo
- Cardiovascular Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy (G.T.)
| | - Monica De Gaspari
- Cardiovascular Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy (G.T.)
| | - Cristina Basso
- Cardiovascular Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy (G.T.)
| | - Gaetano Thiene
- Cardiovascular Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy (G.T.)
| | - Sabino Iliceto
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Renzo Marcolongo
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Alida Linda Patrizia Caforio
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| |
Collapse
|
2
|
Zhuang J, Cheng G, Huang J, Guo H, Lai Y, Wang J, Shan Z, Zheng S. Rosuvastatin exerts cardioprotective effect in lipopolysaccharide-mediated injury of cardiomyocytes in an MG53-dependent manner. BMC Cardiovasc Disord 2022; 22:69. [PMID: 35196979 PMCID: PMC8865731 DOI: 10.1186/s12872-022-02458-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 01/04/2022] [Indexed: 12/03/2022] Open
Abstract
Background Myocarditis is a cardiomyopathy associated with the inflammatory response. Rosuvastatin (RS) demonstrates cardioprotective effect in the clinical setting, although its cellular and molecular mechanisms in ameliorating myocarditis are largely unknown. MG53 (muscle-specific E3 ligase Mitsugumin 53), a newly identified striated muscle-specific protein, is involved in skeletal muscle membrane repair. We aimed to explore whether RS mediated the repair of cardiomyocytes in an MG53-dependent manner. Methods The RS-induced upregulation of MG53 was determined using RT-qPCR and western blotting. A lipopolysaccharide (LPS)-induced cell inflammatory model was constructed using rat cardiac muscle cell H9C2. Inflammatory injury was evaluated according to the alterations of cell viability, mitochondrial membrane potential, cell apoptosis, and expression of pro-inflammatory cytokines (interleukin-1β, interleukin-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1). Small interfering RNAs (siRNAs) were used to silence MG53. The cardioprotective effect of RS and the inhibition of this protection by MG53 silence were evaluated in the forementioned in vitro model. The underlying mechanism was finally investigated using western blotting to detected the expressions of apoptotic markers (Bcl-2, Bax, Cleaved caspase-9, Cleaved caspase-3), cell cycle regulatory factors (Cyclin A, Cyclin E1, Cyclin D1, CDK2), and components involved in NF-κB signaling pathway (p-IκBa, Iκba, p-p65, p65). Results RS ameliorated LPS-induced inflammatory injury. RS upregulated the expression of MG53. MG53 was crucial for the RS-mediated repair response in vitro. Ablation of MG53 inhibited the RS-mediated protective effect. Furthermore, RS and MG53 interact in multiple signaling pathways to modulate recovery. Conclusion RS exerts cardioprotective effect in an MG53-dependent manner. MG53 may serve as a novel drug target for myocarditis treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02458-3.
Collapse
Affiliation(s)
- Jiawei Zhuang
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Cardiovascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Gangyi Cheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jian Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Hongwei Guo
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yiquan Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jiamao Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zhonggui Shan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Skrzypiec-Spring M, Sapa-Wojciechowska A, Haczkiewicz-Leśniak K, Piasecki T, Kwiatkowska J, Podhorska-Okołów M, Szeląg A. HMG-CoA Reductase Inhibitor, Simvastatin Is Effective in Decreasing Degree of Myocarditis by Inhibiting Metalloproteinases Activation. Biomolecules 2021; 11:biom11101415. [PMID: 34680049 PMCID: PMC8533153 DOI: 10.3390/biom11101415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Acute myocarditis often progresses to heart failure because there is no effective, etiology-targeted therapy of this disease. Simvastatin has been shown to be cardioprotective by decreasing matrix metalloproteinases’ (MMPs) activity. The study was designed to determine whether simvastatin inhibits MMPs activity, decreases the severity of inflammation and contractile dysfunction of the heart in experimental autoimmune myocarditis (EAM). Methods: Simvastatin (3 or 30 mg/kg/day) was given to experimental rats with EAM by gastric gavage for 21 days. Then transthoracic echocardiography was performed, MMPs activity and troponin I level were determined and tissue samples were assessed under a light and transmission electron microscope. Results: Hearts treated with simvastatin did not show left ventricular enlargement. As a result of EAM, there was an enhanced activation of MMP-9, which was significantly reduced in the high-dose simvastatin group compared to the low-dose group. It was accompanied by prevention of myofilaments degradation and reduction of severity of inflammation. Conclusions: The cardioprotective effects of simvastatin in the acute phase of EAM are, at least in part, due to its ability to decrease MMP-9 activity and subsequent decline in myofilaments degradation and suppression of inflammation. These effects were achieved in doses equivalent to therapeutic doses in humans.
