1
|
Yang P, Zhu L, Wang S, Gong J, Selvaraj JN, Ye L, Chen H, Zhang Y, Wang G, Song W, Li Z, Cai L, Zhang H, Zhang D. Engineered model of heart tissue repair for exploring fibrotic processes and therapeutic interventions. Nat Commun 2024; 15:7996. [PMID: 39266508 PMCID: PMC11393355 DOI: 10.1038/s41467-024-52221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024] Open
Abstract
Advancements in human-engineered heart tissue have enhanced the understanding of cardiac cellular alteration. Nevertheless, a human model simulating pathological remodeling following myocardial infarction for therapeutic development remains essential. Here we develop an engineered model of myocardial repair that replicates the phased remodeling process, including hypoxic stress, fibrosis, and electrophysiological dysfunction. Transcriptomic analysis identifies nine critical signaling pathways related to cellular fate transitions, leading to the evaluation of seventeen modulators for their therapeutic potential in a mini-repair model. A scoring system quantitatively evaluates the restoration of abnormal electrophysiology, demonstrating that the phased combination of TGFβ inhibitor SB431542, Rho kinase inhibitor Y27632, and WNT activator CHIR99021 yields enhanced functional restoration compared to single factor treatments in both engineered and mouse myocardial infarction model. This engineered heart tissue repair model effectively captures the phased remodeling following myocardial infarction, providing a crucial platform for discovering therapeutic targets for ischemic heart disease.
Collapse
Affiliation(s)
- Pengcheng Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Lihang Zhu
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Shiya Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jixing Gong
- Center of Translational Medicine, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China
| | - Jonathan Nimal Selvaraj
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Lincai Ye
- Shanghai Institute for Congenital Heart Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai, China
| | - Hanxiao Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yaoyao Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Gongxin Wang
- Henan SCOPE Research Institute of Electrophysiology Co. Ltd., Kaifeng, China
| | - Wanjun Song
- Beijing Geek Gene Technology Co. Ltd., Beijing, China
| | - Zilong Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Lin Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
| | - Hao Zhang
- Shanghai Institute for Congenital Heart Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai, China.
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
- Cardiovascular Research Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
The structural basis of effective LOX-1 inhibition. Future Med Chem 2022; 14:731-743. [PMID: 35466695 DOI: 10.4155/fmc-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Along with other scavenger receptors, splice variants of LOX-1 play an important role in modulating numerous subcellular mechanisms such as normal cell development, differentiation and growth in response to physiological stimuli. Thus, LOX-1 activity is a key regulator in determining the severity of many genetic, metabolic, cardiovascular, renal, and neurodegenerative diseases and/or cancer. Increased expression of LOX-1 precipitates pathological disorders during the aging process. Therefore, it becomes important to develop novel LOX-1 inhibitors based on its ligand binding polarity and/or affinity and disrupt the uptake of its ligand: oxidized low-density lipoproteins (ox-LDL). In this review, we shed light on the presently studied and developed novel LOX-1 inhibitors that may have potential for treatment of diseases characterized by LOX-1 activation.
