1
|
Biancalana E, Rossi C, Raggi F, Distaso M, Tricò D, Baldi S, Ferrannini E, Solini A. Empagliflozin and Renal Sodium-Hydrogen Exchange in Healthy Subjects. J Clin Endocrinol Metab 2023; 108:e567-e573. [PMID: 36794422 PMCID: PMC10348461 DOI: 10.1210/clinem/dgad088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/16/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
CONTEXT Sodium glucose co-transporter-2 inhibitors exert clinically relevant cardiorenal protection. Among several mechanisms, inhibition of sodium-hydrogen exchanger-3 (NHE3) in proximal renal tubules has been proposed in rodents. Demonstration of this mechanism with the associated electrolyte and metabolic changes in humans is lacking. OBJECTIVE The present proof-of-concept study was designed to explore the involvement of NHE3 in modulating the response to sodium glucose co-transporter-2 inhibitors in humans. METHODS Twenty healthy male volunteers received 2 tablets of empagliflozin 25 mg during a standardized hydration scheme; freshly voided urines and blood samples were collected at timed intervals for 8 hours. Protein expression of relevant transporters was examined in exfoliated tubular cells. RESULTS Urine pH levels increased after empagliflozin (from 5.81 ± 0.5 to 6.16 ± 0.6 at 6 hours, P = .008) as did urinary output (from median, 1.7; interquartile range [IQR, 0.6; 2.5] to 2.5 [IQR, 1.7; 3.5] mL/min-1, P = .008) and glucose (from median, 0.03 [IQR, 0.02; 0.04] to 34.8 [IQR, 31.6; 40.2] %, P < .0001), and sodium fractional excretion rates (from median, 0.48 [IQR, 0.34; 0.65] to 0.71 [IQR, 0.55; 0.85] %, P = .0001), whereas plasma glucose and insulin concentrations decreased and plasma and urinary ketones increased. Nonsignificant changes in NHE3, phosphorylated NHE3, and membrane-associated protein 17 protein expression were detected in urinary exfoliated tubular cells. In a time-control study in 6 participants, neither urine pH nor plasma and urinary parameters changed. CONCLUSIONS In healthy young volunteers, empagliflozin acutely increases urinary pH while inducing a substrate shift toward lipid utilization and ketogenesis, without significant changes in renal NHE3 protein expression.
Collapse
Affiliation(s)
- Edoardo Biancalana
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa I-56126, Italy
| | - Chiara Rossi
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa I-56126, Italy
| | - Francesco Raggi
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa I-56126, Italy
| | - Mariarosaria Distaso
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa I-56126, Italy
| | - Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa I-56126, Italy
| | - Simona Baldi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa I-56126, Italy
| | - Ele Ferrannini
- Consiglio Nazionale delle Ricerche (CNR) Institute of Clinical Physiology, Pisa I-56126, Italy
| | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa I-56126, Italy
| |
Collapse
|
2
|
Zhang N, Liu Y, Shi X, Zhang Y, Li W, Yang Y, Chen L, Yin Y, Tong L, Yang J, Luo J. Microscale thermophoresis and fluorescence polarization assays of calcineurin-peptide interactions. Anal Biochem 2022; 646:114626. [PMID: 35218735 DOI: 10.1016/j.ab.2022.114626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/13/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
Abstract
Calcineurin is a Ca2+/calmodulin-dependent phosphatase. It is very important to study the affinity between calcineurin and its substrate or other interacting proteins. Two conserved motifs have been reported on the interactive proteins of calcineurin, namely, the PxIxIT motif and the LxVP motif. Here, we used 5(6)-carboxyfluorescein to fluorescently label the N-terminus of the short peptides derived from the two motifs and then determined the affinity between the protein and polypeptides. Microscale thermophoresis (MST) is very suitable for determining calcineurin with peptides containing the LxVP motif. The Kd values of the binding of calcineurin with NFATc1-YLAVP, NHE1-YLTVP, and A238L-FLCVK peptides were 6.72 ± 0.19 μM, 17.14 ± 0.35 μM, and 15.57 ± 0.10 μM, respectively. The GST pull-down results further confirmed the binding trend of the three peptides to calcineurin. However, fluorescently labeled PxIxIT polypeptides are not suitable for MST due to their own aggregation. We determined the binding affinity of the RCAN1-PSVVVH polypeptide to calcineurin by the fluorescence polarization (FP) method. MST and FP assays are fast and accurate in determining the affinity between protein-peptide interactions. Our research laid the foundation for screening the molecules that affect the binding between calcineurin and its substrates in the future.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 111016, China
| | - Xiaoyu Shi
- College of Life Sciences, Langfang Normal University, Hebei, 065000, China
| | - Yuchen Zhang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Wenying Li
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yumeng Yang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Limin Chen
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yanxia Yin
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Li Tong
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 111016, China.
| | - Jing Luo
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
3
|
Cappetta D, De Angelis A, Bellocchio G, Telesca M, Cianflone E, Torella D, Rossi F, Urbanek K, Berrino L. Sodium-Glucose Cotransporter 2 Inhibitors and Heart Failure: A Bedside-to-Bench Journey. Front Cardiovasc Med 2022; 8:810791. [PMID: 35004918 PMCID: PMC8733295 DOI: 10.3389/fcvm.2021.810791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and heart failure (HF) are multifactorial diseases sharing common risk factors, such as obesity, hyperinsulinemia, and inflammation, with underlying mechanisms including endothelial dysfunction, inflammation, oxidative stress, and metabolic alterations. Cardiovascular benefits of sodium-glucose cotransporter 2 (SGLT2) inhibitors observed in diabetic and non-diabetic patients are also related to their cardiac-specific, SGLT-independent mechanisms, in addition to the metabolic and hemodynamic effects. In search of the possible underlying mechanisms, a research campaign has been launched proposing varied mechanisms of action that include intracellular ion homeostasis, autophagy, cell death, and inflammatory processes. Moreover, the research focus was widened toward cellular targets other than cardiomyocytes. At the moment, intracellular sodium level reduction is the most explored mechanism of direct cardiac effects of SGLT2 inhibitors that mediate the benefits in heart failure in addition to glucose excretion and diuresis. The restoration of cardiac Na+ levels with consequent positive effects on Ca2+ handling can directly translate into improved contractility and relaxation of cardiomyocytes and have antiarrhythmic effects. In this review, we summarize clinical trials, studies on human cells, and animal models, that provide a vast array of data in support of repurposing this class of antidiabetic drugs.
