1
|
Milan HFM, Almazloum AA, Bassani RA, Bassani JWM. Membrane polarization at the excitation threshold induced by external electric fields in cardiomyocytes of rats at different developmental stages. Med Biol Eng Comput 2023; 61:2637-2647. [PMID: 37405671 DOI: 10.1007/s11517-023-02868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023]
Abstract
External electric fields (E), used for cardiac pacing and defibrillation/cardioversion, induce a spatially variable change in cardiomyocyte transmembrane potential (ΔVm) that depends on cell geometry and E orientation. This study investigates E-induced ΔVm in cardiomyocytes from rats at different ages, which show marked size/geometry variation. Using a tridimensional numerical electromagnetic model recently proposed (NM3D), it was possible: (a) to evaluate the suitability of the simpler, prolate spheroid analytical model (PSAM) to calculate amplitude and location of ΔVm maximum (ΔVmax) for E = 1 V.cm-1; and (b) to estimate the ΔVmax required for excitation (ΔVT) from experimentally determined threshold E values (ET). Ventricular myocytes were isolated from neonatal, weaning, adult, and aging Wistar rats. NM3D was constructed as the extruded 2D microscopy cell image, while measured minor and major cell dimensions were used for PSAM. Acceptable ΔVm estimates can be obtained with PSAM from paralelepidal cells for small θ. ET, but not ΔVT, was higher for neonate cells. ΔVT was significantly greater in the cell from older animals, which indicate lower responsiveness to E associated with aging, rather than with altered cell geometry/dimensions. ΔVT might be used as a non-invasive indicator of cell excitability as it is little affected by cell geometry/size.
Collapse
Affiliation(s)
- Hugo F M Milan
- Department of Electronics and Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Av. Albert Einstein 400, Campinas, SP, 13083-852, Brazil.
| | - Ahmad A Almazloum
- Department of Electronics and Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Av. Albert Einstein 400, Campinas, SP, 13083-852, Brazil
| | - Rosana A Bassani
- Department of Electronics and Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Av. Albert Einstein 400, Campinas, SP, 13083-852, Brazil
- LabNECC, Center for Biomedical Engineering (CEB), University of Campinas (UNICAMP), R. Alexander Fleming 163, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-881, Brazil
| | - José W M Bassani
- Department of Electronics and Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Av. Albert Einstein 400, Campinas, SP, 13083-852, Brazil
- LabNECC, Center for Biomedical Engineering (CEB), University of Campinas (UNICAMP), R. Alexander Fleming 163, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-881, Brazil
| |
Collapse
|
2
|
Di Gregorio E, Israel S, Staelens M, Tankel G, Shankar K, Tuszyński JA. The distinguishing electrical properties of cancer cells. Phys Life Rev 2022; 43:139-188. [PMID: 36265200 DOI: 10.1016/j.plrev.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
In recent decades, medical research has been primarily focused on the inherited aspect of cancers, despite the reality that only 5-10% of tumours discovered are derived from genetic causes. Cancer is a broad term, and therefore it is inaccurate to address it as a purely genetic disease. Understanding cancer cells' behaviour is the first step in countering them. Behind the scenes, there is a complicated network of environmental factors, DNA errors, metabolic shifts, and electrostatic alterations that build over time and lead to the illness's development. This latter aspect has been analyzed in previous studies, but how the different electrical changes integrate and affect each other is rarely examined. Every cell in the human body possesses electrical properties that are essential for proper behaviour both within and outside of the cell itself. It is not yet clear whether these changes correlate with cell mutation in cancer cells, or only with their subsequent development. Either way, these aspects merit further investigation, especially with regards to their causes and consequences. Trying to block changes at various levels of occurrence or assisting in their prevention could be the key to stopping cells from becoming cancerous. Therefore, a comprehensive understanding of the current knowledge regarding the electrical landscape of cells is much needed. We review four essential electrical characteristics of cells, providing a deep understanding of the electrostatic changes in cancer cells compared to their normal counterparts. In particular, we provide an overview of intracellular and extracellular pH modifications, differences in ionic concentrations in the cytoplasm, transmembrane potential variations, and changes within mitochondria. New therapies targeting or exploiting the electrical properties of cells are developed and tested every year, such as pH-dependent carriers and tumour-treating fields. A brief section regarding the state-of-the-art of these therapies can be found at the end of this review. Finally, we highlight how these alterations integrate and potentially yield indications of cells' malignancy or metastatic index.
Collapse
Affiliation(s)
- Elisabetta Di Gregorio
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Simone Israel
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Michael Staelens
- Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada
| | - Gabriella Tankel
- Department of Mathematics & Statistics, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada
| | - Karthik Shankar
- Department of Electrical & Computer Engineering, University of Alberta, 9211 116 Street NW, Edmonton, T6G 1H9, AB, Canada
| | - Jack A Tuszyński
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada; Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada.
