1
|
Deng J, Wang D, Shi Y, Lin L, Gao W, Sun Y, Song X, Li Y, Li J. Mitochondrial unfolded protein response mechanism and its cardiovascular protective effects. Biomed Pharmacother 2024; 177:116989. [PMID: 38959609 DOI: 10.1016/j.biopha.2024.116989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is a cytoprotective response in response to cellular stress that is activated in response to mitochondrial stress to maintain intra-protein homeostasis, thereby protecting the cell from a variety of stimuli. The activation of this response has been linked to cardiovascular diseases. Here, we reviewed the current understanding of UPRmt and discussed its specific molecular mechanism, mainly in mammals, as well as addressing its protective role against cardiovascular diseases, so as to provide direction for further research on UPRmt and therapies targeting cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Jinlan Deng
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Danyang Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanmei Shi
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Lin
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weihan Gao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiayinan Song
- Chinese University of Traditional Chinese Medicine,Beijing University of Chinese Medicine, Chaoyang, China
| | - Yunlun Li
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
2
|
Ghai S, Young A, Su KH. Proteotoxic stress response in atherosclerotic cardiovascular disease: Emerging role of heat shock factor 1. Front Cardiovasc Med 2023; 10:1155444. [PMID: 37077734 PMCID: PMC10106699 DOI: 10.3389/fcvm.2023.1155444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
Atherosclerosis is a major risk factor for cardiovascular diseases. Hypercholesterolemia has been both clinically and experimentally linked to cardiovascular disease and is involved in the initiation of atherosclerosis. Heat shock factor 1 (HSF1) is involved in the control of atherosclerosis. HSF1 is a critical transcriptional factor of the proteotoxic stress response that regulates the production of heat shock proteins (HSPs) and other important activities such as lipid metabolism. Recently, HSF1 is reported to directly interact with and inhibit AMP-activated protein kinase (AMPK) to promote lipogenesis and cholesterol synthesis. This review highlights roles of HSF1 and HSPs in critical metabolic pathways of atherosclerosis, including lipogenesis and proteome homeostasis.
Collapse
|
3
|
Gao R, Li X. Extracellular Vesicles and Pathological Cardiac Hypertrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:17-31. [PMID: 37603270 DOI: 10.1007/978-981-99-1443-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Pathological cardiac hypertrophy is a well-recognized risk factor for cardiovascular diseases (CVDs). Although lots of efforts have been made to illustrate the underlying molecular mechanisms, many issues remain undiscovered. Recently, intercellular communication by delivering small molecules between different cell types in the progression of cardiac hypertrophy has been reported, including bioactive nucleic acids or proteins. These extracellular vesicles (EVs) may act in an autocrine or paracrine manner between cardiomyocytes and noncardiomyocytes to provoke or inhibit cardiac remodeling and hypertrophy. Besides, EVs can be used as novel diagnostic or prognostic biomarkers in cardiac hypertrophy and also may serve as potential therapeutic targets due to its biocompatible nature and low immunogenicity. In this chapter, we will first summarize the current knowledge about EVs from different cells in pathological cardiac hypertrophy. Then, we will focus on the value of EVs as therapeutic agents and biomarkers for pathological myocardial hypertrophy.
Collapse
Affiliation(s)
- Rongrong Gao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Zhao S, Song TY, Wang ZY, Gao J, Cao JW, Hu LL, Huang ZR, Xie LP, Ji Y. S-nitrosylation of Hsp90 promotes cardiac hypertrophy in mice through GSK3β signaling. Acta Pharmacol Sin 2021; 43:1979-1988. [PMID: 34934196 PMCID: PMC9343375 DOI: 10.1038/s41401-021-00828-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/18/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiac hypertrophy, as one of the major predisposing factors for chronic heart failure, lacks effective interventions. Exploring the pathogenesis of cardiac hypertrophy will reveal potential therapeutic targets. S-nitrosylation is a kind of posttranslational modification that occurs at active cysteines of proteins to mediate various cellular processes. We here identified heat shock protein 90 (Hsp90) as a highly S-nitrosylated target in the hearts of rodents with hypertrophy, and the role of Hsp90 in cardiac hypertrophy remains undefined. The S-nitrosylation of Hsp90 (SNO-Hsp90) levels were elevated in angiotensin II (Ang II)- or phenylephrine (PE)-treated neonatal rat cardiomyocytes (NRCMs) in vitro as well as in cardiomyocytes isolated from mice subjected to transverse aortic constriction (TAC) in vivo. We demonstrated that the elevated SNO-Hsp90 levels were mediated by decreased S-nitrosoglutathione reductase (GSNOR) expression during cardiac hypertrophy, and delivery of GSNOR adeno-associated virus expression vectors (AAV9-GSNOR) decreased the SNO-Hsp90 levels to attenuate cardiac hypertrophy. Mass spectrometry analysis revealed that cysteine 589 (Cys589) might be the S-nitrosylation site of Hsp90. Delivery of the mutated AAV9-Hsp90-C589A inhibited SNO-Hsp90 levels and attenuated cardiac hypertrophy. We further revealed that SNO-Hsp90 led to increased interaction of glycogen synthase kinase 3β (GSK3β) and Hsp90, leading to elevated GSK3β phosphorylation and decreased eIF2Bε phosphorylation, thereby aggravating cardiac hypertrophy. Application of GSK3β inhibitor TWS119 abolished the protective effect of Hsp90-C589A mutation in Ang II-treated NRCMs. In conclusion, this study demonstrates a critical role of SNO-Hsp90 in cardiac hypertrophy, which may be of a therapeutic target for cardiac hypertrophy treatment.