Collapse
Affiliation(s)
- Monika Skrzypiec-Spring
- Department of Pharmacology, Wroclaw Medical University, 50-345 Wrocław, Poland; (J.K.); (A.S.)
- Correspondence: ; Tel.: +48-71-7841438
| | | | | | - Tomasz Piasecki
- Department of Epizootiology and Clinic of Bird and Exotic Animals, Wroclaw University of Environmental and Life Sciences, 50-013 Wrocław, Poland;
| | - Joanna Kwiatkowska
- Department of Pharmacology, Wroclaw Medical University, 50-345 Wrocław, Poland; (J.K.); (A.S.)
| | - Marzenna Podhorska-Okołów
- Department of Ultrastructural Research, Wroclaw Medical University, 50-013 Wrocław, Poland; (K.H.-L.); (M.P.-O.)
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, 50-345 Wrocław, Poland; (J.K.); (A.S.)
| |
Collapse
|
4
|
Statin-Induced Triad of Autoimmune Myocarditis, Myositis, and Transaminitis. Case Rep Cardiol 2021; 2021:6660362. [PMID: 33898067 PMCID: PMC8052178 DOI: 10.1155/2021/6660362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/11/2021] [Accepted: 03/30/2021] [Indexed: 11/18/2022] Open
Abstract
Despite well-established cardiovascular benefits, statins have been associated with myopathic side effects ranging from myalgias to rhabdomyolysis and autoimmune necrotizing myositis. Statins have not been previously shown to cause myocarditis. Our case highlights this rare entity.
Collapse
|
5
|
Parsamanesh N, Karami-Zarandi M, Banach M, Penson PE, Sahebkar A. Effects of statins on myocarditis: A review of underlying molecular mechanisms. Prog Cardiovasc Dis 2021; 67:53-64. [PMID: 33621589 DOI: 10.1016/j.pcad.2021.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 02/13/2021] [Indexed: 12/20/2022]
Abstract
Myocarditis refers to the clinical and histological characteristics of a diverse range of inflammatory cellular pathophysiological conditions which result in cardiac dysfunction. Myocarditis is a major cause of mortality in individuals less than 40 years of age and accounts for approximately 20% of cardiovascular disease (CVD) events. Myocarditis contributes to dilated cardiomyopathy in 30% of patients and can progress to cardiac arrest, which has a poor prognosis of <40% survival over 10 years. Myocarditis has also been documented after infection with SARS-CoV-2. The most commonly used lipid-lowering therapies, HMG-CoA reductase inhibitors (statins), decrease CVD-related morbidity and mortality. In addition to their lipid-lowering effects, increasing evidence supports the existence of several additional beneficial, 'pleiotropic' effects of statins. Recently, several studies have indicated that statins may attenuate myocarditis. Statins modify the lipid oxidation, inflammation, immunomodulation, and endothelial activity of the pathophysiology and have been recommended as adjuvant treatment. In this review, we focus on the mechanisms of action of statins and their effects on myocarditis, SARS-CoV-2 and CVD.
Collapse
Affiliation(s)
- Negin Parsamanesh
- Department of Molecular Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Cardiac apoptosis caused by elevated cholesterol level in experimental autoimmune myocarditis. Exp Cell Res 2020; 395:112169. [PMID: 32653410 DOI: 10.1016/j.yexcr.2020.112169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 11/21/2022]
Abstract
It has been reported that cholesterol-lowing agents can ameliorate severity of myocarditis. However, the beneficial effect of the agents has been claimed to be independent of cholesterol reduction as there is no significant change in the plasma cholesterol level in myocarditis. In the present study, using experimental autoimmune myocarditis (EAM) rats as an animal model, we demonstrated that EAM induced elevation of cholesterol level and impaired cholesterol efflux capacity in the cardiac tissue. Moreover, serum high-density lipoprotein (HDL) content was reduced and HDL function associated protein Paraoxonase 1 (PON1) activity was decreased. Besides, the major structural protein within HDL, Apolipoprotein A1 (ApoA1) expression in the cardiac tissues was significantly reduced while the level of serum ApoA1 was not significantly altered. Importantly, cholesterol depleting agent methyl-β-cyclodextrin (MβCD) alleviated the development of EAM, as monitored by decreased ratio of heart weight to body weight (HW/BW), decreased infiltration of inflammatory cells and collagen deposition, improved cardiac function, reduced expression of apoptosis-related protein Bax, Fas, FasL and caspase-3 and increased level of anti-apoptotic protein Bcl-2. These results suggest that reduction of cholesterol level in cardiac tissue could suppress EAM-induced cardiac apoptosis through both intrinsic and extrinsic apoptotic pathways.