| |
Collapse
|
3
|
Onkal R, Fraser SP, Djamgoz MB. Cationic Modulation of Voltage-Gated Sodium Channel (Nav1.5): Neonatal Versus Adult Splice Variants-1. Monovalent (H +) Ions. Bioelectricity 2019; 1:139-147. [PMID: 34471816 PMCID: PMC8370280 DOI: 10.1089/bioe.2019.0012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Voltage-gated sodium channels are functionally expressed in human carcinomas. In breast and colon cancers, the neonatal splice variant of Nav1.5 (nNav1.5) is dominant. This differs from the adult (aNav1.5) by several amino acids, including an outer charge reversal (residue-211): negatively charged aspartate (aNav1.5) versus positively charged lysine (nNav1.5). Thus, nNav1.5 and aNav1.5 may respond to extracellular charges differently. Materials and Methods: We used whole-cell patch-clamp recording to compare the electrophysiological effects of the monovalent cation hydrogen (H+) on nNav1.5 and aNav1.5 expressed stably in EBNA cells. Results: Increasing the H+ concentration (acidifying pH) reduced channel conductance and inhibited peak currents. Also, there was a positive shift in the voltage dependence of activation. These changes were significantly smaller for nNav1.5, compared with aNav1.5. Conclusions: nNav1.5 was more resistant to the suppressive effects of acidification compared with aNav1.5. Thus, nNav1.5 may have an advantage in promoting metastasis from the acidified tumor microenvironment.
Collapse
Affiliation(s)
- Rustem Onkal
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom
- Biotechnology Research Centre (BRC), North Cyprus International University, North Cyprus
| | - Scott P. Fraser
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom
| | - Mustafa B.A. Djamgoz
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom
- Biotechnology Research Centre (BRC), North Cyprus International University, North Cyprus
| |
Collapse
|
4
|
Mao W, Zhang J, Körner H, Jiang Y, Ying S. The Emerging Role of Voltage-Gated Sodium Channels in Tumor Biology. Front Oncol 2019; 9:124. [PMID: 30895169 PMCID: PMC6414428 DOI: 10.3389/fonc.2019.00124] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/12/2019] [Indexed: 11/13/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) are transmembrane proteins which function as gates that control the flux of ions across the cell membrane. They are key ion channels for action potentials in excitable tissues and have important physiological functions. Abnormal function of VGSCs will lead to dysfunction of the body and trigger a variety of diseases. Various studies have demonstrated the participation of VGSCs in the progression of different tumors, such as prostate cancer, cervical cancer, breast cancer, and others, linking VGSC to the invasive capacity of tumor cells. However, it is still unclear whether the VGSC regulate the malignant biological behavior of tumors. Therefore, this paper systematically addresses the latest research progress on VGSCs subunits and tumors and the underlying mechanisms, and it summarizes the potential of VGSCs subunits to serve as potential targets for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Weijia Mao
- Key Laboratory of Oral Disease Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China.,Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jie Zhang
- Key Laboratory of Oral Disease Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China.,Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Heinrich Körner
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.,Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Yong Jiang
- Key Laboratory of Oral Disease Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Wang W, Mellor RL, Nerbonne JM, Balke CW. Regional differences in the expression of tetrodotoxin-sensitive inward Ca 2+ and outward Cs +/K + currents in mouse and human ventricles. Channels (Austin) 2019; 13:72-87. [PMID: 30704344 PMCID: PMC6380286 DOI: 10.1080/19336950.2019.1568146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Tetrodotoxin (TTX) sensitive inward Ca2+ currents, ICa(TTX), have been identified in cardiac myocytes from several species, although it is unclear if ICa(TTX) is expressed in all cardiac cell types, and if ICa(TTX) reflects Ca2+ entry through the main, Nav1.5-encoded, cardiac Na+ (Nav) channels. To address these questions, recordings were obtained with 2 mm Ca2+ and 0 mm Na+ in the bath and 120 mm Cs+ in the pipettes from myocytes isolated from adult mouse interventricular septum (IVS), left ventricular (LV) endocardium, apex, and epicardium and from human LV endocardium and epicardium. On membrane depolarizations from a holding potential of −100 mV, ICa(TTX) was identified in mouse IVS and LV endocardial myocytes and in human LV endocardial myocytes, whereas only TTX-sensitive outward Cs+/K+ currents were observed in mouse LV apex and epicardial myocytes and human LV epicardial myocytes. The inward Ca2+, but not the outward Cs+/K+, currents were blocked by mm concentrations of MTSEA, a selective blocker of cardiac Nav1.5-encoded Na+ channels. In addition, in Nav1.5-expressing tsA-201 cells, ICa(TTX) was observed in 3 (of 20) cells, and TTX-sensitive outward Cs+/K+ currents were observed in the other (17) cells. The time- and voltage-dependent properties of the TTX-sensitive inward Ca2+ and outward Cs+/K+ currents recorded in Nav1.5-expressing tsA-201 were indistinguishable from native currents in mouse and human cardiac myocytes. Overall, the results presented here suggest marked regional, cell type-specific, differences in the relative ion selectivity, and likely the molecular architecture, of native SCN5A-/Scn5a- (Nav1.5-) encoded cardiac Na+ channels in mouse and human ventricles.