Collapse
Affiliation(s)
- Donato Cappetta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gabriella Bellocchio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marialucia Telesca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Konrad Urbanek
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
4
|
Takatani-Nakase T, Matsui C, Hosotani M, Omura M, Takahashi K, Nakase I. Hypoxia enhances motility and EMT through the Na +/H + exchanger NHE-1 in MDA-MB-231 breast cancer cells. Exp Cell Res 2022; 412:113006. [PMID: 34979106 DOI: 10.1016/j.yexcr.2021.113006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/11/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022]
Abstract
Breast cancer metastasis is the leading cause of cancer-related deaths. Hypoxia in the tumor mass is believed to trigger cell migration, which is involved in a crucial process of breast cancer metastasis. However, the molecular mechanisms underlying aggressive behavior under hypoxic conditions have not been fully elucidated. Here, we demonstrate the significant motility of MDA-MB-231 cells cultured under hypoxic conditions compared to that of cells cultured under normoxic conditions. MDA-MB-231 cells under hypoxic conditions showed a significant increase in Na+/H+ exchanger isoform 1 (NHE1) expression level, which was observed to co-locate in lamellipodia formation. Inhibition of NHE1 significantly suppressed the intracellular pH and the expression of mesenchymal markers, thereby blocking the high migration activity in hypoxia. Moreover, treatment with ciglitazone, a potent and selective peroxisome proliferator-activated receptor γ (PPARγ) agonist, modulated hypoxia-enhanced motion in cells via the repression of NHE1. These findings highlight that NHE1 is required for migratory activity through the enhancement of epithelial-mesenchymal transition (EMT) in MDA-MB-231 cells under hypoxic conditions, and we propose new drug repurposing strategies targeting hypoxia based on NHE1 suppression by effective usage of PPARγ agonists.
Collapse
Affiliation(s)
- Tomoka Takatani-Nakase
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan; Institute for Bioscience, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan.
| | - Chihiro Matsui
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan
| | - Maiko Hosotani
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan
| | - Mika Omura
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Koichi Takahashi
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan
| | - Ikuhiko Nakase
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan; NanoSquare Research Institute, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan.
| |
Collapse
|
5
|
Biegus J, Niewinski P, Josiak K, Kulej K, Ponikowska B, Nowak K, Zymlinski R, Ponikowski P. Pathophysiology of Advanced Heart Failure: What Knowledge Is Needed for Clinical Management? Heart Fail Clin 2021; 17:519-531. [PMID: 34511202 DOI: 10.1016/j.hfc.2021.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Abstract
Understanding of heart failure (HF) has evolved from a simple hemodynamic problem through a neurohormonally and proinflammatory-driven syndrome to a complex multiorgan dysfunction accompanied by inadequate energy handling. This article discusses the most important clinical aspects of advanced HF pathophysiology. It presents the concept of neurohormonal activation and its deleterious effect on cardiovascular system and reflex control. The current theories regarding the role of inflammation, cytokine activation, and myocardial remodeling in HF progression are presented. Advanced HF is a multiorgan syndrome with interplay between cardiovascular system and other organs. The role of iron deficiency is also discussed.
Collapse
Affiliation(s)
- Jan Biegus
- Department of Heart Diseases, Wrocław Medical University, ul. Borowska 213, 50-556 Wrocław, Poland; Centre for Heart Diseases, Wrocław University Hospital, ul. Borowska 213, 50-556 Wrocław, Poland
| | - Piotr Niewinski
- Department of Heart Diseases, Wrocław Medical University, ul. Borowska 213, 50-556 Wrocław, Poland; Centre for Heart Diseases, Wrocław University Hospital, ul. Borowska 213, 50-556 Wrocław, Poland
| | - Krystian Josiak
- Department of Heart Diseases, Wrocław Medical University, ul. Borowska 213, 50-556 Wrocław, Poland; Centre for Heart Diseases, Wrocław University Hospital, ul. Borowska 213, 50-556 Wrocław, Poland
| | - Katarzyna Kulej
- Department of Heart Diseases, Wrocław Medical University, ul. Borowska 213, 50-556 Wrocław, Poland; Centre for Heart Diseases, Wrocław University Hospital, ul. Borowska 213, 50-556 Wrocław, Poland
| | - Barbara Ponikowska
- Student Scientific Organization, Department of Heart Diseases, Wroclaw Medical University, ul. Borowska 213, 50-556 Wrocław, Poland
| | - Krzysztof Nowak
- Department of Heart Diseases, Wrocław Medical University, ul. Borowska 213, 50-556 Wrocław, Poland; Centre for Heart Diseases, Wrocław University Hospital, ul. Borowska 213, 50-556 Wrocław, Poland
| | - Robert Zymlinski
- Department of Heart Diseases, Wrocław Medical University, ul. Borowska 213, 50-556 Wrocław, Poland; Centre for Heart Diseases, Wrocław University Hospital, ul. Borowska 213, 50-556 Wrocław, Poland
| | - Piotr Ponikowski
- Department of Heart Diseases, Wrocław Medical University, ul. Borowska 213, 50-556 Wrocław, Poland; Centre for Heart Diseases, Wrocław University Hospital, ul. Borowska 213, 50-556 Wrocław, Poland.
| |
Collapse
|
6
|
Dong Y, Gao Y, Ilie A, Kim D, Boucher A, Li B, Zhang XC, Orlowski J, Zhao Y. Structure and mechanism of the human NHE1-CHP1 complex. Nat Commun 2021; 12:3474. [PMID: 34108458 PMCID: PMC8190280 DOI: 10.1038/s41467-021-23496-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2020] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
Sodium/proton exchanger 1 (NHE1) is an electroneutral secondary active transporter present on the plasma membrane of most mammalian cells and plays critical roles in regulating intracellular pH and volume homeostasis. Calcineurin B-homologous protein 1 (CHP1) is an obligate binding partner that promotes NHE1 biosynthetic maturation, cell surface expression and pH-sensitivity. Dysfunctions of either protein are associated with neurological disorders. Here, we elucidate structures of the human NHE1-CHP1 complex in both inward- and inhibitor (cariporide)-bound outward-facing conformations. We find that NHE1 assembles as a symmetrical homodimer, with each subunit undergoing an elevator-like conformational change during cation exchange. The cryo-EM map reveals the binding site for the NHE1 inhibitor cariporide, illustrating how inhibitors block transport activity. The CHP1 molecule differentially associates with these two conformational states of each NHE1 monomer, and this association difference probably underlies the regulation of NHE1 pH-sensitivity by CHP1.
