1
|
Germain P, Delalande A, Pichon C. Role of Muscle LIM Protein in Mechanotransduction Process. Int J Mol Sci 2022; 23:ijms23179785. [PMID: 36077180 PMCID: PMC9456170 DOI: 10.3390/ijms23179785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/14/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
The induction of protein synthesis is crucial to counteract the deconditioning of neuromuscular system and its atrophy. In the past, hormones and cytokines acting as growth factors involved in the intracellular events of these processes have been identified, while the implications of signaling pathways associated with the anabolism/catabolism ratio in reference to the molecular mechanism of skeletal muscle hypertrophy have been recently identified. Among them, the mechanotransduction resulting from a mechanical stress applied to the cell appears increasingly interesting as a potential pathway for therapeutic intervention. At present, there is an open question regarding the type of stress to apply in order to induce anabolic events or the type of mechanical strain with respect to the possible mechanosensing and mechanotransduction processes involved in muscle cells protein synthesis. This review is focused on the muscle LIM protein (MLP), a structural and mechanosensing protein with a LIM domain, which is expressed in the sarcomere and costamere of striated muscle cells. It acts as a transcriptional cofactor during cell proliferation after its nuclear translocation during the anabolic process of differentiation and rebuilding. Moreover, we discuss the possible opportunity of stimulating this mechanotransduction process to counteract the muscle atrophy induced by anabolic versus catabolic disorders coming from the environment, aging or myopathies.
Collapse
Affiliation(s)
- Philippe Germain
- UFR Sciences and Techniques, University of Orleans, 45067 Orleans, France
- Center for Molecular Biophysics, CNRS Orleans, 45071 Orleans, France
| | - Anthony Delalande
- UFR Sciences and Techniques, University of Orleans, 45067 Orleans, France
- Center for Molecular Biophysics, CNRS Orleans, 45071 Orleans, France
| | - Chantal Pichon
- UFR Sciences and Techniques, University of Orleans, 45067 Orleans, France
- Center for Molecular Biophysics, CNRS Orleans, 45071 Orleans, France
- Institut Universitaire de France, 1 Rue Descartes, 75231 Paris, France
- Correspondence:
| |
Collapse
|
2
|
Rullman E, Fernandez-Gonzalo R, Mekjavić IB, Gustafsson T, Eiken O. MEF2 as upstream regulator of the transcriptome signature in human skeletal muscle during unloading. Am J Physiol Regul Integr Comp Physiol 2018; 315:R799-R809. [PMID: 29995456 DOI: 10.1152/ajpregu.00452.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Our understanding of skeletal muscle structural and functional alterations during unloading has increased in recent decades, yet the molecular mechanisms underpinning these changes have only started to be unraveled. The purpose of the current investigation was to assess changes in skeletal muscle gene expression after 21 days of bed rest, with a particular focus on predicting upstream regulators of muscle disuse. Additionally, the association between differential microRNA expression and the transcriptome signature of bed rest were investigated. mRNAs from musculus vastus lateralis biopsies obtained from 12 men before and after the bed rest were analyzed using a microarray. There were 54 significantly upregulated probesets after bed rest, whereas 103 probesets were downregulated (false discovery rate 10%; fold-change cutoff ≥1.5). Among the upregulated genes, transcripts related to denervation-induced alterations in skeletal muscle were identified, e.g., acetylcholine receptor subunit delta and perinatal myosin. The most downregulated transcripts were functionally enriched for mitochondrial genes and genes involved in mitochondrial biogenesis, followed by a large number of contractile fiber components. Upstream regulator analysis identified a robust inhibition of the myocyte enhancer factor-2 (MEF2) family, in particular MEF2C, which was suggested to act upstream of several key downregulated genes, most notably peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α)/peroxisome proliferator-activated receptors (PPARs) and CRSP3. Only a few microRNAs were identified as playing a role in the overall transcriptome picture induced by sustained bed rest. Our results suggest that the MEF2 family is a key regulator underlying the transcriptional signature of bed rest and, hence, ultimately also skeletal muscle alterations induced by systemic unloading in humans.