Collapse
Affiliation(s)
- Wei Wang
- a Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division , Washington University School of Medicine , St. Louis , MO , USA
| | - Rebecca L Mellor
- a Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division , Washington University School of Medicine , St. Louis , MO , USA
| | - Jeanne M Nerbonne
- a Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division , Washington University School of Medicine , St. Louis , MO , USA.,b John Cochran Veterans Administration Medical Center , St. Louis , MO , USA
| | - C William Balke
- a Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division , Washington University School of Medicine , St. Louis , MO , USA.,b John Cochran Veterans Administration Medical Center , St. Louis , MO , USA
| |
Collapse
|
6
|
Galectin-1 attenuates cardiomyocyte hypertrophy through splice-variant specific modulation of CaV1.2 calcium channel. Biochim Biophys Acta Mol Basis Dis 2019; 1865:218-229. [DOI: 10.1016/j.bbadis.2018.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/17/2018] [Accepted: 08/14/2018] [Indexed: 11/22/2022]
|
7
|
Campostrini G, Bonzanni M, Lissoni A, Bazzini C, Milanesi R, Vezzoli E, Francolini M, Baruscotti M, Bucchi A, Rivolta I, Fantini M, Severi S, Cappato R, Crotti L, J Schwartz P, DiFrancesco D, Barbuti A. The expression of the rare caveolin-3 variant T78M alters cardiac ion channels function and membrane excitability. Cardiovasc Res 2018; 113:1256-1265. [PMID: 28898996 PMCID: PMC5852518 DOI: 10.1093/cvr/cvx122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 06/19/2017] [Indexed: 01/03/2023] Open
Abstract
Aims Caveolinopathies are a family of genetic disorders arising from alterations of the caveolin-3 (cav-3) gene. The T78M cav-3 variant has been associated with both skeletal and cardiac muscle pathologies but its functional contribution, especially to cardiac diseases, is still controversial. Here, we evaluated the effect of the T78M cav-3 variant on cardiac ion channel function and membrane excitability. Methods and results We transfected either the wild type (WT) or T78M cav-3 in caveolin-1 knock-out mouse embryonic fibroblasts and found by immunofluorescence and electron microscopy that both are expressed at the plasma membrane and form caveolae. Two ion channels known to interact and co-immunoprecipitate with the cav-3, hKv1.5 and hHCN4, interact also with T78M cav-3 and reside in lipid rafts. Electrophysiological analysis showed that the T78M cav-3 causes hKv1.5 channels to activate and inactivate at more hyperpolarized potentials and the hHCN4 channels to activate at more depolarized potentials, in a dominant way. In spontaneously beating neonatal cardiomyocytes, the expression of the T78M cav-3 significantly increased action potential peak-to-peak variability without altering neither the mean rate nor the maximum diastolic potential. We also found that in a small cohort of patients with supraventricular arrhythmias, the T78M cav-3 variant is more frequent than in the general population. Finally, in silico analysis of both sinoatrial and atrial cell models confirmed that the T78M-dependent changes are compatible with a pro-arrhythmic effect. Conclusion This study demonstrates that the T78M cav-3 induces complex modifications in ion channel function that ultimately alter membrane excitability. The presence of the T78M cav-3 can thus generate a susceptible substrate that, in concert with other structural alterations and/or genetic mutations, may become arrhythmogenic.
Collapse
Affiliation(s)
- Giulia Campostrini
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy
| | - Mattia Bonzanni
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy
| | - Alessio Lissoni
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy
| | - Claudia Bazzini
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy
| | - Raffaella Milanesi
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy
| | - Elena Vezzoli
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Mirko Baruscotti
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy.,Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata (CIMMBA), Università degli Studi di Milano, Milano, Italy
| | - Annalisa Bucchi
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy
| | - Ilaria Rivolta
- Department of Health Science, Università di Milano Bicocca, Monza, Italy
| | - Matteo Fantini
- Cellular and Molecular Engineering Laboratory 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Bologna, Italy
| | - Stefano Severi
- Cellular and Molecular Engineering Laboratory 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Bologna, Italy
| | - Riccardo Cappato
- Arrhythmia & Electrophysiology Unit II, Humanitas Gavazzeni Clinics, Bergamo, Italy.,Arrhythmia & Electrophysiology Research Center, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, IRCCS Istituto Auxologico Italiano, Milano, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Dario DiFrancesco
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy.,Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata (CIMMBA), Università degli Studi di Milano, Milano, Italy
| | - Andrea Barbuti
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy.,Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata (CIMMBA), Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
8
|
Edokobi N, Isom LL. Voltage-Gated Sodium Channel β1/β1B Subunits Regulate Cardiac Physiology and Pathophysiology. Front Physiol 2018; 9:351. [PMID: 29740331 PMCID: PMC5924814 DOI: 10.3389/fphys.2018.00351] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Cardiac myocyte contraction is initiated by a set of intricately orchestrated electrical impulses, collectively known as action potentials (APs). Voltage-gated sodium channels (NaVs) are responsible for the upstroke and propagation of APs in excitable cells, including cardiomyocytes. NaVs consist of a single, pore-forming α subunit and two different β subunits. The β subunits are multifunctional cell adhesion molecules and channel modulators that have cell type and subcellular domain specific functional effects. Variants in SCN1B, the gene encoding the Nav-β1 and -β1B subunits, are linked to atrial and ventricular arrhythmias, e.g., Brugada syndrome, as well as to the early infantile epileptic encephalopathy Dravet syndrome, all of which put patients at risk for sudden death. Evidence over the past two decades has demonstrated that Nav-β1/β1B subunits play critical roles in cardiac myocyte physiology, in which they regulate tetrodotoxin-resistant and -sensitive sodium currents, potassium currents, and calcium handling, and that Nav-β1/β1B subunit dysfunction generates substrates for arrhythmias. This review will highlight the role of Nav-β1/β1B subunits in cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