Collapse
Affiliation(s)
- Yanli Dong
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiwei Gao
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Alina Ilie
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, Montreal, QC Canada
| | - DuSik Kim
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, Montreal, QC Canada
| | - Annie Boucher
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, Montreal, QC Canada
| | - Bin Li
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejun C. Zhang
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - John Orlowski
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, Montreal, QC Canada
| | - Yan Zhao
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Abstract
All cells must control the activities of their ion channels and transporters to maintain physiologically appropriate gradients of solutes and ions. The complexity of underlying regulatory mechanisms is staggering, as exemplified by insulin regulation of transporter trafficking. Simpler strategies occur in single-cell organisms, where subsets of transporters act as solute sensors to regulate expression of their active homologues. This Viewpoint highlights still simpler mechanisms by which Na transporters use their own transport sites as sensors for regulation. The underlying principle is inherent to Na/K pumps in which aspartate phosphorylation and dephosphorylation are controlled by occupation of transport sites for Na and K, respectively. By this same principle, Na binding to transport sites can control intrinsic inactivation reactions that are in turn modified by extrinsic signaling factors. Cardiac Na/Ca exchangers (NCX1s) and Na/K pumps are the best examples. Inactivation of NCX1 occurs when cytoplasmic Na sites are fully occupied and is regulated by lipid signaling. Inactivation of cardiac Na/K pumps occurs when cytoplasmic Na-binding sites are not fully occupied, and inactivation is in turn regulated by Ca signaling. Potentially, Na/H exchangers (NHEs) and epithelial Na channels (ENaCs) are regulated similarly. Extracellular protons and cytoplasmic Na ions oppose secondary activation of NHEs by cytoplasmic protons. ENaCs undergo inactivation as cytoplasmic Na rises, and small diffusible molecules of an unidentified nature are likely involved. Multiple other ion channels have recently been shown to be regulated by transiting ions, thereby underscoring that ion permeation and channel gating need not be independent processes.
Collapse
|
8
|
Role of Genetic Mutations of the Na +/H + Exchanger Isoform 1, in Human Disease and Protein Targeting and Activity. Mol Cell Biochem 2020; 476:1221-1232. [PMID: 33201382 DOI: 10.1007/s11010-020-03984-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2020] [Accepted: 11/06/2020] [Indexed: 01/22/2023]
Abstract
The mammalian Na+/H+ exchanger isoform one (NHE1) is a plasma membrane protein that is ubiquitously present in human cells. It functions to regulate intracellular pH removing an intracellular proton in exchange for one extracellular sodium and is involved in heart disease and in promoting metastasis in cancer. It is made of a 500 amino acid membrane domain plus a 315 amino acid, regulatory cytosolic tail. The membrane domain is thought to have 12 transmembrane segments and a large membrane-associated extracellular loop. Early studies demonstrated that in mice, disruption of the NHE1 gene results in locomotor ataxia and a phenotype of slow-wave epilepsy. Defects included a progressive neuronal degeneration. Growth and reproductive ability were also reduced. Recent studies have identified human autosomal homozygous recessive mutations in the NHE1 gene (SLC9A1) that result in impaired development, ataxia and other severe defects, and explain the cause of the human disease Lichtenstein-Knorr syndrome. Other human mutations have been identified that are stop codon polymorphisms. These cause short non-functional NHE1 proteins, while other genetic polymorphisms in the NHE1 gene cause impaired expression of the NHE1 protein, reduced activity, enhanced protein degradation or altered kinetic activation of the protein. Since NHE1 plays a key role in many human physiological functions and in human disease, genetic polymorphisms of the protein that significantly alter its function and are likely play significant roles in varying human phenotypes and be involved in disease.
Collapse
|
9
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
10
|
Acidic residues of extracellular loop 3 of the Na +/H + exchanger type 1 are important in cation transport. Mol Cell Biochem 2020; 468:13-20. [PMID: 32130622 DOI: 10.1007/s11010-020-03707-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/23/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
Mammalian Na+/H+ exchanger type I isoform (NHE1) is a ubiquitously expressed membrane protein that regulates intracellular pH (pHi) by removing one intracellular proton in exchange for one extracellular sodium ion. Abnormal activity of the protein occurs in cardiovascular disease and breast cancer. The purpose of this study is to examine the role of negatively charged amino acids of extracellular loop 3 (EL3) in the activity of the NHE protein. We mutated glutamic acid 217 and aspartic acid 226 to alanine, and to glutamine and asparagine, respectively. We examined effects on expression levels, cell surface targeting and activity of NHE1, and also characterized affinity for extracellular sodium and lithium ions. Individual mutation of these amino acids had little effect on protein function. However, mutation of both these amino acids together impaired transport, decreasing the Vmax for both Na+ and Li+ ions. We suggested that amino acids E217 and D226 form part of a negatively charged coordination sphere, which facilitates cation transport in the NHE1 protein.