Collapse
|
7
|
Takata T, Sakasai-Sakai A, Ueda T, Takeuchi M. Intracellular toxic advanced glycation end-products in cardiomyocytes may cause cardiovascular disease. Sci Rep 2019; 9:2121. [PMID: 30765817 PMCID: PMC6375929 DOI: 10.1038/s41598-019-39202-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease (CVD) is a lifestyle-related disease (LSRD) and one of the largest public health issues. Risk factors for CVD correlate with an excessive intake of glucose and/or fructose, which has been shown to induce the production of advanced glycation end-products (AGEs). We previously identified AGEs derived from glyceraldehyde and named them toxic AGEs (TAGE) due to their cytotoxicities and relationship with LSRD. We also reported that extracellular TAGE in the vascular system may promote CVD and that serum TAGE levels are associated with risk factors for CVD. The mechanisms responsible for the onset and/or progression of CVD by extracellular TAGE or the above risk factors involve vascular disorders. In the present study, we revealed that rat primary cultured cardiomyocytes generated intracellular TAGE, which decreased beating rates and induced cell death. LC3-II/LC3-I, a factor of autophagy, also decreased. Although intracellular TAGE may be targets of degradation as cytotoxic proteins via autophagy, they may inhibit autophagy. Furthermore, the mechanisms by which intracellular TAGE decrease beating rates and induce cell death may involve the suppression of autophagy. The present results suggest that intracellular TAGE are generated in cardiomyocytes and directly damage them, resulting in CVD.
Collapse
Affiliation(s)
- Takanobu Takata
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada-machi, Ishikawa, 920-0293, Japan.
| | - Akiko Sakasai-Sakai
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada-machi, Ishikawa, 920-0293, Japan
| | - Tadashi Ueda
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada-machi, Ishikawa, 920-0293, Japan
| | - Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada-machi, Ishikawa, 920-0293, Japan
| |
Collapse
|
8
|
Lazzerini PE, Capecchi PL, Laghi-Pasini F. Statins as a new therapeutic perspective in myocarditis and postmyocarditis dilated cardiomyopathy: editorial to "Pitavastatin regulates helper T-cell differentiation and ameliorates autoimmune myocarditis in mice" by K. Tajiri et al. Cardiovasc Drugs Ther 2014; 27:365-9. [PMID: 23832693 DOI: 10.1007/s10557-013-6475-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pietro Enea Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy,
| | | | | |
Collapse
|
9
|
Watanabe R, Azuma RW, Suzuki JI, Ogawa M, Itai A, Hirata Y, Komuro I, Isobe M. Inhibition of NF-κB activation by a novel IKK inhibitor reduces the severity of experimental autoimmune myocarditis via suppression of T-cell activation. Am J Physiol Heart Circ Physiol 2013; 305:H1761-71. [PMID: 24097428 DOI: 10.1152/ajpheart.00159.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NF-κB, which is activated by the inhibitor of NF-κB kinase (IKK), is involved in the progression of inflammatory disease. However, the effect of IKK inhibition on the progression of myocarditis is unknown. We examined the effect of IKK inhibition on the progression of myocarditis. Lewis rats were immunized with porcine cardiac myosin to induce experimental autoimmune myocarditis (EAM). We administered the IKK inhibitor (IMD-0354; 15 mg·kg(-1)·day(-1)) or vehicle to EAM rats daily. Hearts were harvested 21 days after immunization. Although the untreated EAM group showed increased heart weight-to-body weight ratio, and severe myocardial damage, these changes were attenuated in the IKK inhibitor-treated group. Moreover, IKK inhibitor administration significantly reduced NF-κB activation and mRNA expression of IFN-γ, IL-2, and monocyte chemoattractant protein-1 in myocardium compared with vehicle administration. In vitro study showed that the IKK inhibitor treatment inhibited T-cell proliferation and Th1 cytokines production induced by myosin stimulation. The IKK inhibitor ameliorated EAM by suppressing inflammatory reactions via suppression of T-cell activation.