Collapse
Affiliation(s)
- Eric Rullman
- Department of Laboratory Medicine, Clinical Physiology, Karolinska Institutet and Karolinska University Hospital , Stockholm , Sweden.,Department of Cardiology, Karolinska University Hospital , Stockholm , Sweden
| | - Rodrigo Fernandez-Gonzalo
- Department of Laboratory Medicine, Clinical Physiology, Karolinska Institutet and Karolinska University Hospital , Stockholm , Sweden
| | - Igor B Mekjavić
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute , Ljubljana , Slovenia
| | - Thomas Gustafsson
- Department of Laboratory Medicine, Clinical Physiology, Karolinska Institutet and Karolinska University Hospital , Stockholm , Sweden
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, KTH Royal Institute of Technology , Stockholm , Sweden
| |
Collapse
|
3
|
Bang ML. Animal Models of Congenital Cardiomyopathies Associated With Mutations in Z-Line Proteins. J Cell Physiol 2016; 232:38-52. [PMID: 27171814 DOI: 10.1002/jcp.25424] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/10/2016] [Indexed: 01/15/2023]
Abstract
The cardiac Z-line at the boundary between sarcomeres is a multiprotein complex connecting the contractile apparatus with the cytoskeleton and the extracellular matrix. The Z-line is important for efficient force generation and transmission as well as the maintenance of structural stability and integrity. Furthermore, it is a nodal point for intracellular signaling, in particular mechanosensing and mechanotransduction. Mutations in various genes encoding Z-line proteins have been associated with different cardiomyopathies, including dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, restrictive cardiomyopathy, and left ventricular noncompaction, and mutations even within the same gene can cause widely different pathologies. Animal models have contributed to a great advancement in the understanding of the physiological function of Z-line proteins and the pathways leading from mutations in Z-line proteins to cardiomyopathy, although genotype-phenotype prediction remains a great challenge. This review presents an overview of the currently available animal models for Z-line and Z-line associated proteins involved in human cardiomyopathies with special emphasis on knock-in and transgenic mouse models recapitulating the clinical phenotypes of human cardiomyopathy patients carrying mutations in Z-line proteins. Pros and cons of mouse models will be discussed and a future outlook will be given. J. Cell. Physiol. 232: 38-52, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research, UOS Milan, National Research Council and Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| |
Collapse
|
4
|
Buyandelger B, Mansfield C, Knöll R. Mechano-signaling in heart failure. Pflugers Arch 2014; 466:1093-9. [PMID: 24531746 PMCID: PMC4033803 DOI: 10.1007/s00424-014-1468-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 02/07/2023]
Abstract
Mechanosensation and mechanotransduction are fundamental aspects of biology, but the link between physical stimuli and biological responses remains not well understood. The perception of mechanical stimuli, their conversion into biochemical signals, and the transmission of these signals are particularly important for dynamic organs such as the heart. Various concepts have been introduced to explain mechanosensation at the molecular level, including effects on signalosomes, tensegrity, or direct activation (or inactivation) of enzymes. Striated muscles, including cardiac myocytes, differ from other cells in that they contain sarcomeres which are essential for the generation of forces and which play additional roles in mechanosensation. The majority of cardiomyopathy causing candidate genes encode structural proteins among which titin probably is the most important one. Due to its elastic elements, titin is a length sensor and also plays a role as a tension sensor (i.e., stress sensation). The recent discovery of titin mutations being a major cause of dilated cardiomyopathy (DCM) also underpins the importance of mechanosensation and mechanotransduction in the pathogenesis of heart failure. Here, we focus on sarcomere-related mechanisms, discuss recent findings, and provide a link to cardiomyopathy and associated heart failure.
Collapse
Affiliation(s)
- Byambajav Buyandelger
- Imperial College, British Heart Foundation-Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | | | | |
Collapse
|
5
|
Kaushik G, Engler AJ. From stem cells to cardiomyocytes: the role of forces in cardiac maturation, aging, and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 126:219-42. [PMID: 25081620 DOI: 10.1016/b978-0-12-394624-9.00009-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stem cell differentiation into a variety of lineages is known to involve signaling from the extracellular niche, including from the physical properties of that environment. What regulates stem cell responses to these cues is there ability to activate different mechanotransductive pathways. Here, we will review the structures and pathways that regulate stem cell commitment to a cardiomyocyte lineage, specifically examining proteins within muscle sarcomeres, costameres, and intercalated discs. Proteins within these structures stretch, inducing a change in their phosphorylated state or in their localization to initiate different signals. We will also put these changes in the context of stem cell differentiation into cardiomyocytes, their subsequent formation of the chambered heart, and explore negative signaling that occurs during disease.