Collapse
|
5
|
Iglesia RP, Fernandes CFDL, Coelho BP, Prado MB, Melo Escobar MI, Almeida GHDR, Lopes MH. Heat Shock Proteins in Glioblastoma Biology: Where Do We Stand? Int J Mol Sci 2019; 20:E5794. [PMID: 31752169 PMCID: PMC6888131 DOI: 10.3390/ijms20225794] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/16/2022] Open
Abstract
Heat shock proteins (HSPs) are evolutionary conserved proteins that work as molecular chaperones and perform broad and crucial roles in proteostasis, an important process to preserve the integrity of proteins in different cell types, in health and disease. Their function in cancer is an important aspect to be considered for a better understanding of disease development and progression. Glioblastoma (GBM) is the most frequent and lethal brain cancer, with no effective therapies. In recent years, HSPs have been considered as possible targets for GBM therapy due their importance in different mechanisms that govern GBM malignance. In this review, we address current evidence on the role of several HSPs in the biology of GBMs, and how these molecules have been considered in different treatments in the context of this disease, including their activities in glioblastoma stem-like cells (GSCs), a small subpopulation able to drive GBM growth. Additionally, we highlight recent works that approach other classes of chaperones, such as histone and mitochondrial chaperones, as important molecules for GBM aggressiveness. Herein, we provide new insights into how HSPs and their partners play pivotal roles in GBM biology and may open new therapeutic avenues for GBM based on proteostasis machinery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marilene Hohmuth Lopes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (R.P.I.); (C.F.d.L.F.); (B.P.C.); (M.B.P.); (M.I.M.E.); (G.H.D.R.A.)
| |
Collapse
|
6
|
Karagiota A, Mylonis I, Simos G, Chachami G. Protein phosphatase PPP3CA (calcineurin A) down-regulates hypoxia-inducible factor transcriptional activity. Arch Biochem Biophys 2019; 664:174-182. [PMID: 30776328 DOI: 10.1016/j.abb.2019.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 01/07/2023]
Abstract
Hypoxia-inducible factors (HIF) are master regulators of the response to hypoxia. Although several kinases are known to modify their oxygen sensitive HIF-α subunits or affect indirectly their function, little is known about the role of phosphatases in HIF control. To address this issue, a library containing siRNAs for the 25 known catalytic subunits of human phosphatases was used to screen for their effect on HIF transcriptional activity in HeLa cells. Serine-threonine phosphatase PPP3CA (calcineurin A, isoform a) was identified as the strongest candidate for a negative regulator of HIF activity. Indeed, independent silencing of PPP3CA expression stimulated HIF transcriptional activity under hypoxia, without increasing the protein levels of HIF-1α or HIF-2α. Overexpression of a constitutively active PPP3CA form, but not its catalytically inactive counterpart, inhibited HIF activity and expression of HIF target genes but did not affect HIF-1α or HIF-2α expression. These results were phenocopied by treatment with the ionophore ionomycin, that activates endogenous PPP3CA. The effect of ionomycin was mediated by PPP3CA as it was largely abolished by PPP3CA silencing. Furthermore, ionomycin enhanced the down-regulation of HIF activity by wild-type PPP3CA overexpression. Overall, our results suggest the involvement of PPP3CA in fine-tuning the HIF-dependent transcriptional response to hypoxia.
Collapse
Affiliation(s)
- Angeliki Karagiota
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Larissa, Greece; Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Canada.