Collapse
|
3
|
Li X, Tang X, Liu B, Zhang J, Zhang Y, Lv H, Liu D, Mehta JL, Wang X. LOX-1 Deletion Attenuates Myocardial Fibrosis in the Aged Mice, Particularly Those With Hypertension. Front Cardiovasc Med 2021; 8:736215. [PMID: 34712709 PMCID: PMC8545876 DOI: 10.3389/fcvm.2021.736215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a transmembrane glycoprotein that mediates uptake of oxidized low-density lipoprotein (ox-LDL) into cells. Previous studies had shown that LOX-1 deletion had a potential to inhibit cardiac fibrosis in mouse models of hypertension and myocardial infarction. Whether LOX-1 deletion also affects cardiac fibrosis associated with aging still remains unknown. The aim of this study was to investigate the effect of LOX-1 deletion on myocardial fibrosis in the aged mice. Methods: C57BL/6 mice and LOX-1 knockout (KO) mice with C57BL/6 background were studied to the age of 60 weeks. Both genotypes of aged mice were exposed to angiotensin II (Ang II) or saline for additional 4 weeks. The mice were then sacrificed, and myocardial fibrosis, reactive oxygen species (ROS) and expression of LOX-1, fibronectin, collagens, p22phox, and gp91phox were measured. Results: LOX-1 deletion markedly reduced Ang II-mediated rise of blood pressure in the aged mice (vs. saline-treated mice). LOX-1 deletion also limited fibrosis and decreased fibronectin and collagen-3 expression in the hearts of aged mice, but not the expression of collagen-1 and collagen-4. LOX-1 deletion also inhibited ROS production and p22phox expression. As the aged mice were exposed to Ang II for 4 weeks (resulting in hypertension), LOX-1 deletion more pronounced inhibiting myocardial fibrosis and ROS production, and decreasing expression of fibronectin, collagen-1, collagen-2, collagen-3, p22phox, and gp91phox. Conclusion: LOX-1 deletion limited fibrosis and ROS production in the hearts of aged mice. This effect was more pronounced in the aged mice with hypertension induced by Ang II infusion.
Collapse
Affiliation(s)
- Xiao Li
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Xihe Tang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Bo Liu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Jinghang Zhang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yongxi Zhang
- Department of Oncology, The Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Hefan Lv
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Dongling Liu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Jawahar L Mehta
- Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Xianwei Wang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.,Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
4
|
Yan L, Jia Q, Cao H, Chen C, Xing S, Huang Y, Shen D. Fisetin ameliorates atherosclerosis by regulating PCSK9 and LOX-1 in apoE -/- mice. Exp Ther Med 2020; 21:25. [PMID: 33262811 PMCID: PMC7690243 DOI: 10.3892/etm.2020.9457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
The purpose of the current study was to investigate the mechanism by which fisetin improves atherosclerosis (AS) by regulating lipid metabolism and senescence in apolipoprotein E-deficient (apoE-/-) mice. An AS model was established by feeding apoE-/- mice a high-fat diet. Mice were randomly divided into the model group (n=18), the fisetin group (n=18) and the atorvastatin group (n=18). The control group (n=18) was composed of wild-type C57BL/6 mice of the same age and genetic background. The fisetin and atorvastatin groups were respectively treated with aqueous solutions of fisetin (12.5 mg/kg) and atorvastatin (2 mg/kg) via oral gavage daily for 12 weeks. The pathological morphology, lipid accumulation, collagen deposition of the aortic sinus were observed, serum lipids, superoxide dismutase (SOD) and malondialdehyde (MDA) levels and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were measured in the peripheral blood serum. Additionally, the expressions of proprotein convertase subtilisin/kexin type 9 (PCSK9), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), tumor suppressor protein p53 (p53), cyclin-dependent kinase inhibitor 1A (p21) and multiple tumor suppressor-1 (p16) were analyzed in the aorta. The results of the current study indicated that compared with the control group, a large area of AS plaque in the aortic sinus that contained a large amount of red-stained lipids and decreased collagen fiber content were found in the model group, which exhibited higher total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), oxidized low-density lipoprotein (ox-LDL) and MDA levels; higher ALT and AST activities, lower high-density lipoprotein cholesterol (HDL-C) and SOD levels and increased expression levels of PCSK9, LOX-1, p53, p21 and p16. Fisetin is a phytochemical and bioflavonoid that serves a potential role in chronic diseases including AS, obesity, diabetes and cancer due to its wide biological activities, such as regulating lipid metabolism and anti-aging, anti-oxidation and anti-inflammatory. Atorvastatin is recognized as a first-line treatment drug for AS; therefore it was used as a positive control in the current study. Following fisetin and atorvastatin treatment, both the AS plaque and the lipid accumulation in the aortic sinus were significantly reduced, and the expressions of PCSK9, LOX-1 and aging markers, including p53, p21 and p16 were downregulated.