| | - Lori L. Isom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
9
|
Dulsat G, Palomeras S, Cortada E, Riuró H, Brugada R, Vergés M. Trafficking and localisation to the plasma membrane of Nav1.5 promoted by the β2 subunit is defective due to a β2 mutation associated with Brugada syndrome. Biol Cell 2017; 109:273-291. [DOI: 10.1111/boc.201600085] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 05/14/2017] [Accepted: 05/31/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Gemma Dulsat
- Cardiovascular Genetics Group; Girona Biomedical Research Institute (IDIBGI); Salt Girona 17190 Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV); ISCIII Madrid 28029 Spain
| | - Sonia Palomeras
- Cardiovascular Genetics Group; Girona Biomedical Research Institute (IDIBGI); Salt Girona 17190 Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV); ISCIII Madrid 28029 Spain
| | - Eric Cortada
- Cardiovascular Genetics Group; Girona Biomedical Research Institute (IDIBGI); Salt Girona 17190 Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV); ISCIII Madrid 28029 Spain
| | - Helena Riuró
- Cardiovascular Genetics Group; Girona Biomedical Research Institute (IDIBGI); Salt Girona 17190 Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV); ISCIII Madrid 28029 Spain
| | - Ramon Brugada
- Cardiovascular Genetics Group; Girona Biomedical Research Institute (IDIBGI); Salt Girona 17190 Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV); ISCIII Madrid 28029 Spain
- Medical Sciences Department; University of Girona Medical School; Girona 17003 Spain
| | - Marcel Vergés
- Cardiovascular Genetics Group; Girona Biomedical Research Institute (IDIBGI); Salt Girona 17190 Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV); ISCIII Madrid 28029 Spain
- Medical Sciences Department; University of Girona Medical School; Girona 17003 Spain
| |
Collapse
|
10
|
Stoetzer C, Voelker M, Doll T, Heineke J, Wegner F, Leffler A. Cardiotoxic Antiemetics Metoclopramide and Domperidone Block Cardiac Voltage-Gated Na+ Channels. Anesth Analg 2017; 124:52-60. [PMID: 27861438 DOI: 10.1213/ane.0000000000001673] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Metoclopramide and domperidone are prokinetic and antiemetic substances often used in clinical practice. Although domperidone has a more favorable side effect profile and is considered the first-line agent, severe cardiac side effects were reported during the administration of both substances. Cardiac Na channels are common targets of therapeutics inducing cardiotoxicity. Therefore, the aim of this study was to investigate whether the differential cardiotoxicities of metoclopramide and domperidone correlate with the block of Na channels. METHODS Effects of metoclopramide and domperidone on the human α-subunit Nav1.5 expressed in human embryonic kidney 293 cells and on Na currents in neonatal rat cardiomyocytes were investigated by means of whole-cell patch clamp recordings. RESULTS Tonic block of resting Nav1.5 channels was more potent for domperidone (IC50 85 ± 25 μM; 95% confidence interval [CI], 36-134) compared with metoclopramide (IC50 458 ± 28 μM; 95% CI, 403-513). Both agents induced use-dependent block at 10 and 1 Hz, stabilized fast and slow inactivation, and delayed recovery from inactivation. However, metoclopramide induced considerably smaller effects compared with domperidone. Na currents in rat cardiomyocytes displayed tonic and use-dependent block by both substances, and in this system, domperidone (IC50 312 ± 15 μM; 95% CI, 22-602) and metoclopramide (IC50 250 ± 30 μM; 95% CI, 191-309) induced a similar degree of tonic block. CONCLUSIONS Our data demonstrate that the clinically relevant cardiotoxicity of domperidone and metoclopramide corresponds to a rather potent and local anesthetic-like inhibition of cardiac Na channels including Nav1.5. These data suggest that Nav1.5 might be a hitherto unrecognized molecular mechanism of some cardiovascular side effects, for example, malignant arrhythmias of prokinetic and antiemetic agents.
Collapse
Affiliation(s)
- Carsten Stoetzer
- From the Departments of *Anesthesiology and Intensive Care Medicine, †Cardiology and Angiology, and ‡Neurology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Xu Q, Patel D, Zhang X, Veenstra RD. Changes in cardiac Nav1.5 expression, function, and acetylation by pan-histone deacetylase inhibitors. Am J Physiol Heart Circ Physiol 2016; 311:H1139-H1149. [PMID: 27638876 DOI: 10.1152/ajpheart.00156.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022]
Abstract
Histone deacetylase (HDAC) inhibitors are small molecule anticancer therapeutics that exhibit limiting cardiotoxicities including QT interval prolongation and life-threatening cardiac arrhythmias. Because the molecular mechanisms for HDAC inhibitor-induced cardiotoxicity are poorly understood, we performed whole cell patch voltage-clamp experiments to measure cardiac sodium currents (INa) from wild-type neonatal mouse ventricular or human-induced pluripotent stem cell-derived cardiomyocytes treated with trichostatin A (TSA), vorinostat (VOR), or romidepsin (FK228). All three pan-HDAC inhibitors dose dependently decreased peak INa density and shifted the voltage activation curve 3- to 8-mV positive. Increases in late INa were not observed despite a moderate slowing of the inactivation rate at low activating potentials (<-40 mV). Scn5a mRNA levels were not significantly altered but NaV1.5 protein levels were significantly reduced. Immunoprecipitation with anti-NaV1.5 and Western blotting with anti-acetyl-lysine antibodies indicated that NaV1.5 acetylation is increased in vivo after HDAC inhibition. FK228 inhibited total cardiac HDAC activity with two apparent IC50s of 5 nM and 1.75 μM, consistent with previous findings with TSA and VOR. FK228 also decreased ventricular gap junction conductance (gj), again consistent with previous findings. We conclude that pan-HDAC inhibition reduces cardiac INa density and NaV1.5 protein levels without affecting late INa amplitude and, thus, probably does not contribute to the reported QT interval prolongation and arrhythmias associated with pan-HDAC inhibitor therapies. Conversely, reductions in gj may enhance the occurrence of triggered activity by limiting electrotonic inhibition and, combined with reduced INa, slow myocardial conduction and increase vulnerability to reentrant arrhythmias.