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Larissa, Greece.
| |
Collapse
|
7
|
Chen F, Bao H, Xie H, Tian G, Jiang T. Heat shock protein expression and autophagy after incomplete thermal ablation and their correlation. Int J Hyperthermia 2018; 36:95-103. [PMID: 30428719 DOI: 10.1080/02656736.2018.1536285] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To establish a model of incomplete ablation in nude mice with hepatocellular carcinoma (HCC) and to evaluate heat shock protein (HSP) expression and autophagy and their correlation. MATERIALS AND METHODS In the first stage, 12 nude mice with HCC were randomly divided into two groups (n = 6). A sham puncture operation was performed for one group, and palliative laser ablation was performed for the other group. All mice were sacrificed after 18 h, and HSP expression, autophagy, and apoptosis were assessed. In the second stage, 16 nude mice with HCC were randomly divided into two groups (n = 8). One group was given an HSP90 inhibitor before the operation, and the other group was given dimethyl sulfoxide (DMSO) as a control. HSP expression, autophagy and apoptosis were assessed for the two groups after palliative laser ablation. RESULTS In the incomplete ablation model, using nude mice with HCC, HSP90, HSP70, and HSP27 expression was up-regulated, Akt and mTOR phosphorylation was enhanced, autophagy was decreased, and apoptosis was increased. After administration of the HSP90 inhibitor, HSP90, P-Akt, and P-mTOR expression was decreased, autophagy was increased, and apoptosis was further increased. CONCLUSION Autophagy was decreased in the incomplete ablation model and might be inversely correlated with HSP expression. It is suggested that the HSP90/Akt/mTOR pathway is involved in signal transmission between autophagy and HSPs.
Collapse
Affiliation(s)
- Fen Chen
- a Hepatobiliary and Pancreatic Intervention Center, The First affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , China
| | - Haiwei Bao
- a Hepatobiliary and Pancreatic Intervention Center, The First affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , China
| | - Haiyang Xie
- a Hepatobiliary and Pancreatic Intervention Center, The First affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , China
| | - Guo Tian
- a Hepatobiliary and Pancreatic Intervention Center, The First affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , China
| | - Tianan Jiang
- a Hepatobiliary and Pancreatic Intervention Center, The First affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , China
| |
Collapse
|
8
|
Sharma RK, Parameswaran S. Calmodulin-binding proteins: A journey of 40 years. Cell Calcium 2018; 75:89-100. [PMID: 30205293 DOI: 10.1016/j.ceca.2018.09.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/02/2018] [Indexed: 01/04/2023]
Abstract
The proteins which bind to calmodulin in a Ca2+-dependent and reversible manner are known as calmodulin-binding proteins. These proteins are involved in a multitude of processes in which Ca2+ and calmodulin play crucial roles. Our group elucidated the mechanism and importance of these proteins in normal and diseased conditions. Various calmodulin-binding proteins were discovered and purified from bovine tissue including a heat stable calmodulin-binding protein 70, calmodulin-dependent protein kinase VI and a high molecular weight calmodulin-binding protein (HMWCaMBP). We observed a complex interplay occurs between these and other Ca2+ and calmodulin-binding proteins during cardiac ischemia and reperfusion. Purified cardiac HMWCaMBP is a homolog form of calpastatin and an inhibitor of the Ca2+-activated cysteine proteases, calpains and therefore can have cardioprotective role in ischemic conditions. Calcineurin is a Ca2+ and calmodulin-dependent serine/threonine protein phosphatase showed increased phosphatase activity in ischemic heart through its direct interaction with Hsp70 and expression of calcineurin following ischemia suggests self-repair and favorable survival outcomes. Calcineurin was also found to be present in other tissues including the eye; where its expression and calcineurin phosphatase activity varied. In neurons, calcineurin may play a key role in initiating apoptosis-related pathways especially in epilepsy. In colorectal cancer we demonstrated high calcineurin phosphatase activity and simultaneous overexpression of calcineurin. The impact of calcineurin signaling on neuronal apoptosis in epilepsy and its use as a diagnostic marker for colorectal cancer requires in-depth study.