Collapse
Affiliation(s)
- Gaurav Kaushik
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Clark KA, Kadrmas JL. Drosophila melanogaster muscle LIM protein and alpha-actinin function together to stabilize muscle cytoarchitecture: a potential role for Mlp84B in actin-crosslinking. Cytoskeleton (Hoboken) 2013; 70:304-16. [PMID: 23606669 PMCID: PMC3716849 DOI: 10.1002/cm.21106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 02/06/2023]
Abstract
Stabilization of tissue architecture during development and growth is essential to maintain structural integrity. Because of its contractile nature, muscle is especially susceptible to physiological stresses, and has multiple mechanisms to maintain structural integrity. The Drosophila melanogaster Muscle LIM Protein (MLP), Mlp84B, participates in muscle maintenance, yet its precise mechanism of action is still controversial. Through a candidate approach, we identified α-actinin as a protein that functions with Mlp84B to ensure muscle integrity. α-actinin RNAi animals die primarily as pupae, and Mlp84B RNAi animals are adult viable. RNAi knockdown of Mlp84B and α-actinin together produces synergistic early larval lethality and destabilization of Z-line structures. We recapitulated these phenotypes using combinations of traditional loss-of-function alleles and single-gene RNAi. We observe that Mlp84B induces the formation of actin loops in muscle cell nuclei in the absence of nuclear α-actinin, suggesting Mlp84B has intrinsic actin cross-linking activity, which may complement α-actinin cross-linking activity at sites of actin filament anchorage. These results reveal a molecular mechanism for MLP stabilization of muscle and implicate reduced actin crosslinking as the primary destabilizing defect in MLP-associated cardiomyopathies. Our data support a model in which α-actinin and Mlp84B have important and overlapping functions at sites of actin filament anchorage to preserve muscle structure and function.
Collapse
Affiliation(s)
- Kathleen A. Clark
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Biology, University of Utah, Salt Lake City, UT 84112
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Julie L. Kadrmas
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
7
|
Moes D, Gatti S, Hoffmann C, Dieterle M, Moreau F, Neumann K, Schumacher M, Diederich M, Grill E, Shen WH, Steinmetz A, Thomas C. A LIM domain protein from tobacco involved in actin-bundling and histone gene transcription. MOLECULAR PLANT 2013; 6:483-502. [PMID: 22930731 PMCID: PMC3603003 DOI: 10.1093/mp/sss075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/10/2012] [Indexed: 05/18/2023]
Abstract
The two LIM domain-containing proteins from plants (LIMs) typically exhibit a dual cytoplasmic-nuclear distribution, suggesting that, in addition to their previously described roles in actin cytoskeleton organization, they participate in nuclear processes. Using a south-western blot-based screen aimed at identifying factors that bind to plant histone gene promoters, we isolated a positive clone containing the tobacco LIM protein WLIM2 (NtWLIM2) cDNA. Using both green fluorescent protein (GFP) fusion- and immunology-based strategies, we provide clear evidence that NtWLIM2 localizes to the actin cytoskeleton, the nucleus, and the nucleolus. Interestingly, the disruption of the actin cytoskeleton by latrunculin B significantly increases NtWLIM2 nuclear fraction, pinpointing a possible novel cytoskeletal-nuclear crosstalk. Biochemical and electron microscopy experiments reveal the ability of NtWLIM2 to directly bind to actin filaments and to crosslink the latter into thick actin bundles. Electrophoretic mobility shift assays show that NtWLIM2 specifically binds to the conserved octameric cis-elements (Oct) of the Arabidopsis histone H4A748 gene promoter and that this binding largely relies on both LIM domains. Importantly, reporter-based experiments conducted in Arabidopsis and tobacco protoplasts confirm the ability of NtWLIM2 to bind to and activate the H4A748 gene promoter in live cells. Expression studies indicate the constitutive presence of NtWLIM2 mRNA and NtWLIM2 protein during tobacco BY-2 cell proliferation and cell cycle progression, suggesting a role of NtWLIM2 in the activation of basal histone gene expression. Interestingly, both live cell and in vitro data support NtWLIM2 di/oligomerization. We propose that NtWLIM2 functions as an actin-stabilizing protein, which, upon cytoskeleton remodeling, shuttles to the nucleus in order to modify gene expression.