Collapse
Affiliation(s)
- Qin Xu
- Department of Pharmacology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York; and
| | - Dakshesh Patel
- Department of Pharmacology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York; and
| | - Xian Zhang
- Department of Pharmacology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York; and
| | - Richard D Veenstra
- Department of Pharmacology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York; and .,Department of Cell and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
12
|
Tetrodotoxin-sensitive α-subunits of voltage-gated sodium channels are relevant for inhibition of cardiac sodium currents by local anesthetics. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:625-36. [DOI: 10.1007/s00210-016-1231-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/10/2016] [Indexed: 01/25/2023]
|
13
|
Liu J, Laksman Z, Backx PH. The electrophysiological development of cardiomyocytes. Adv Drug Deliv Rev 2016; 96:253-73. [PMID: 26788696 DOI: 10.1016/j.addr.2015.12.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/23/2015] [Accepted: 12/31/2015] [Indexed: 02/07/2023]
Abstract
The generation of human cardiomyocytes (CMs) from human pluripotent stem cells (hPSCs) has become an important resource for modeling human cardiac disease and for drug screening, and also holds significant potential for cardiac regeneration. Many challenges remain to be overcome however, before innovation in this field can translate into a change in the morbidity and mortality associated with heart disease. Of particular importance for the future application of this technology is an improved understanding of the electrophysiologic characteristics of CMs, so that better protocols can be developed and optimized for generating hPSC-CMs. Many different cell culture protocols are currently utilized to generate CMs from hPSCs and all appear to yield relatively “developmentally” immature CMs with highly heterogeneous electrical properties. These hPSC-CMs are characterized by spontaneous beating at highly variable rates with a broad range of depolarization-repolarization patterns, suggestive of mixed populations containing atrial, ventricular and nodal cells. Many recent studies have attempted to introduce approaches to promote maturation and to create cells with specific functional properties. In this review, we summarize the studies in which the electrical properties of CMs derived from stem cells have been examined. In order to place this information in a useful context, we also review the electrical properties of CMs as they transition from the developing embryo to the adult human heart. The signal pathways involved in the regulation of ion channel expression during development are also briefly considered.
Collapse
|
14
|
Abstract
Voltage-gated sodium channels (VGSCs) are responsible for the initiation and propagation of action potentials in excitable cells. VGSCs in mammalian brain are heterotrimeric complexes of α and β subunits. Although β subunits were originally termed auxiliary, we now know that they are multifunctional signaling molecules that play roles in both excitable and nonexcitable cell types and with or without the pore-forming α subunit present. β subunits function in VGSC and potassium channel modulation, cell adhesion, and gene regulation, with particularly important roles in brain development. Mutations in the genes encoding β subunits are linked to a number of diseases, including epilepsy, sudden death syndromes like SUDEP and SIDS, and cardiac arrhythmia. Although VGSC β subunit-specific drugs have not yet been developed, this protein family is an emerging therapeutic target.
Collapse
Affiliation(s)
- Heather A O'Malley
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109;
| | | |
Collapse
|
15
|
León Ariza HH, Valenzuela Faccini N, Rojas Ortega AC, Botero Rosas DA. Nav1.5 cardiac sodium channels, regulation and clinical implications. REVISTA DE LA FACULTAD DE MEDICINA 2015. [DOI: 10.15446/revfacmed.v62n4.44015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
<p>Voltage-gated sodium channels constitute a group of membrane<br />proteins widely distributed thought the body. In the heart, there<br />are at least six different isoforms, being the Nav1.5 the most<br />abundant. The channel is composed of an α subunit that is formed<br />by four domains of six segments each, and four much smaller β<br />subunits that provide stability and integrate other channels into<br />the α subunit. The function of the Nav1.5 channel is modulated<br />by intracellular cytoskeleton proteins, extracellular proteins,<br />calcium concentration, free radicals, and medications, among<br />other things. The study of the channel and its alterations has<br />grown thanks to its association with pathogenic conditions such<br />as Long QT syndrome, Brugada syndrome, atrial fibrillation,<br />arrhythmogenic ventricular dysplasia and complications during<br />ischemic processes.</p>
Collapse
|
16
|
Ono T, Hayashida M, Tezuka A, Hayakawa H, Ohno Y. Antagonistic effects of tetrodotoxin on aconitine-induced cardiac toxicity. J NIPPON MED SCH 2014; 80:350-61. [PMID: 24189353 DOI: 10.1272/jnms.80.350] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aconitine, well-known for its high cardiotoxicity, causes severe arrhythmias, such as ventricular tachycardia and ventricular fibrillation, by opening membrane sodium channels. Tetrodotoxin, a membrane sodium-channel blocker, is thought to antagonize aconitine activity. Tetrodotoxin is a potent blocker of the skeletal muscle sodium-channel isoform Na(v)1.4 (IC50 10 nM), but micromolar concentrations of tetrodotoxin are required to inhibit the primary cardiac isoform Na(v)1.5. This suggests that substantial concentrations of tetrodotoxin are required to alleviate the cardiac toxicity caused by aconitine. To elucidate the interaction between aconitine and tetrodotoxin in the cardiovascular and respiratory systems, mixtures of aconitine and tetrodotoxin were simultaneously administered to mice, and the effects on electrocardiograms, breathing rates, and arterial oxygen saturation were examined. Compared with mice treated with aconitine alone, some mice treated with aconitine-tetrodotoxin mixtures showed lower mortality rates and delayed appearance of arrhythmia. The decreased breathing rates and arterial oxygen saturation observed in mice receiving aconitine alone were alleviated in mice that survived after receiving the aconitine-tetrodotoxin mixture; this result suggests that tetrodotoxin is antagonistic to aconitine. When the tetrodotoxin dose is greater than the dose that can block tetrodotoxin-sensitive sodium channels, which are excessively activated by aconitine, tetrodotoxin toxicity becomes prominent, and the mortality rate increases because of the respiratory effects of tetrodotoxin. In terms of cardiotoxicity, mice receiving the aconitine-tetrodotoxin mixture showed minor and shorter periods of change on electrocardiography. This finding can be explained by the recent discovery of tetrodotoxin-sensitive sodium-channel cardiac isoforms (Na(v)1.1, 1.2, 1.3, 1.4 and 1.6).