Collapse
Affiliation(s)
- Ryo Watanabe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Yushima, Bunkyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Liu X, Li B, Wang W, Zhang C, Zhang M, Zhang Y, Xia Y, Dong Z, Guo Y, An F. Effects of HMG-CoA reductase inhibitor on experimental autoimmune myocarditis. Cardiovasc Drugs Ther 2012; 26:121-30. [PMID: 22382902 DOI: 10.1007/s10557-012-6372-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE Myocarditis is an acute inflammatory disease of the heart and is often a precursor of dilated cardiomyopathy. Experimental autoimmune myocarditis (EAM) has been used as a model for human myocarditis. The purpose of this study was to investigate the therapeutic role of 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitor, rosuvastatin, on the development of EAM. METHODS Experimental autoimmune myocarditis was induced in BALB/c mice by immunization with murine cardiac α-myosin heavy chain (MyHc-α(614-629) [Ac-SLKLMATLFSTYASAD-OH]). High-dose (10 mg/kg/day) or low-dose (1 mg/kg/day) rosuvastatin or vehicle was administered orally by gastric gavage to mice with EAM from day 0 to day 21 after immunization. On day 21 after immunization, echocardiography was carried out and the severity of myocarditis was detected by histopathological evaluation. Levels of serum tumor necrosis factor (TNF)-α and interleukin (IL)-6 were measured by ELISA. Histopathology was performed using haematoxylin and eosin. With apoptosis examined by Tunel, the expression of active caspase-3 in myocardium was investigated by immunohistochemistry. RESULTS Rosuvastatin attenuated the histopathological severity of myocarditis. Cardiac function was improved in the two rosuvastatin-treated groups compared to the non-treated EAM group (LVFS: high-dose rosuvastatin group [group H], 0.38 ± 0.10%; low-dose rosuvastatin group [group L], 0.34 ± 0.06%; non-treated EAM group [group N], 0.29 ± 0.07%. LVEF: group H, 0.80 ± 0.09%; group L, 0.71 ± 0.07%; group N, 0.68 ± 0.07%). Furthermore, treatment with rosuvastatin decreased the expression levels of TNF-α (group H, 65.19 ± 7.06 pg/ml; group L, 108.20 ± 5.28 pg/ml; group N, 239.34 ± 11.65 pg/ml) and IL-6 (group H, 14.33 ± 2.15 pg/ml; group L, 19.67 ± 3.04 pg/ml; group N, 40.39 ± 7.17 pg/ml). The rates of expression of active Caspase-3 and myocardial apoptosis were positively correlated with the scores for myocardial pathology. CONCLUSIONS These results demonstrate that administration of rosuvastatin can ameliorate EAM progression, inhibit apoptosis of cardiomyocytes, and preserve cardiac output, and they also suggest rosuvastatin may be a promising novel therapeutic strategy for the clinical treatment of myocarditis.
Collapse
Affiliation(s)
- Xiaoman Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, 250012, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Role of modulation of vascular endothelial growth factor and tumor necrosis factor-alpha in gastric ulcer healing in diabetic rats. Biochem Pharmacol 2010; 79:1634-9. [DOI: 10.1016/j.bcp.2010.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/01/2010] [Accepted: 02/01/2010] [Indexed: 11/21/2022]
|
12
|
Immunomodulation by atorvastatin upregulates expression of gap junction proteins in coxsackievirus B3 (CVB3)-induced myocarditis. Inflamm Res 2009; 59:255-62. [PMID: 19774449 DOI: 10.1007/s00011-009-0093-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 08/23/2009] [Accepted: 09/07/2009] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To investigate the effect of atorvastatin on myocardial expression of gap junction proteins, connexins (Cxs), during coxsackievirus B3 (CVB3)-induced myocarditis. METHODS Viral myocarditis was induced in mice by inoculation with CVB3. Atorvastatin (5 or 10 mg kg(-1) day(-1)) or saline was administered by daily oral gavage from the day of induction of viral myocarditis to the day of sacrifice. Fourteen days after injection of CVB3, animals were sacrificed. Alterations in myocardial Cxs expression were examined by RT-PCR, immunoblot, and immunohistochemistry. Plasma levels of TNF-alpha and IFN-gamma were measured by ELISA. RESULTS Fourteen days after inoculation with CVB3, myocardial expression of Cx43 and Cx45 was significantly downregulated. Treatment with atorvastatin not only reduced the overproduction of TNF-alpha and IFN-gamma, but also enhanced the expression of Cx43 and Cx45, therefore attenuating myocardial injury and improving the survival rate of viral myocarditis. CONCLUSION This study shows for the first time that myocardial expression of Cxs is downregulated during CVB3-induced myocarditis and that immunomodulation by atorvastatin could restore the impaired gap junction channels and improve the outcome of viral myocarditis.
Collapse
|