Collapse
Affiliation(s)
- Li Yan
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Qingling Jia
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Hui Cao
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Chuan Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Sanli Xing
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Yan Huang
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Dingzhu Shen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| |
Collapse
|
5
|
Chen P, Yang F, Wang W, Li X, Liu D, Zhang Y, Yin G, Lv F, Guo Z, Mehta JL, Wang X. Liraglutide Attenuates Myocardial Fibrosis via Inhibition of AT1R-Mediated ROS Production in Hypertensive Mice. J Cardiovasc Pharmacol Ther 2020; 26:179-188. [PMID: 32686479 DOI: 10.1177/1074248420942007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIMS Glucagon-like peptide-1 receptor agonist liraglutide has been reported to exert cardioprotective effects, but its effect on cardiac fibrosis remains controversial. The aim of this study was to investigate the effects of liraglutide on cardiac fibrosis and potential mechanisms. METHODS C57BL/6 mice (3-month old) were randomly divided into control, hypertension, and hypertension + liraglutide groups. The hypertensive state was created by infusion of Ang II (100 ng/kg·min) for 4 weeks through subcutaneously implanted osmotic pumps. The control mice were infused with saline. Mice were also given vehicle or liraglutide (400 μg/kg·day). Blood pressure (BP), blood sugar, myocardial fibrosis, AT1R expression, and reactive oxygen species (ROS) levels were measured. To further elucidate the mechanisms of fibrosis, mouse cardiac fibroblasts were isolated and treated with liraglutide (300 nM/L) or losartan (10 μM) for 3 hours, followed by Ang II (10-7 M) for additional 12 hours. Reactive oxygen species production and expressions of collagen-1 and -3 were measured. RESULTS Liraglutide reduced BP and blood sugar but did not affect the body weight of the hypertensive mice. Liraglutide also inhibited collagen accumulation, AT1R expression, and ROS generation in the hearts of the hypertensive mice. In in vitro studies, pretreatment with liraglutide and losartan (as control) markedly inhibited Ang II-induced ROS production and collagen expression in the cultured cardiac fibroblasts. CONCLUSION Liraglutide reduces myocardial fibrosis in the hypertensive mice, which appears to be dependent on at least in part inhibition of ROS production.
Collapse
Affiliation(s)
- Peng Chen
- Henan Key Laboratory of Medical Tissue Regeneration, 91593Xinxiang Medical University, Xinxiang, China.,Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, China
| | - Fen Yang
- Henan Key Laboratory of Medical Tissue Regeneration, 91593Xinxiang Medical University, Xinxiang, China
| | - Wenya Wang
- Henan Key Laboratory of Medical Tissue Regeneration, 91593Xinxiang Medical University, Xinxiang, China
| | - Xiao Li
- Henan Key Laboratory of Medical Tissue Regeneration, 91593Xinxiang Medical University, Xinxiang, China
| | - Dongling Liu
- Henan Key Laboratory of Medical Tissue Regeneration, 91593Xinxiang Medical University, Xinxiang, China
| | - Yongxi Zhang
- Henan Key Laboratory of Medical Tissue Regeneration, 91593Xinxiang Medical University, Xinxiang, China
| | - Guotian Yin
- Henan Key Laboratory of Medical Tissue Regeneration, 91593Xinxiang Medical University, Xinxiang, China
| | - Fenghua Lv
- Department of Cardiology, The First Affiliated Hospital 91593Xinxiang Medical University, Weihui, China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, 91593Xinxiang Medical University, Xinxiang, China
| | - Jawahar L Mehta
- Division of Cardiology, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, 91593Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
6
|
Villa M, Cerda-Opazo P, Jimenez-Gallegos D, Garrido-Moreno V, Chiong M, Quest AF, Toledo J, Garcia L. Pro-fibrotic effect of oxidized LDL in cardiac myofibroblasts. Biochem Biophys Res Commun 2020; 524:696-701. [PMID: 32033750 DOI: 10.1016/j.bbrc.2020.01.156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
Inflammatory signals associated with cardiac diseases trigger trans-differentiation of cardiac fibroblasts to cardiac myofibroblasts. Cardiac myofibroblasts are the main cell type involved in the development of cardiac fibrosis, a diffuse and disproportionate accumulation of collagen in the myocardium. Although the role of the scavenger like-lectin receptor LOX-1 was previously investigated in cardiac fibroblasts and fibrosis, the involvement of the LOX-1 ligand -oxidized low-density lipoprotein (oxLDL)- on cardiac myofibroblast function still remains unexplored. In the present work, we investigated the effect of oxLDL/LOX-1 on fibrotic markers and cardiac myofibroblast function. Our in vitro results showed that oxLDL increased cardiac myofibroblast proliferation, triggered an increase in the synthesis of collagen type I and fibronectin containing extra domain A, and stimulated collagen type I secretion. oxLDL also decreased cardiac myofibroblast migration, collagen gel contraction and cell area, without modifying α-smooth muscle actin protein levels. These effects were dependent on LOX-1, because LOX-1 knockdown abolished oxLDL effects. Collectively these data showed that oxLDL has important modulatory effects on cardiac myofibroblast function.