Collapse
|
11
|
Chen Q, Liu Y, Zhu XL, Feng F, Yang H, Xu W. Increased NHE1 expression is targeted by specific inhibitor cariporide to sensitize resistant breast cancer cells to doxorubicin in vitro and in vivo. BMC Cancer 2019; 19:211. [PMID: 30849956 PMCID: PMC6408845 DOI: 10.1186/s12885-019-5397-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2018] [Accepted: 02/20/2019] [Indexed: 12/22/2022] Open
Abstract
Background The Na+/H+ exchanger (NHE1) plays a crucial role in cancer cell proliferation and metastasis. However, the mechanism underlying chemotherapeutic resistance in cancer cells has not been completely elucidated. The NHE1 inhibitor cariporide has been demonstrated to inhibit human cancer cell lines. The goal of this study was to provide new sights into improved cancer cell chemosensitivity mediated by cariporide with activation of the apoptosis pathway. Methods The NHE1 expression levels were first evaluated using the online database Oncomine and were determined by RT-PCR and western blot in vitro and in vivo. Cell proliferation was assessed In vitro through a CCK-8 assay, and apoptosis was analyzed by flow cytometry. An in vivo analysis was performed in BALB/c nude mice, which were intraperitoneally injected with MCF-7/ADR cells. Results NHE1 levels were significantly higher in breast cancer tissue than adjacent tissue, as well as in resistant cancer cells compared to sensitive cells. Cariporide induced the apoptosis of MCF-7/ADR cells and was associated with the intracellular accumulation of doxorubicin and G0/G1 cell cycle arrest. Moreover, cariporide decreased MDR1 expression and activated cleaved caspase-3 and caspase-9, promoting caspase-independent apoptosis in vitro. In vivo, cariporide significantly improved doxorubicin sensitivity in a xenograft model, enhancing tumor growth attenuation and diminishing tumor volume. Conclusions Our results demonstrate that cariporide significantly facilitates the sensitivity of breast cancer to doxorubicin both in vitro and in vivo. This finding suggests that NHE1 may be a novel adjuvant therapeutic candidate for the treatment of resistant breast cancer. Electronic supplementary material The online version of this article (10.1186/s12885-019-5397-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qi Chen
- Breast Surgery, the Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, 212001, Jiangsu, China.,School of Medicine, Jiangsu University, 301 Xuefu Road, Jiangsu, 212013, China
| | - Yueqin Liu
- Central Laboratory, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Xiao-Lan Zhu
- Central Laboratory, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Fan Feng
- Central Laboratory, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Hui Yang
- Breast Surgery, the Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, 212001, Jiangsu, China
| | - Wenlin Xu
- Breast Surgery, the Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, 212001, Jiangsu, China. .,School of Medicine, Jiangsu University, 301 Xuefu Road, Jiangsu, 212013, China.
| |
Collapse
|
12
|
Dutta D, Fliegel L. Molecular modeling and inhibitor docking analysis of the Na +/H + exchanger isoform one 1. Biochem Cell Biol 2018; 97:333-343. [PMID: 30058365 DOI: 10.1139/bcb-2018-0158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022] Open
Abstract
Na+/H+ exchanger isoform one (NHE1) is a mammalian plasma membrane protein that removes intracellular protons, thereby elevating intracellular pH (pHi). NHE1 uses the energy of allowing an extracellular sodium down its gradient into cells to remove one intracellular proton. The ubiquitous protein has several important physiological and pathological influences on mammalian cells as a result of its activity. The three-dimensional structure of human NHE1 (hNHE1) is not known. Here, we modeled NHE1 based on the structure of MjNhaP1 of Methanocaldoccocus jannaschii in combination with biochemical surface accessibility data. hNHE1 contained 12 transmembrane segments including a characteristic Na+/H+ antiporter fold of two transmembrane segments with a helix - extended region - helix conformation crossing each other within the membrane. Amino acids 363-410 mapped principally to the extracellular surface as an extracellular loop (EL5). A large preponderance of amino acids shown to be surface accessible by biochemical experiments mapped near to, or on, the extracellular surface. Docking of Na+/H+ exchanger inhibitors to the extracellular surface suggested that inhibitor binding on an extracellular site is made up from several amino acids of different regions of the protein. The results present a novel testable, three-dimensional model illustrating NHE1 structure and accounting for experimental biochemical data.
Collapse
Affiliation(s)
- Debajyoti Dutta
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
13
|
A novel SLC9A1 mutation causes cerebellar ataxia. J Hum Genet 2018; 63:1049-1054. [DOI: 10.1038/s10038-018-0488-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2018] [Revised: 06/08/2018] [Accepted: 07/01/2018] [Indexed: 11/08/2022]
|
14
|
Mourin M, Wai A, O'Neil J, Schubiger CB, Häse CC, Hausner G, Dibrov P. A pathway leading to a cation-binding pocket determines the selectivity of the NhaP2 antiporter in Vibrio cholerae 1. Biochem Cell Biol 2018; 97:307-314. [PMID: 30011386 DOI: 10.1139/bcb-2018-0146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022] Open
Abstract
The Vc-NhaP2 antiporter from Vibrio cholerae exchanges H+ for K+ or Na+ but not for the smaller Li+. The molecular basis of this unusual selectivity remains unknown. Phyre2 and Rosetta software were used to generate a structural model of the Vc-NhaP2. The obtained model suggested that a cluster of residues from different transmembrane segments (TMSs) forms a putative cation-binding pocket in the middle of the membrane: D133 and T132 from TMS V together with D162 and E157 of TMS VI. The model also suggested that L257, G258, and N259 from TMS IX together with T276, D273, Q280, and Y251 from TMS X as well as L289 and L342 from TMS XII form a transmembrane pathway for translocated ions with a built-in filter determining cation selectivity. Alanine-scanning mutagenesis of the identified residues verified the model by showing that structural modifications of the pathway resulted in altered cation selectivity and transport activity. In particular, L257A, G258A, Q280A, and Y251A variants gained Li+/H+ antiport capacity that was absent in the nonmutated antiporter. T276A, D273A, and L289A variants exclusively exchanged K+ for H+, while a L342A variant mediated Na+/H+ exchange only, thus maintaining strict alkali cation selectivity.
Collapse
Affiliation(s)
- M Mourin
- a Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - A Wai
- a Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - J O'Neil
- b Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - C B Schubiger
- c Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - C C Häse
- c Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - G Hausner
- a Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - P Dibrov
- a Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
15
|
Dutta D, Fliegel L. Structure and function of yeast and fungal Na + /H + antiporters. IUBMB Life 2017; 70:23-31. [PMID: 29219228 DOI: 10.1002/iub.1701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022]
Abstract
Sodium proton antiporters (or sodium proton exchangers [NHEs]) are a critical family of membrane proteins that exchange sodium for protons across cell membranes. In yeast and plants, their primary function is to keep the sodium concentration low inside the cytoplasm. One class of NHE constitutively expressed in yeast is the plasma membrane Na+ /H+ antiporter, and another class is expressed on the endosomal/vacuolar membrane. At present, four bacterial plasma membrane antiporter structures are known and nuclear magnetic resonance structures are available for the membrane spanning transmembrane helices of mammalian and yeast NHEs. Additionally, a vast amount of mutational data are available on the role of individual amino acids and critical motifs involved in transport. We combine this information to obtain a more detailed picture of the yeast NHE plasma membrane protein and review mechanisms of transport, conserved motifs, unique residues important in function, and regulation of these proteins. The Na+ /H+ antiporter of Schizosaccharomyces pombe, SpNHE1, is an interesting model protein in an easy to study system and is representative of fungal Na+ /H+ antiporters. © IUBMB Life, 70(1):23-31, 2018.