Collapse
|
17
|
Baroni D, Picco C, Barbieri R, Moran O. Antisense-mediated post-transcriptional silencing of SCN1B gene modulates sodium channel functional expression. Biol Cell 2013; 106:13-29. [PMID: 24138709 DOI: 10.1111/boc.201300040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/11/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND INFORMATION Voltage-dependent sodium channels are membrane proteins essential for cell excitability. They are composed by a pore-forming α-subunit and one or more β subunits. Nine α subunit and five β subunit isoforms have been identified in mammals: β1, its splice variant β1B, β2, β3 and β4. Although they do not form the ion channel pore, β subunits modulate both function as well as expression of sodium channels on cell membrane. RESULTS To investigate the role of β1 subunit on the modulation of sodium channel expression, we silenced this auxiliary subunit with specific antisense oligonucleotides (ASONs) in two rat cell lines, the GH3 and the H9C2, from neuro-ectoderm and cardiac myocyte origin, respectively. Treatment of cells with ASONs determined a reduction of about 50% of β1 subunit mRNA and protein expression in both cell lines. We found that this level of β1 subunit silencing resulted in an overall decrease of α subunit mRNA, protein expression and a decrease of sodium current density, without altering significantly the voltage-dependent and kinetic properties of the currents. In GH3 cells, the β1 subunit silencing reduced the expression of Nav1.1, Nav1.3 and Nav1.6 isoforms, whereas the Nav 1.2 isoform expression remained unaltered. The expression of the only α subunit present in H9C2 cells, the Nav1.5, was also reduced by β1 subunit silencing. CONCLUSIONS These results indicate that the β1 subunit may exert an isoform-specific fine-tuned modulation of sodium channel expression.
Collapse
|
18
|
Baroni D, Barbieri R, Picco C, Moran O. Functional modulation of voltage-dependent sodium channel expression by wild type and mutated C121W-β1 subunit. J Bioenerg Biomembr 2013; 45:353-68. [DOI: 10.1007/s10863-013-9510-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/25/2013] [Indexed: 12/19/2022]
|
19
|
Wu AZY, Loh SH, Cheng TH, Lu HH, Lin CI. Antiarrhythmic effects of (-)-epicatechin-3-gallate, a novel sodium channel agonist in cultured neonatal rat ventricular myocytes. Biochem Pharmacol 2012; 85:69-80. [PMID: 23116965 DOI: 10.1016/j.bcp.2012.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/24/2012] [Accepted: 10/01/2012] [Indexed: 02/08/2023]
Abstract
(-)-Epicatechin-3-gallate (ECG), a polyphenol extracted from green tea, has been proposed as an effective compound for improving cardiac contractility. However, the therapeutic potential of ECG on the treatment of arrhythmia remains unknown. We investigated the direct actions of ECG on the modulation of ion currents and cardiac cell excitability in the primary culture of neonatal rat ventricular myocyte (NRVM), which is considered a hypertrophic model for analysis of myocardial arrhythmias. By using the whole-cell patch-clamp configurations, we found ECG enhanced the slowly inactivating component of voltage-gated Na(+) currents (I(Na)) in a concentration-dependent manner (0.1-100 μM) with an EC(50) value of 3.8 μM. ECG not only shifted the current-voltage relationship of peak I(Na) to the hyperpolarizing direction but also accelerated I(Na) recovery kinetics. Working at a concentration level of I(Na) enhancement, ECG has no notable effect on voltage-gated K(+) currents and L-type Ca(2+) currents. With culture time increment, the firing rate of spontaneous action potential (sAP) in NRVMs was gradually decreased until spontaneous early after-depolarization (EAD) was observed after about one week culture. ECG increased the firing rate of normal sAP about two-fold without waveform alteration. Interestingly, the bradycardia-dependent EAD could be significantly restored by ECG in fast firing rate to normal sAP waveform. The expression of dominant cardiac sodium channel subunit, Nav1.5, was consistently detected throughout the culture periods. Our results reveal how ECG, the novel I(Na) agonist, may act as a promising candidate in clinical applications on cardiac arrhythmias.