Collapse
Affiliation(s)
- Danièle Moes
- Centre de Recherche Public-Santé, 84, Val Fleuri, L-1526 Luxembourg, Luxembourg.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Current concepts of mechanosensation are general and applicable to almost every cell type. However, striated muscle cells are distinguished by their ability to generate strong forces via actin/myosin interaction, and this process is fine-tuned for optimum contractility. This aspect, unique for actively contracting cells, may be defined as "sensing of the magnitude and dynamics of contractility," as opposed to the well-known concepts of the "perception of extracellular mechanical stimuli." The acto/myosin interaction, by producing changes in ATP, ADP, Pi, and force on a millisecond timescale, may be regarded as a novel and previously unappreciated mechanosensory mechanism. In addition, sarcomeric mechanosensory structures, such as the Z-disc, are directly linked to autophagy, survival, and cell death-related pathways. One emerging example is telethonin and its ability to interfere with p53 metabolism and hence apoptosis (mechanoptosis). In this article, we introduce contractility per se as an important mechanosensory mechanism, and we differentiate extracellular from intracellular mechanosensory effects.
Collapse
Affiliation(s)
- Ralph Knöll
- Heart Science Section, National Heart & Lung Institute, Imperial College, London W12 0NN, UK.
| | | |
Collapse
|
9
|
Li A, Ponten F, dos Remedios CG. The interactome of LIM domain proteins: The contributions of LIM domain proteins to heart failure and heart development. Proteomics 2012; 12:203-25. [DOI: 10.1002/pmic.201100492] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/07/2011] [Accepted: 11/08/2011] [Indexed: 12/22/2022]
|
10
|
Heineke J, Ritter O. Cardiomyocyte calcineurin signaling in subcellular domains: from the sarcolemma to the nucleus and beyond. J Mol Cell Cardiol 2011; 52:62-73. [PMID: 22064325 DOI: 10.1016/j.yjmcc.2011.10.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 10/05/2011] [Accepted: 10/24/2011] [Indexed: 01/03/2023]
Abstract
The serine-threonine phosphatase calcineurin is activated in cardiac myocytes in the diseased heart and induces pathological hypertrophy. Calcineurin activity is mainly triggered by calcium/calmodulin binding but also through calpain mediated cleavage. How controlled calcineurin activation is possible in cardiac myocytes, which typically show a 10-fold difference in cytosolic calcium concentration with every heartbeat, has remained enigmatic. It is now emerging that calcineurin activation and signaling occur in subcellular microdomains, in which it is brought together with target proteins and exceedingly high concentrations of calcium in order to induce downstream signaling. We review current evidence of subcellular calcineurin mainly at the sarcolemma and the nucleus, but also in association with the sarcoplasmic reticulum and mitochondria. We also suggest that knowledge about subcellular signaling could help to develop inhibitors of calcineurin in specific microdomains to avoid side-effects that may arise from complete calcineurin inhibition.
Collapse
Affiliation(s)
- Joerg Heineke
- Medizinische Hochschule Hannover, Klinik für Kardiologie und Angiologie, Rebirth - Cluster of Excellence, Carl-Neuberg-Str.1, 30625 Hannover, Germany.
| | | |
Collapse
|
11
|
Abstract
Mechanosensation (the ultimate conversion of a mechanical stimulus into a biochemical signal) as well as mechanotransduction (transmission of mechanically induced signals) belong to the most fundamental processes in biology. These effects, because of their dynamic nature, are particularly important for the cardiovascular system. Therefore, it is not surprising that defects in cardiac mechanosensation, are associated with various types of cardiomyopathy and heart failure. However, our current knowledge regarding the genetic basis of impaired mechanosensation in the cardiovascular system is beginning to shed light on this subject and is at the centre of this brief review.