Collapse
Affiliation(s)
- Monica Villa
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Paulina Cerda-Opazo
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Danica Jimenez-Gallegos
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Valeria Garrido-Moreno
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Andrew Fg Quest
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile; Center for Exercise, Metabolism and Cancer Studies (CEMC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jorge Toledo
- Facultad Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Lorena Garcia
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
7
|
Kounakis K, Tavernarakis N. The Cytoskeleton as a Modulator of Aging and Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:227-245. [PMID: 31493230 DOI: 10.1007/978-3-030-25650-0_12] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cytoskeleton consists of filamentous protein polymers that form organized structures, contributing to a multitude of cell life aspects. It includes three types of polymers: the actin microfilaments, the microtubules and the intermediate filaments. Decades of research have implicated the cytoskeleton in processes that regulate cellular and organismal aging, as well as neurodegeneration associated with injury or neurodegenerative disease, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic Lateral Sclerosis, or Charcot Marie Tooth disease. Here, we provide a brief overview of cytoskeletal structure and function, and discuss experimental evidence linking cytoskeletal function and dynamics with aging and neurodegeneration.
Collapse
Affiliation(s)
- Konstantinos Kounakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.,Department of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece. .,Department of Basic Sciences, Medical School, University of Crete, Heraklion, Greece.
| |
Collapse
|
8
|
Rizzo P, Bollini S, Bertero E, Ferrari R, Ameri P. Beyond cardiomyocyte loss: Role of Notch in cardiac aging. J Cell Physiol 2018; 233:5670-5683. [PMID: 29271542 DOI: 10.1002/jcp.26417] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 12/05/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022]
Abstract
The knowledge of the cellular events occurring in the aging heart has dramatically expanded in the last decade and is expected to further grow in years to come. It is now clear that impaired function and loss of cardiomyocytes are major features of cardiac aging, but other events are likewise important. In particular, accumulating experimental evidence highlights the importance of fibroblast and cardiac progenitor cell (CPC) dysfunction. The Notch pathway regulates cardiomyocyte, fibroblast, and CPC activity and, thus, may be critically involved in heart disease associated with advanced age, especially heart failure. In a translational perspective, thorough investigation of the Notch system in the aging myocardium may lead to the identification of molecular targets for novel therapies for age-related cardiac disease.