Collapse
Affiliation(s)
- Adonis Zhi-Yang Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
20
|
Abd Allah ES, Aslanidi OV, Tellez JO, Yanni J, Billeter R, Zhang H, Dobrzynski H, Boyett MR. Postnatal development of transmural gradients in expression of ion channels and Ca2+-handling proteins in the ventricle. J Mol Cell Cardiol 2012; 53:145-55. [DOI: 10.1016/j.yjmcc.2012.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 03/06/2012] [Accepted: 04/06/2012] [Indexed: 01/30/2023]
|
21
|
Byers MR, Westenbroek RE. Odontoblasts in developing, mature and ageing rat teeth have multiple phenotypes that variably express all nine voltage-gated sodium channels. Arch Oral Biol 2011; 56:1199-220. [DOI: 10.1016/j.archoralbio.2011.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/20/2011] [Accepted: 04/21/2011] [Indexed: 12/11/2022]
|
22
|
Yao L, Fan P, Jiang Z, Viatchenko-Karpinski S, Wu Y, Kornyeyev D, Hirakawa R, Budas GR, Rajamani S, Shryock JC, Belardinelli L. Nav1.5-dependent persistent Na+ influx activates CaMKII in rat ventricular myocytes and N1325S mice. Am J Physiol Cell Physiol 2011; 301:C577-86. [PMID: 21677263 DOI: 10.1152/ajpcell.00125.2011] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Late Na(+) current (I(NaL)) and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) are both increased in the diseased heart. Recently, CaMKII was found to phosphorylate the Na(+) channel 1.5 (Na(v)1.5), resulting in enhanced I(NaL). Conversely, an increase of I(NaL) would be expected to cause elevation of intracellular Ca(2+) and activation of CaMKII. However, a relationship between enhancement of I(NaL) and activation of CaMKII has yet to be demonstrated. We investigated whether Na(+) influx via Na(v)1.5 leads to CaMKII activation and explored the functional significance of this pathway. In neonatal rat ventricular myocytes (NRVM), treatment with the I(NaL) activators anemone toxin II (ATX-II) or veratridine increased CaMKII autophosphorylation and increased phosphorylation of CaMKII substrates phospholamban and ryanodine receptor 2. Knockdown of Na(v)1.5 (but not Na(v)1.1 or Na(v)1.2) prevented ATX-II-induced CaMKII phosphorylation, providing evidence for a specific role of Na(v)1.5 in CaMKII activation. In support of this view, CaMKII activity was also increased in hearts of transgenic mice overexpressing a gain-of-function Na(v)1.5 mutant (N(1325)S). The effects of both ATX-II and the N(1325)S mutation were reversed by either I(NaL) inhibition (with ranolazine or tetrodotoxin) or CaMKII inhibition (with KN93 or autocamtide 2-related inhibitory peptide). Furthermore, ATX-II treatment also induced CaMKII-Na(v)1.5 coimmunoprecipitation. The same association between CaMKII and Na(v)1.5 was also found in N(1325)S mice, suggesting a direct protein-protein interaction. Pharmacological inhibitions of either CaMKII or I(NaL) also prevented ATX-II-induced cell death in NRVM and reduced the incidence of polymorphic ventricular tachycardia induced by ATX-II in rat perfused hearts. Taken together, these results suggest that a Na(v)1.5-dependent increase in Na(+) influx leads to activation of CaMKII, which in turn phosphorylates Na(v)1.5, further promoting Na(+) influx. Pharmacological inhibition of either CaMKII or Na(v)1.5 can ameliorate cardiac dysfunction caused by excessive Na(+) influx.