Collapse
Affiliation(s)
- Debajyoti Dutta
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Packer M. Activation and Inhibition of Sodium-Hydrogen Exchanger Is a Mechanism That Links the Pathophysiology and Treatment of Diabetes Mellitus With That of Heart Failure. Circulation 2017; 136:1548-1559. [PMID: 29038209 DOI: 10.1161/circulationaha.117.030418] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
The mechanisms underlying the progression of diabetes mellitus and heart failure are closely intertwined, such that worsening of one condition is frequently accompanied by worsening of the other; the degree of clinical acceleration is marked when the 2 coexist. Activation of the sodium-hydrogen exchanger in the heart and vasculature (NHE1 isoform) and the kidneys (NHE3 isoform) may serve as a common mechanism that links both disorders and may underlie their interplay. Insulin insensitivity and adipokine abnormalities (the hallmarks of type 2 diabetes mellitus) are characteristic features of heart failure; conversely, neurohormonal systems activated in heart failure (norepinephrine, angiotensin II, aldosterone, and neprilysin) impair insulin sensitivity and contribute to microvascular disease in diabetes mellitus. Each of these neurohormonal derangements may act through increased activity of both NHE1 and NHE3. Drugs used to treat diabetes mellitus may favorably affect the pathophysiological mechanisms of heart failure by inhibiting either or both NHE isoforms, and drugs used to treat heart failure may have beneficial effects on glucose tolerance and the complications of diabetes mellitus by interfering with the actions of NHE1 and NHE3. The efficacy of NHE inhibitors on the risk of cardiovascular events may be enhanced when heart failure and glucose intolerance coexist and may be attenuated when drugs with NHE inhibitory actions are given concomitantly. Therefore, the sodium-hydrogen exchanger may play a central role in the interplay of diabetes mellitus and heart failure, contribute to the physiological and clinical progression of both diseases, and explain certain drug-drug and drug-disease interactions that have been reported in large-scale randomized clinical trials.
Collapse
Affiliation(s)
- Milton Packer
- From Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX.
| |
Collapse
|
17
|
Castelo-Branco RC, Leite-Dellova DCA, Fernandes FB, Malnic G, de Mello-Aires M. The effects of angiotensin-(1-7) on the exchanger NHE3 and on [Ca 2+] i in the proximal tubules of spontaneously hypertensive rats. Am J Physiol Renal Physiol 2017; 313:F450-F460. [PMID: 28490531 DOI: 10.1152/ajprenal.00557.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/14/2016] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 11/22/2022] Open
Abstract
The acute effects of angiotensin-1-7 [ANG-(1-7)] on the reabsorptive bicarbonate flow (J[Formula: see text]) were evaluated using stationary microperfusion in vivo in the proximal tubules of spontaneously hypertensive rats (SHR) and their normotensive controls, Wistar-Kyoto (WKY) rats, using a microelectrode sensitive to H+ In WKY rats, the control J[Formula: see text] was 2.40 ± 0.10 nmol·cm-2·s-1 (n = 120); losartan (10-7 M) or A779 (10-6 M, a specific Mas antagonist), alone or in combination with losartan, decreased the J[Formula: see text] ANG-(1-7) had biphasic effects on J[Formula: see text]: at 10-9 M, it inhibited, and at 10-6, it stimulated the flow. S3226 [10-6 M, a specific Na+-H+ exchanger 3 (NHE3) antagonist] decreased J[Formula: see text] and changed the stimulatory effect of ANG-(1-7) to an inhibitory one but did not alter the inhibitory action of ANG-(1-7). In SHR, the control J[Formula: see text] was 2.04 ± 0.13 nmol·cm-2·s-1 (n = 56), and A779 and/or losartan reduced the flow. ANG-(1-7) at 10-9 M increased J[Formula: see text], and ANG-(1-7) at 10-6 M reduced it. The effects of A779, losartan, and S3226 on the J[Formula: see text] were similar to those found in WKY rats, which indicated that in SHR, the ANG-(1-7) action on the NHE3 was via Mas and ANG II type 1. The cytosolic calcium in the WKY or SHR rats was ~100 nM and was increased by ANG-(1-7) at 10-9 or 10-6 M. In hypertensive animals, a high plasma level of ANG-(1-7) inhibited NHE3 in the proximal tubule, which mitigated the hypertension caused by the high plasma level of ANG II.
Collapse
Affiliation(s)
| | - Deise C A Leite-Dellova
- Department of Basic Sciences, Faculdade de Zootecnia e Engenharia de Alimentos, University of São Paulo, Pirassununga, Brazil; and
| | - Fernanda Barrinha Fernandes
- Presbiteriana Mackenzie University of São Paulo and Department of Nephrology, Federal University of São Paulo-Universidade Estadual Paulista, São Paulo, Brazil
| | - Gerhard Malnic
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Margarida de Mello-Aires
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Amith SR, Fliegel L. Na +/H + exchanger-mediated hydrogen ion extrusion as a carcinogenic signal in triple-negative breast cancer etiopathogenesis and prospects for its inhibition in therapeutics. Semin Cancer Biol 2017; 43:35-41. [PMID: 28104391 DOI: 10.1016/j.semcancer.2017.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/26/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/17/2022]
Abstract
Breast cancer is the leading cause of cancer-related death in women in Europe and North America, and metastasis is the primary cause of fatality in patients with breast cancer. While some breast cancers are quite treatable, the triple-negative breast cancers are more metastatic and resistant to chemotherapy. There is clearly an urgent need for better treatments for this form of the disease. Breast cancer is characterized by genetically complex intra-tumour heterogeneity, particularly within the triple-negative clinical subtype. This complicates treatment options, so the development of specifically targeted chemotherapy for less treatable forms is critical. Dysregulation of pH homeostasis is a common factor in breast tumour cells. This occurs in concert with a metabolic switch to aerobic glycolysis that occurs at the onset of oncogenic transformation. The Na+/H+ exchanger isoform 1 (NHE1) is the major pH regulatory protein involved in the increased proton extrusion of breast cancer cells. Its increased activity results in intracellular alkalinisation and extracellular acidification that drives cancer progression. The acidification of the extracellular tumour microenvironment also contributes to the development of chemotherapy resistance. In this review, we outline the role of H+ as a carcinogenic signal and the role and regulation of NHE1 as a trigger for metastasis. We review recent evidence supporting the use of pharmacological inhibitors of NHE1 as a viable treatment option for triple-negative breast cancer.