Collapse
Affiliation(s)
- Paola Rizzo
- Department of Morphology, Surgery, and Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care and Research, E.S. Health Science Foundation, Cotignola, Italy
| | - Sveva Bollini
- Department of Experimental Medicine, Regenerative Medicine Laboratory, University of Genova, Genova, Italy
| | - Edoardo Bertero
- Department of Internal Medicine, Laboratory of Cardiovascular Biology, University of Genova and Ospedale Policlinico San Martino IRCCS per Oncologia, Genova, Italy
| | - Roberto Ferrari
- Maria Cecilia Hospital, GVM Care and Research, E.S. Health Science Foundation, Cotignola, Italy
| | - Pietro Ameri
- Department of Internal Medicine, Laboratory of Cardiovascular Biology, University of Genova and Ospedale Policlinico San Martino IRCCS per Oncologia, Genova, Italy
| |
Collapse
|
9
|
Hsu PY, Lin WY, Lin RT, Juo SHH. MicroRNA let-7g inhibits angiotensin II-induced endothelial senescence via the LOX-1-independent mechanism. Int J Mol Med 2018; 41:2243-2251. [PMID: 29393358 PMCID: PMC5810198 DOI: 10.3892/ijmm.2018.3416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 12/15/2017] [Indexed: 12/14/2022] Open
Abstract
Endothelial senescence leads to cell dysfunction, which in turn eventually results in cardiovascular disease. Identifying factors that regulate endothelial senescence may provide insight into the pathogenesis of aging. Insulin-like growth factor (IGF) signaling has a significant role in the physiology of endothelial cells (ECs). Overactivation of IGF signaling has been implicated in promoting the aging process. Lectin‑like oxidized low‑density lipoprotein (oxLDL) receptor‑1 (LOX‑1) is a scavenger receptor that mediates the internalization of oxLDL into cells. Previous studies by our group have indicated that microRNA let‑7g exerts an anti‑aging effect on ECs and also suppresses LOX-1 expression. Since LOX‑1 also induces the aging process, the present study we explored whether let‑7g still exerts an anti‑aging effect on ECs when LOX‑1 is suppressed. Angiotensin II (Ang II) was used to induce senescence in ECs. It was revealed that Ang II significantly increased the expression of aging markers, including β‑galactosidase, LOX‑1, IGF1 and its receptor IGF1R. On the contrary, Ang II decreased the expression of the anti‑aging gene sirtuin 1 (SIRT1). When LOX‑1 was knocked down by small interfering RNA, let‑7g still dose‑dependently decreased the expression of β‑galactosidase (β‑gal), LOX‑1, IGF1 and IGF1R, and SIRT1 was still upregulated. Using senescence‑associated β‑gal staining, it was confirmed that let‑7g exerts a LOX‑1‑independent anti‑aging effect on ECs. In conclusion, the present study demonstrated that let‑7g has an anti‑aging effect regardless of the presence or absence of LOX-1.
Collapse
Affiliation(s)
- Po-Yuan Hsu
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan R.O.C
| | - Wen-Yi Lin
- Department of Occupational Medicine, Kaohsiung Municipal Hsiaokang Hospital, Kaohsiung 80708, Taiwan R.O.C
| | - Ruey-Tay Lin
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan R.O.C
| | - Suh-Hang H Juo
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan R.O.C
| |
Collapse
|
10
|
Wang Q, Zhang F, Hong Y. Blocking of autocrine IGF-1 reduces viability of human umbilical cord mesenchymal stem cells via inhibition of the Akt/Gsk-3β signaling pathway. Mol Med Rep 2018; 17:4681-4687. [PMID: 29344668 DOI: 10.3892/mmr.2018.8445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/09/2017] [Indexed: 11/05/2022] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUCMSCs) are able to secrete growth factors, such as hepatocyte growth factor, vascular endothelial growth factor and insulin‑like growth factor‑1 (IGF‑1). The secretion of these growth factors by transplanted hUCMSCs have been identified to stimulate the growth of the host cells in the target organs or tissues. The aim of the present study was to investigate the effect of autocrine IGF‑1 on cell viability of hUCMSCs. The expression levels of IGF‑1 and the IGF‑1 receptor (IGF‑1R) in hUCMSCs were identified using immunocytochemistry staining. In order to block autocrine IGF‑1, hUCMSCs were treated with 5 µg/ml αIR‑3, a specific IGF‑1R antibody, for 24 h. The cells cultured in medium without αIR‑3 were used as the control group. Cell viability, apoptosis, cell cycle and the proliferation‑associated proteins were quantified using an MTT assay, flow cytometry and western blotting. The findings of the present study revealed that IGF‑1 and IGF‑1R were positively expressed in hUCMSCs. Treatment with αIR‑3 significantly reduced cell viability and increased apoptosis of hUCMSCs (P<0.01). Cell cycle analysis indicated that the number of cells in the G2/M phase was reduced in the αIR‑3‑treated group compared with the control group. Western blotting revealed that the expression levels of phosphorylated (p)‑protein kinase B (Akt), p‑glycogen synthase kinase 3β (GSK‑3β), p‑p70 S6 kinase and cyclin D1 were markedly reduced and p21 expression was markedly increased in the αIR‑3‑treated group as compared with the control group (P<0.05). However, no significant difference was identified in the p‑extracellular‑signal regulated kinase 1/2 expression when the αIR‑3 treatment group was compared with the control group. (P>0.05). The findings of the present study suggested that the autocrine IGF‑1 from hUCMSCs may be capable of influencing cell viability of hUCMSCs, which may be associated with activation of Akt/GSK‑3β signaling pathway.