Collapse
Affiliation(s)
- Lina Yao
- Department of Biology, Gilead Sciences, Palo Alto, California 94304, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yu L, Gao S, Nie L, Tang M, Huang W, Luo H, Hu X, Xi J, Zhu M, Zheng Y, Gao L, Zhang L, Song Y, Hescheler J, Liang H. Molecular and Functional Changes in Voltage-Gated Na+ Channels in Cardiomyocytes During Mouse Embryogenesis. Circ J 2011; 75:2071-9. [DOI: 10.1253/circj.cj-10-1212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Liangzhu Yu
- Chinese-German Stem Cell Center, Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology
| | - Shijun Gao
- Chinese-German Stem Cell Center, Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology
| | - Li Nie
- Chinese-German Stem Cell Center, Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology
| | - Ming Tang
- Chinese-German Stem Cell Center, Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology
| | - Weifeng Huang
- Chinese-German Stem Cell Center, Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology
| | - Hongyan Luo
- Chinese-German Stem Cell Center, Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology
| | - Xinwu Hu
- Chinese-German Stem Cell Center, Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology
| | - Jiaoya Xi
- Chinese-German Stem Cell Center, Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology
| | - Minjie Zhu
- Chinese-German Stem Cell Center, Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology
| | - Yunjie Zheng
- Chinese-German Stem Cell Center, Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology
| | - Linlin Gao
- Chinese-German Stem Cell Center, Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology
| | - Lanqiu Zhang
- Chinese-German Stem Cell Center, Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology
| | - Yuanlong Song
- Chinese-German Stem Cell Center, Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology
| | | | - Huamin Liang
- Chinese-German Stem Cell Center, Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
24
|
Gershome C, Lin E, Kashihara H, Hove-Madsen L, Tibbits GF. Colocalization of voltage-gated Na+ channels with the Na+/Ca2+ exchanger in rabbit cardiomyocytes during development. Am J Physiol Heart Circ Physiol 2011; 300:H300-11. [DOI: 10.1152/ajpheart.00798.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reverse-mode activity of the Na+/Ca2+ exchanger (NCX) has been previously shown to play a prominent role in excitation-contraction coupling in the neonatal rabbit heart, where we have proposed that a restricted subsarcolemmal domain allows a Na+ current to cause an elevation in the Na+ concentration sufficiently large to bring Ca2+ into the myocyte through reverse-mode NCX. In the present study, we tested the hypothesis that there is an overlapping expression and distribution of voltage-gated Na+ (Nav) channel isoforms and the NCX in the neonatal heart. For this purpose, Western blot analysis, immunocytochemistry, confocal microscopy, and image analyses were used. Here, we report the robust expression of skeletal Nav1.4 and cardiac Nav1.5 in neonatal myocytes. Both isoforms colocalized with the NCX, and Nav1.5-NCX colocalization was not statistically different from Nav1.4-NCX colocalization in the neonatal group. Western blot analysis also showed that Nav1.4 expression decreased by sixfold in the adult ( P < 0.01) and Nav1.1 expression decreased by ninefold ( P < 0.01), whereas Nav1.5 expression did not change. Although Nav1.4 underwent large changes in expression levels, the Nav1.4-NCX colocalization relationship did not change with age. In contrast, Nav1.5-NCX colocalization decreased ∼50% with development. Distance analysis indicated that the decrease in Nav1.5-NCX colocalization occurs due to a statistically significant increase in separation distances between Nav1.5 and NCX objects. Taken together, the robust expression of both Nav1.4 and Nav1.5 isoforms and their colocalization with the NCX in the neonatal heart provides structural support for Na+ current-induced Ca2+ entry through reverse-mode NCX. In contrast, this mechanism is likely less efficient in the adult heart because the expression of Nav1.4 and NCX is lower and the separation distance between Nav1.5 and NCX is larger.
Collapse
Affiliation(s)
- Cynthia Gershome
- Molecular Cardiac Physiology Group, Simon Fraser University, Burnaby
- Child and Family Research Institute, Vancouver, British Columbia, Canada; and
| | - Eric Lin
- Molecular Cardiac Physiology Group, Simon Fraser University, Burnaby
- Child and Family Research Institute, Vancouver, British Columbia, Canada; and
| | - Haruyo Kashihara
- Molecular Cardiac Physiology Group, Simon Fraser University, Burnaby
- Child and Family Research Institute, Vancouver, British Columbia, Canada; and
| | - Leif Hove-Madsen
- Centro de Investigación Cardiovascular CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Glen F. Tibbits
- Molecular Cardiac Physiology Group, Simon Fraser University, Burnaby
- Child and Family Research Institute, Vancouver, British Columbia, Canada; and
| |
Collapse
|
25
|
Poulet C, Wettwer E, Christ T, Ravens U. Skeletal muscle stem cells propagated as myospheres display electrophysiological properties modulated by culture conditions. J Mol Cell Cardiol 2010; 50:357-66. [PMID: 20971120 DOI: 10.1016/j.yjmcc.2010.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 10/08/2010] [Accepted: 10/11/2010] [Indexed: 11/25/2022]
Abstract
In cardiac regenerative therapy, transplantation of stem cells to form new myocardium is limited by their inability to integrate into host myocardium and conduct cardiac electrical activity. It is now hypothesized that refining cell sorting could upgrade the therapeutic result. Here we characterized a subpopulation of skeletal muscle stem cells with respect to their electrophysiological properties. The aim of our study was to determine whether electrophysiological parameters are compatible with cardiac function and can be influenced by culture conditions. Low-adherent skeletal muscle stem cells were isolated from the hind legs of 12-20 week old mice. After 6 days of culture the cells were analysed using patch-clamp techniques and RT-PCR, and replated in different media for skeletal muscle or cardiac differentiation. The cells generated action potentials (APs) longer than skeletal muscle APs, expressed functional cardiac Na(+) channels (~46% of the total channel fraction), displayed fast activating and inactivating L-type Ca(2+) currents, possibly conducted through cardiac channels and did not show significant Cl(-) conductance. Moreover, a fraction of cells expressed muscarinic acetylcholine receptors. Conditioning the cells for skeletal muscle differentiation resulted in upregulation of skeletal muscle-specific Na(+) and Ca(2+) channel expression, shortening of AP duration and loss of functional cardiac Na(+) channels. Cardiomyogenic conditions however, promoted the participation of cardiac Na(+) channels (57% of the total channel fraction). Nevertheless the cells retained properties of myoblasts such as the expression of nicotinic acetylcholine receptors. We conclude that skeletal muscle stem cells display several electrophysiological properties similar to those of cardiomyocytes. Culture conditions modulated these properties but only partially succeeded in further driving the cells towards a cardiac phenotype. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".
Collapse
Affiliation(s)
- Claire Poulet
- Department of Pharmacology and Toxicology, Medical Faculty, University of Technology, Dresden, Germany
| | | | | | | |
Collapse
|