Collapse
Affiliation(s)
- Schammim Ray Amith
- Biomedical Science, School of Life Sciences, Keele University, 103B Huxley Building, Keele, Staffordshire, ST5 5BG, United Kingdom.
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, 347 Medical Sciences Building, Edmonton, Alberta, T6G 2H7, Canada.
| |
Collapse
|
19
|
Amith SR, Vincent KM, Wilkinson JM, Postovit LM, Fliegel L. Defining the Na +/H + exchanger NHE1 interactome in triple-negative breast cancer cells. Cell Signal 2016; 29:69-77. [PMID: 27751915 DOI: 10.1016/j.cellsig.2016.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2016] [Revised: 10/04/2016] [Accepted: 10/13/2016] [Indexed: 12/30/2022]
Abstract
Mounting evidence supports a major role for the Na+/H+ exchanger NHE1 in cancer progression and metastasis. NHE1 is hyperactive at the onset of oncogenic transformation, resulting in intracellular alkalinization and extracellular microenvironmental acidification. These conditions promote invasion and facilitate metastasis. However, the signal pathways governing the regulation of exchanger activity are still unclear. This is especially important in the aggressively metastatic, triple-negative basal breast cancer subtype. We used affinity chromatography followed by mass spectrometry to identify novel and putative interaction partners of NHE1 in MDA-MB-231 triple-negative breast cancer cells. NHE1 associated with several types of proteins including cytoskeletal proteins and chaperones. We validated protein interactions by co-immunoprecipitation for: 14-3-3, AKT, α-enolase, CHP1, HSP70 and HSP90. Additionally, we used The Cancer Genome Atlas (TCGA) to study NHE1 gene expression in primary patient breast tumours versus adjacent normal tissue. NHE1 expression was elevated in breast tumour samples and, when broken down by breast cancer subtype, NHE1 gene expression was significantly lower in tumours of the basal subtype compared to luminal and HER2+ subtypes. Reverse phase protein array (RPPA) analysis showed that NHE1 expression positively correlated with p90RSK expression in basal, but not luminal, primary tumours. Other proteins were negatively correlated with NHE1 expression in basal breast cancer tumours. Taken together, our data provides the first insight into the signalling molecules that form the NHE1 interactome in triple-negative breast cancer cells. These results will focus our search for novel targeted therapies.
Collapse
Affiliation(s)
- Schammim Ray Amith
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | - Krista Marie Vincent
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 3K7, Canada.
| | - Jodi Marie Wilkinson
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | - Lynne Marie Postovit
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
20
|
Morino M, Ogoda S, Krulwich TA, Ito M. Differences in the phenotypic effects of mutations in homologous MrpA and MrpD subunits of the multi-subunit Mrp-type Na +/H + antiporter. Extremophiles 2016; 21:51-64. [PMID: 27709304 DOI: 10.1007/s00792-016-0877-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2016] [Accepted: 09/24/2016] [Indexed: 10/20/2022]
Abstract
Mrp antiporters are the sole antiporters in the Cation/Proton Antiporter 3 family of transporter databases because of their unusual structural complexity, 6-7 hydrophobic proteins that function as a hetero-oligomeric complex. The two largest and homologous subunits, MrpA and MrpD, are essential for antiport activity and have direct roles in ion transport. They also show striking homology with proton-conducting, membrane-embedded Nuo subunits of respiratory chain complex I of bacteria, e.g., Escherichia coli. MrpA has the closest homology to the complex I NuoL subunit and MrpD has the closest homology to the complex I NuoM and N subunits. Here, introduction of mutations in MrpD, in residues that are also present in MrpA, led to defects in antiport function and/or complex formation. No significant phenotypes were detected in strains with mutations in corresponding residues of MrpA, but site-directed changes in the C-terminal region of MrpA had profound effects, showing that the MrpA C-terminal region has indispensable roles in antiport function. The results are consistent with a divergence in adaptations that support the roles of MrpA and MrpD in secondary antiport, as compared to later adaptations supporting homologs in primary proton pumping by the respiratory chain complex I.
Collapse
Affiliation(s)
- Masato Morino
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,, 573-13 Kamitanui, Tarnaki-cho, Watarai-gun, Mie, 519-0417, Japan
| | - Shinichiro Ogoda
- Faculty of Life Sciences, Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma, 374-0193, Japan
| | - Terry Ann Krulwich
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Masahiro Ito
- Faculty of Life Sciences, Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma, 374-0193, Japan. .,Bio-Nano Electronics Research Center, Toyo University, Kawagoe, Saitama, 350-0815, Japan.
| |
Collapse
|
21
|
Li X, Augustine A, Sun D, Li L, Fliegel L. Activation of the Na +/H + exchanger in isolated cardiomyocytes through β-Raf dependent pathways. Role of Thr 653 of the cytosolic tail. J Mol Cell Cardiol 2016; 99:65-75. [PMID: 27555478 DOI: 10.1016/j.yjmcc.2016.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/08/2016] [Revised: 08/04/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
Abstract
The mammalian Na+/H+ exchanger isoform 1 (NHE1) is a ubiquitous plasma membrane protein that is a key regulator of intracellular pH in isolated cardiomyocytes. A 500 amino acid membrane domain removes protons and is regulated by a 315 amino acid cytosolic domain. In the myocardium, aberrant regulation of NHE1 contributes to ischemia reperfusion damage and to heart hypertrophy. We examined mechanisms of regulation of NHE1 in the myocardium by endothelin and β-Raf. Endothelin stimulated NHE1 activity and activated Erk-dependent pathways. Inhibition of β-Raf reduced NHE1 activity and Erk-pathway activation. We demonstrated that myocardial β-Raf binds to the C-terminal 182 amino acids of the NHE1 protein and that β-Raf is associated with NHE1 in intact cardiomyocytes. NHE1 was phosphorylated in vivo and the protein kinase inhibitor sorafenib reduced NHE1 phosphorylation levels. Immunoprecipitates of β-Raf from cardiomyocytes phosphorylated the C-terminal 182 amino acids of NHE1 and mass spectrometry analysis showed that amino acid Thr653 was phosphorylated. Mutation of this amino acid to Ala resulted in defective activity while mutation to Asp restored the activity. The results demonstrate that Thr653 is an important regulatory amino acid of NHE1 that is activated through β-Raf dependent pathways by phosphorylation either directly or indirectly by β-Raf, and this affects NHE1 activity.