Collapse
Affiliation(s)
- Qi Wang
- Department of Histology and Embryology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Fenxi Zhang
- Department of Histology and Embryology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yan Hong
- Department of Histology and Embryology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
11
|
Effects of linagliptin and liraglutide on glucose- and angiotensin II-induced collagen formation and cytoskeleton degradation in cardiac fibroblasts in vitro. Acta Pharmacol Sin 2016; 37:1349-1358. [PMID: 27498780 DOI: 10.1038/aps.2016.72] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/31/2016] [Indexed: 12/22/2022] Open
Abstract
AIM Glucagon-like peptide-1 (GLP-1) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors can not only lower blood glucose levels, but also alleviate cardiac remodeling after myocardial ischemia and hypertension. In the present study, we investigated the effects of a DPP-4 inhibitor (linagliptin) and a GLP-1 activator (liraglutide) on glucose- and angiotensin II (Ang II)-induced collagen formation and cytoskeleton reorganization in cardiac fibroblasts in vitro, and elucidated the related mechanisms. METHODS Cardiac fibroblasts were isolated from the hearts of 6-week-old C57BL/6 mice, and then exposed to different concentrations of glucose or Ang II for 24 h. The expression of fibrotic signals (fibronectin, collagen-1, -3 and -4), as well as ERK1/2 and NF-κB-p65 in the fibroblasts was examined using Western blotting assays. F-actin degradation was detected under inverted laser confocal microscope in fibroblasts stained with Rhodamine phalloidin. RESULTS Glucose (1-40 mmol/L) and Ang II (10-8-10-5 mol/L) dose-dependently increased the expression of fibronectin, collagens, phospho-ERK1/2 and phospho-NF-κB-p65 in cardiac fibroblasts. High concentrations of glucose (≥40 mmol/L) and Ang II (≥10-6 mol/L) caused a significant degradation of F-actin (less assembly F-actin fibers and more disassembly fibers). ERK1/2 inhibitor U0126 (10 μmol/L) and NF-κB inhibitor JSH-23 (10 μmol/L) both markedly suppressed glucose- and angiotensin II-induced fibronectin and collagen expressions in cardiac fibroblasts. Furthermore, pretreatment with liraglutide (10-100 nmol/L) or linagliptin (3 and 30 nmol/L) significantly decreased glucose- and Ang II-induced expression of fibrotic signals, phospho-ERK1/2 and phospho-NF-κB-p65 in cardiac fibroblasts. Moreover, pretreatment with liraglutide (30 nmol/L) or liraglutide (100 nmol/L) markedly inhibited glucose-induced F-actin degradation, however, only liraglutide inhibited Ang II-induced F-actin degradation. CONCLUSION Linagliptin and liraglutide inhibit glucose- and Ang II-induced collagen formation in cardiac fibroblasts via activation of the ERK/NF-κB/pathway. Linagliptin and liraglutide also markedly inhibit glucose-induced F-actin degradation in cardiac fibroblasts, but only liraglutide inhibits Ang II-induced F-actin degradation.