Collapse
|
12
|
Gautel M. The sarcomeric cytoskeleton: who picks up the strain? Curr Opin Cell Biol 2010; 23:39-46. [PMID: 21190822 DOI: 10.1016/j.ceb.2010.12.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 01/01/2023]
Abstract
In striated muscle sarcomeres, the contractile actin and myosin filaments are organised by a subset of specialised cytoskeletal proteins, the sarcomeric cytoskeleton. They include α-actinin, myomesin, and the giant proteins titin, obscurin and nebulin, which combine architectural, mechanical and signalling functions. Mechanics and signalling in the sarcomere appear tightly interdependent, but the exact contributions of the various sarcomeric cytoskeleton proteins to strain handling or signalling are only just emerging. General mechanisms of cytoskeletal mechanics and signalling may be gleaned from the sarcomere as a specialised actomyosin system. Recent work has led to insight into the interactions, structure, and mechanical stability of sarcomeric protein complexes that fulfil both structural and signalling roles.
Collapse
Affiliation(s)
- Mathias Gautel
- King's College London BHF Centre of Research Excellence, Cardiovascular Division and Randall Division for Cell and Molecular Biophysics, London SE1 1UL, United Kingdom.
| |
Collapse
|
13
|
Vincent B, Windelinckx A, Nielens H, Ramaekers M, Van Leemputte M, Hespel P, Thomis MA. Protective role of alpha-actinin-3 in the response to an acute eccentric exercise bout. J Appl Physiol (1985) 2010; 109:564-73. [PMID: 20507967 DOI: 10.1152/japplphysiol.01007.2009] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ACTN3 gene encodes for the alpha-actinin-3 protein, which has an important structural function in the Z line of the sarcomere in fast muscle fibers. A premature stop codon (R577X) polymorphism in the ACTN3 gene causes a complete loss of the protein in XX homozygotes. This study investigates a possible role for the alpha-actinin-3 protein in protecting the fast fiber from eccentric damage and studies repair mechanisms after a single eccentric exercise bout. Nineteen healthy young men (10 XX, 9 RR) performed 4 series of 20 maximal eccentric knee extensions with both legs. Blood (creatine kinase; CK) and muscle biopsy samples were taken to study differential expression of several anabolic (MyoD1, myogenin, MRF4, Myf5, IGF-1), catabolic (myostatin, MAFbx, and MURF-1), and contraction-induced muscle damage marker genes [cysteine- and glycine-rich protein 3 (CSRP3), CARP, HSP70, and IL-6] as well as a calcineurin signaling pathway marker (RCAN1). Baseline mRNA content of CSRP3 and MyoD1 was 49 + or - 12 and 67 + or - 25% higher in the XX compared with the RR group (P = 0.01-0.045). However, satellite cell number was not different between XX and RR individuals. After eccentric exercise, XX individuals tended to have higher serum CK activity (P = 0.10) and had higher pain scores than RR individuals. However, CSRP3 (P = 0.058) and MyoD1 (P = 0.08) mRNA expression tended to be higher after training in RR individuals compared with XX alpha-actinin-3-deficient subjects. This study suggests a protective role of alpha-actinin-3 protein in muscle damage after eccentric training and an improved stress-sensor signaling, although effects are small.
Collapse
Affiliation(s)
- Barbara Vincent
- Research Center for Exercise and Health, Department of Biomedical Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven
| | | | | | | | | | | | | |
Collapse
|
14
|
Gunkel S, Linke WA, Heineke J, Hilfiker-Kleiner D, Knöll R. Response to Gehmlich et al. Letter to the Editor of the Journal of Molecular and Cellular Cardiology Regarding “MLP: A Stress Sensor Goes Nuclear”. J Mol Cell Cardiol 2010. [DOI: 10.1016/j.yjmcc.2009.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Gehmlich K, Ehler E, Perrot A, Fürst DO, Geier C. “MLP: A Stress Sensor Goes Nuclear” By Sylvia Gunkel, Jörg Heineke, Denise Hilfiker-Kleiner, Ralph Knöll, J Mol Cell Cardiol. 2009;47(4):423–5. J Mol Cell Cardiol 2010; 48:424-5; author reply 426-7. [DOI: 10.1016/j.yjmcc.2009.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
|