Collapse
Affiliation(s)
- Xiuju Li
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Aruna Augustine
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Difei Sun
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
22
|
|
23
|
Liu Y, Basu A, Li X, Fliegel L. Topological analysis of the Na+/H+ exchanger. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015. [DOI: 10.1016/j.bbamem.2015.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/23/2022]
|
24
|
Kinclova-Zimmermannova O, Falson P, Cmunt D, Sychrova H. A Hydrophobic Filter Confers the Cation Selectivity of Zygosaccharomyces rouxii Plasma-Membrane Na+/H+ Antiporter. J Mol Biol 2015; 427:1681-94. [DOI: 10.1016/j.jmb.2015.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 10/24/2022]
|
25
|
Li X, Fliegel L. A novel human mutation in the SLC9A1 gene results in abolition of Na+/H+ exchanger activity. PLoS One 2015; 10:e0119453. [PMID: 25760855 PMCID: PMC4356549 DOI: 10.1371/journal.pone.0119453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/02/2014] [Accepted: 01/06/2015] [Indexed: 11/19/2022] Open
Abstract
The SLC9A1 gene, the Na+/H+ exchanger isoform 1 is the principal plasma membrane Na+/H+ exchanger of mammalian cells and functions by exchanging one intracellular proton for one extracellular sodium. The human protein is 815 amino acids in length. Five hundred N-terminal amino acids make up the transport domain of the protein and are believed to form 12 transmembrane segments. Recently, a genetic mutation of the Na+/H+ exchanger isoform 1, N266H, was discovered in a human patient through exome sequencing. We examined the effect of this mutation on expression, targeting and activity of the Na+/H+ exchanger. Mutant N266H protein was expressed in AP-1 cells, which lack their endogenous Na+/H+ exchanger protein. Targeting of the mutant protein to the cell surface was normal and expression levels were only slightly reduced relative to the wild type protein. However, the N266H mutant protein had no detectable Na+/H+ exchanger activity. A histidine residue at this location may disrupt the cation binding site or the pore of the Na+/H+ exchanger protein.
Collapse
Affiliation(s)
- Xiuju Li
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
26
|
Wallert MA, Hammes D, Nguyen T, Kiefer L, Berthelsen N, Kern A, Anderson-Tiege K, Shabb JB, Muhonen WW, Grove BD, Provost JJ. RhoA Kinase (Rock) and p90 Ribosomal S6 Kinase (p90Rsk) phosphorylation of the sodium hydrogen exchanger (NHE1) is required for lysophosphatidic acid-induced transport, cytoskeletal organization and migration. Cell Signal 2015; 27:498-509. [PMID: 25578862 DOI: 10.1016/j.cellsig.2015.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2014] [Accepted: 01/03/2015] [Indexed: 12/28/2022]
Abstract
The sodium hydrogen exchanger isoform one (NHE1) plays a critical role coordinating asymmetric events at the leading edge of migrating cells and is regulated by a number of phosphorylation events influencing both the ion transport and cytoskeletal anchoring required for directed migration. Lysophosphatidic acid (LPA) activation of RhoA kinase (Rock) and the Ras-ERK growth factor pathway induces cytoskeletal reorganization, activates NHE1 and induces an increase in cell motility. We report that both Rock I and II stoichiometrically phosphorylate NHE1 at threonine 653 in vitro using mass spectrometry and reconstituted kinase assays. In fibroblasts expressing NHE1 alanine mutants for either Rock (T653A) or ribosomal S6 kinase (Rsk; S703A) we show that each site is partially responsible for the LPA-induced increase in transport activity while NHE1 phosphorylation by either Rock or Rsk at their respective site is sufficient for LPA stimulated stress fiber formation and migration. Furthermore, mutation of either T653 or S703 leads to a higher basal pH level and a significantly higher proliferation rate. Our results identify the direct phosphorylation of NHE1 by Rock and suggest that both RhoA and Ras pathways mediate NHE1-dependent ion transport and migration in fibroblasts.
Collapse
Affiliation(s)
- Mark A Wallert
- Minnesota State University Moorhead, Department of Biosciences, Moorhead, MN, USA
| | - Daniel Hammes
- Minnesota State University Moorhead, Department of Biosciences, Moorhead, MN, USA
| | - Tony Nguyen
- Minnesota State University Moorhead, Department of Biosciences, Moorhead, MN, USA
| | - Lea Kiefer
- University of San Diego, Department of Chemistry and Biochemistry, San Diego, CA, USA
| | - Nick Berthelsen
- Minnesota State University Moorhead, Department of Biosciences, Moorhead, MN, USA
| | - Andrew Kern
- Minnesota State University Moorhead, Department of Biosciences, Moorhead, MN, USA
| | | | - John B Shabb
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, USA
| | - Wallace W Muhonen
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, USA
| | - Bryon D Grove
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, USA
| | - Joseph J Provost
- University of San Diego, Department of Chemistry and Biochemistry, San Diego, CA, USA.
| |
Collapse
|
27
|
Li X, Ma Y, Fliegel L. Functional role of arginine 425 in the mammalian Na+/H+ exchanger. Biochem Cell Biol 2014; 92:541-6. [DOI: 10.1139/bcb-2014-0070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Na+/H+ exchanger isoform 1 (NHE1) is the principal plasma membrane Na+/H+ exchanger of mammalian cells and functions by exchanging one intracellular proton for one extracellular sodium ion. Critical transmembrane segments of Na+/H+ exchangers have discontinuous transmembrane helices, which result in a dipole within the membrane. Amino acid R425 has been suggested to play an important role in neutralizing one such helix dipole. To investigate this hypothesis, R425 was mutated to alanine, glutamine, histidine, or lysine and the mutant NHE1 proteins were expressed and characterized in NHE1-deficient cells. The R425A and R425E mutants exhibited complete loss of expression of mature, fully glycosylated NHE1, reduced expression overall, and greatly reduced cell surface targeting. The cell surface targeting, expression, and activity of the R425H and R425K mutant proteins were also impaired, though residual NHE1 activity remained. When reduced targeting and expression were accounted for, the R425H and R425K mutant proteins had activity similar to that of the wild-type protein. The results suggest that R425 is critical for NHE1 expression, targeting, and activity and that replacement with another basic residue can rescue activity. The findings are consistent with a role for R425 in both neutralizing a helix dipole and maintaining NHE1 structure and function.