Collapse
|
12
|
Inhibition of lectin-like oxidized low-density lipoprotein receptor-1 reduces cardiac fibroblast proliferation by suppressing GATA Binding Protein 4. Biochem Biophys Res Commun 2016; 475:329-34. [DOI: 10.1016/j.bbrc.2016.05.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/19/2016] [Indexed: 11/21/2022]
|
13
|
Hemodynamic shear stress modulates endothelial cell autophagy: Role of LOX-1. Int J Cardiol 2015; 184:86-95. [DOI: 10.1016/j.ijcard.2015.01.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/23/2014] [Accepted: 01/25/2015] [Indexed: 11/21/2022]
|
14
|
Roche PL, Filomeno KL, Bagchi RA, Czubryt MP. Intracellular Signaling of Cardiac Fibroblasts. Compr Physiol 2015; 5:721-60. [DOI: 10.1002/cphy.c140044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Wang X, Guo Z, Ding Z, Khaidakov M, Lin J, Xu Z, Sharma SG, Jiwani S, Mehta JL. Endothelin-1 upregulation mediates aging-related cardiac fibrosis. J Mol Cell Cardiol 2015; 80:101-9. [PMID: 25584774 DOI: 10.1016/j.yjmcc.2015.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/30/2014] [Accepted: 01/04/2015] [Indexed: 01/30/2023]
Abstract
Endothelin-1 (ET-1) plays a major role in regulating myocardial fibrosis in several pathological conditions, such as hypertension and diabetes. Aging is an independent risk factor for myocardial fibrosis. We hypothesized that ET-1 upregulation may be a basis of enhanced collagen synthesis in the senescent fibroblasts resulting in cardiac fibrosis with aging. To examine this hypothesis, we cultured mouse cardiac fibroblasts to passage-30 (P30). β-Galactosidase activity and several other aging markers were markedly increased in P30 (vs. P3) fibroblasts, indicating that these cells were indeed undergoing senescence. Importantly, ET-1 expression was markedly upregulated in P30 (vs. P3) fibroblasts. Of note, estrogen receptor-α (ER-α), an important negative regulator of ET-1, was downregulated in P30 fibroblasts. We also studied aged (130-weeks old, female) mice hearts, and observed that ET-1 was upregulated and ER-α was downregulated in these hearts (vs. 6-week old mice hearts, female). Similar observations were made in the fibroblasts isolated from aged mice hearts. ET-1 upregulation with aging was also seen in ≈70-year old (vs. ≈30-year old) human heart sections. In concert with ET-1 upregulation, the expression of fibronectin and collagens was found to be markedly increased in P30 cardiac fibroblasts in culture, fibroblasts isolated from the aged mice hearts, and in aged human hearts. Interestingly, inhibition of ET-1 in the senescent P30 fibroblasts by 2 different strategies (the use of siRNA and the use of endothelin converting enzyme inhibitors) markedly suppressed expression of fibrosis signals. Further, treatment with synthetic ET-1 enhanced fibronectin and collagen expression in P3 cardiac fibroblasts. These observations in mice and human hearts suggest that aging-related cardiac fibrosis is, at least partially, dependent on the upregulation of ET-1.