Collapse
Affiliation(s)
- Xiuju Li
- Department of Biochemistry, University of Alberta, 347 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| | - Yike Ma
- Department of Biochemistry, University of Alberta, 347 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, 347 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
28
|
Paulino C, Wöhlert D, Kapotova E, Yildiz Ö, Kühlbrandt W. Structure and transport mechanism of the sodium/proton antiporter MjNhaP1. eLife 2014; 3:e03583. [PMID: 25426803 PMCID: PMC4381896 DOI: 10.7554/elife.03583] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/06/2014] [Accepted: 11/14/2014] [Indexed: 11/13/2022] Open
Abstract
Sodium/proton antiporters are essential for sodium and pH homeostasis and play a major role in human health and disease. We determined the structures of the archaeal sodium/proton antiporter MjNhaP1 in two complementary states. The inward-open state was obtained by x-ray crystallography in the presence of sodium at pH 8, where the transporter is highly active. The outward-open state was obtained by electron crystallography without sodium at pH 4, where MjNhaP1 is inactive. Comparison of both structures reveals a 7° tilt of the 6 helix bundle. (22)Na(+) uptake measurements indicate non-cooperative transport with an activity maximum at pH 7.5. We conclude that binding of a Na(+) ion from the outside induces helix movements that close the extracellular cavity, open the cytoplasmic funnel, and result in a ∼5 Å vertical relocation of the ion binding site to release the substrate ion into the cytoplasm.
Collapse
Affiliation(s)
- Cristina Paulino
- Department of Structural
Biology, Max Planck Institute of
Biophysics, Frankfurt
am Main, Germany
| | - David Wöhlert
- Department of Structural
Biology, Max Planck Institute of
Biophysics, Frankfurt
am Main, Germany
| | - Ekaterina Kapotova
- Department of Structural
Biology, Max Planck Institute of
Biophysics, Frankfurt
am Main, Germany
| | - Özkan Yildiz
- Department of Structural
Biology, Max Planck Institute of
Biophysics, Frankfurt
am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural
Biology, Max Planck Institute of
Biophysics, Frankfurt
am Main, Germany
| |
Collapse
|
29
|
Odunewu-Aderibigbe A, Fliegel L. The Na+/H+exchanger and pH regulation in the heart. IUBMB Life 2014; 66:679-85. [DOI: 10.1002/iub.1323] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2014] [Accepted: 10/15/2014] [Indexed: 11/11/2022]
Affiliation(s)
| | - Larry Fliegel
- Department of Biochemistry; University of Alberta; Edmonton AB Canada
| |
Collapse
|
30
|
Alves C, Lee BL, Sykes BD, Fliegel L. Structural and Functional Analysis of the Transmembrane Segment Pair VI and VII of the NHE1 Isoform of the Na+/H+ Exchanger. Biochemistry 2014; 53:3658-70. [DOI: 10.1021/bi500392y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Affiliation(s)
- Claudia Alves
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Brian L. Lee
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Brian D. Sykes
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
31
|
Abstract
We examined substrate-induced conformational changes in MjNhaP1, an archaeal electroneutral Na(+)/H(+)-antiporter resembling the human antiporter NHE1, by electron crystallography of 2D crystals in a range of physiological pH and Na(+) conditions. In the absence of sodium, changes in pH had no major effect. By contrast, changes in Na(+) concentration caused a marked conformational change that was largely pH-independent. Crystallographically determined, apparent dissociation constants indicated ∼10-fold stronger Na(+) binding at pH 8 than at pH 4, consistent with substrate competition for a common ion-binding site. Projection difference maps indicated helix movements by about 2 Å in the 6-helix bundle region of MjNhaP1 that is thought to contain the ion translocation site. We propose that these movements convert the antiporter from the proton-bound, outward-open state to the Na(+)-bound, inward-open state. Oscillation between the two states would result in rapid Na(+)/H(+) antiport. DOI: http://dx.doi.org/10.7554/eLife.01412.001.
Collapse
Affiliation(s)
- Cristina Paulino
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | | |
Collapse
|
32
|
The C-terminal cytoplasmic portion of the NhaP2 cation–proton antiporter from Vibrio cholerae affects its activity and substrate affinity. Mol Cell Biochem 2013; 389:51-8. [DOI: 10.1007/s11010-013-1926-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2013] [Accepted: 12/06/2013] [Indexed: 11/25/2022]
|
33
|
Fuster DG, Alexander RT. Traditional and emerging roles for the SLC9 Na+/H+ exchangers. Pflugers Arch 2013; 466:61-76. [PMID: 24337822 DOI: 10.1007/s00424-013-1408-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/14/2013] [Revised: 11/14/2013] [Accepted: 11/20/2013] [Indexed: 10/25/2022]
Abstract
The SLC9 gene family encodes Na(+)/H(+) exchangers (NHEs). These transmembrane proteins transport ions across lipid bilayers in a diverse array of species from prokaryotes to eukaryotes, including plants, fungi, and animals. They utilize the electrochemical gradient of one ion to transport another ion against its electrochemical gradient. Currently, 13 evolutionarily conserved NHE isoforms are known in mammals [22, 46, 128]. The SLC9 gene family (solute carrier classification of transporters: www.bioparadigms.org) is divided into three subgroups [46]. The SLC9A subgroup encompasses plasmalemmal isoforms NHE1-5 (SLC9A1-5) and the predominantly intracellular isoforms NHE6-9 (SLC9A6-9). The SLC9B subgroup consists of two recently cloned isoforms, NHA1 and NHA2 (SLC9B1 and SLC9B2, respectively). The SLC9C subgroup consist of a sperm specific plasmalemmal NHE (SLC9C1) and a putative NHE, SLC9C2, for which there is currently no functional data [46]. NHEs participate in the regulation of cytosolic and organellar pH as well as cell volume. In the intestine and kidney, NHEs are critical for transepithelial movement of Na(+) and HCO3(-) and thus for whole body volume and acid-base homeostasis [46]. Mutations in the NHE6 or NHE9 genes cause neurological disease in humans and are currently the only NHEs directly linked to human disease. However, it is becoming increasingly apparent that members of this gene family contribute to the pathophysiology of multiple human diseases.
Collapse
Affiliation(s)
- Daniel G Fuster
- Division of Nephrology, Hypertension and Clinical Pharmacology and Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland,
| | | |
Collapse
|