Collapse
Affiliation(s)
- Xianwei Wang
- Central Arkansas Veterans Healthcare System, Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Key Laboratory of Henan province for Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Zhikun Guo
- Key Laboratory of Henan province for Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zufeng Ding
- Central Arkansas Veterans Healthcare System, Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Magomed Khaidakov
- Central Arkansas Veterans Healthcare System, Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Juntang Lin
- Key Laboratory of Henan province for Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhenping Xu
- Key Laboratory of Henan province for Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shree G Sharma
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shahanawaz Jiwani
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jawahar L Mehta
- Central Arkansas Veterans Healthcare System, Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
16
|
|
17
|
Wu J, Niu J, Li X, Wang X, Guo Z, Zhang F. TGF-β1 induces senescence of bone marrow mesenchymal stem cells via increase of mitochondrial ROS production. BMC DEVELOPMENTAL BIOLOGY 2014; 14:21. [PMID: 24886313 PMCID: PMC4031602 DOI: 10.1186/1471-213x-14-21] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/06/2014] [Indexed: 11/17/2022]
Abstract
Background Bone marrow derived mesenchymal stem cells (bmMSCs) are multipotent cells that can differentiate into diverse cell types, including cardiomyocytes. BmMSC-based transplantation is capable of repairing acute and chronic myocardial infarction. Prior to the transplantation, MSCs are usually induced in vitro by biological reagents and chemicals for directional differentiation. Transforming growth factor beta (TGF-β) is one of the most commonly used biological reagents for induction of cardiomyocyte differentiation of bmMSCs. Previous studies have shown that TGF-β induces senescence in several cell types. However, whether TGF-β affects senescence of bmMSCs has not been elucidated. The goal of this study was to investigate the effect of TGF-β1 on senescence of bmMSCs and the underlying mechanisms. Results We found that TGF-β1 increased activity of senescence-associated-galactosidase (SA-Gal) and production of mitochondrial reactive oxygen species (mtROS) in bmMSCs in a dose-dependent manner. TGF-β1 also significantly decreased expression of superoxide dismutase 2 (SOD2) and Id1, and increased expression of 4-Hydroxynonenal (4-HNE) subunits and p16 in bmMSCs in a dose-dependent manner. Pre-treatment with mtROS inhibitor acetyl-L-carnitine (ALCAR, 0.1 mM) significantly inhibited TGF-β1-induced mtROS production and SA-Gal activity. Conclusion TGF-β1 can induce senescence of bmMSCs, which at least partially depends on mtROS production.
Collapse
Affiliation(s)
| | | | | | | | | | - Fenxi Zhang
- Department of Anatomy, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
18
|
Yi X, Li X, Zhou Y, Ren S, Wan W, Feng G, Jiang X. Hepatocyte growth factor regulates the TGF-β1-induced proliferation, differentiation and secretory function of cardiac fibroblasts. Int J Mol Med 2014; 34:381-90. [PMID: 24840640 PMCID: PMC4094591 DOI: 10.3892/ijmm.2014.1782] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 05/09/2014] [Indexed: 01/10/2023] Open
Abstract
Cardiac fibroblast (CF) proliferation and transformation into myofibroblasts play important roles in cardiac fibrosis during pathological myocardial remodeling. In this study, we demonstrate that hepatocyte growth factor (HGF), an antifibrotic factor in the process of pulmonary, renal and liver fibrosis, is a negative regulator of cardiac fibroblast transformation in response to transforming growth factor-β1 (TGF-β1). HGF expression levels were significantly reduced in the CFs following treatment with 5 ng/ml TGF-β1 for 48 h. The overexpression of HGF suppressed the proliferation, transformation and the secretory function of the CFs following treatment with TGF-β1, as indicated by the attenuated expression levels of α-smooth muscle actin (α-SMA) and collagen I and III, whereas the knockdown of HGF had the opposite effect. Mechanistically, we identified that the phosphorylation of c-Met, Akt and total protein of TGIF was significantly inhibited by the knockdown of HGF, but was significantly enhanced by HGF overexpression. Collectively, these results indicate that HGF activates the c-Met-Akt-TGIF signaling pathway, inhibiting CF proliferation and transformation in response to TGF-β1 stimulation.
Collapse
Affiliation(s)
- Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University and Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaoyan Li
- Department of Cardiology, Renmin Hospital of Wuhan University and Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yanli Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University and Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shan Ren
- Department of Cardiology, Renmin Hospital of Wuhan University and Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Weiguo Wan
- Department of Cardiology, Renmin Hospital of Wuhan University and Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Gaoke Feng
- Department of Cardiology, Renmin Hospital of Wuhan University and Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University and Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|