Collapse
Affiliation(s)
- Rajendra K Sharma
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon S7N 5E5, Canada.
| | - Sreejit Parameswaran
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon S7N 5E5, Canada
| |
Collapse
|
9
|
Wu J, Ke X, Fu W, Gao X, Zhang H, Wang W, Ma N, Zhao M, Hao X, Zhang Z. Inhibition of Hypoxia-Induced Retinal Angiogenesis by Specnuezhenide, an Effective Constituent of Ligustrum lucidum Ait., through Suppression of the HIF-1α/VEGF Signaling Pathway. Molecules 2016; 21:molecules21121756. [PMID: 28009852 PMCID: PMC6272965 DOI: 10.3390/molecules21121756] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/10/2016] [Accepted: 12/17/2016] [Indexed: 11/30/2022] Open
Abstract
Specnuezhenide (SPN), one of the main ingredients of Chinese medicine “Nü-zhen-zi”, has anti-angiogenic and vision improvement effects. However, studies of its effect on retinal neovascularization are limited so far. In the present study, we established a vascular endothelial growth factor A (VEGFA) secretion model of human acute retinal pigment epithelial-19 (ARPE-19) cells by exposure of 150 μM CoCl2 to the cells and determined the VEGFA concentrations, the mRNA expressions of VEGFA, hypoxia inducible factor-1α (HIF-1α) & prolyl hydroxylases 2 (PHD-2), and the protein expressions of HIF-1α and PHD-2 after treatment of 3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole (YC-1, 1.0 μg/mL) or SPN (0.2, 1.0 and 5.0 μg/mL). Furthermore, rat pups with retinopathy were treated with SPN (5.0 and 10.0 mg/kg) in an 80% oxygen atmosphere and the retinal avascular areas were assessed through visualization using infusion of ADPase and H&E stains. The results showed that SPN inhibited VEGFA secretion by ARPE-19 cells under hypoxia condition, down-regulated the mRNA expressions of VEGFA and PHD-2 slightly, and the protein expressions of VEGFA, HIF-1α and PHD-2 significantly in vitro. SPN also prevented hypoxia-induced retinal neovascularization in a rat model of oxygen-induced retinopathy in vivo. These results indicate that SPN ameliorates retinal neovascularization through inhibition of HIF-1α/VEGF signaling pathway. Therefore, SPN has the potential to be developed as an agent for the prevention and treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Jianming Wu
- Laboratory of Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu 610036, Sichuan, China.
- Post-Doctoral Mobile Station, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xiao Ke
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu 610036, Sichuan, China.
| | - Wei Fu
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu 610036, Sichuan, China.
| | - Xiaoping Gao
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu 610036, Sichuan, China.
| | - Hongcheng Zhang
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu 610036, Sichuan, China.
| | - Wei Wang
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu 610036, Sichuan, China.
| | - Na Ma
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu 610036, Sichuan, China.
| | - Manxi Zhao
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu 610036, Sichuan, China.
| | - Xiaofeng Hao
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu 610036, Sichuan, China.
| | - Zhirong Zhang
- Post-Doctoral Mobile Station, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
10
|
Wu J, Ke X, Wang W, Zhang H, Ma N, Fu W, Zhao M, Gao X, Hao X, Zhang Z. Aloe-emodin suppresses hypoxia-induced retinal angiogenesis via inhibition of HIF-1α/VEGF pathway. Int J Biol Sci 2016; 12:1363-1371. [PMID: 27877088 PMCID: PMC5118782 DOI: 10.7150/ijbs.16334] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/22/2016] [Indexed: 11/05/2022] Open
Abstract
Background: Aloe-emodin (AE) has been reported to possess the antiangiogenic effect on laser induced choroidal neovascularization. AE inhibits the vessel formation in the zebrafish embryos. However, it is still unclear whether AE can alleviate neovascularization. Here, we investigated the inhibitory effect of AE on the hypoxia-induced retinal neovascularization and the possible mechanisms. Methods: We established a vascular endothelial growth factor (VEGF) secretion model under chemical induced hypoxia by exposure of 150 µM CoCl2 to the ARPE-19 cells, then treated the cells with different concentrations of AE (0.2, 1.0 and 5.0 µg/mL) or a special hypoxia-inducible factor 1α (HIF-1α) inhibitor [3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole, YC-1, 1.0 µg/mL]. The cellular supernatants were collected 48 h later to measure the VEGFA concentrations by human VEGFA enzyme-linked immunosorbent assay (ELISA) kits, the mRNA expressions of VEGFA, HIF-1α and prolyl hydroxylase-2 (PHD-2) by quantitative reverse transcription-PCR (qRT-PCR) and the protein expressions of HIF-1α and PHD-2 by Western blots. For in vivo study, the rat pups with oxygen-induced retinopathy were treated with Conbercept ophthalmic injection (1.0 mg/kg) or AE (5.0 and 10.0 mg/kg) for five days, then the retinal avascular areas were assessed via visualization of the retinal vasculature with ADPase and hematoxylin & eosin (H&E) stains. Results: AE inhibits the VEGFA secretion of ARPE-19 cells under hypoxia condition, decreases the mRNA expressions of VEGFA and PHD-2 and the protein expressions of VEGFA, HIF-1α and PHD-2 in vitro and prevents hypoxia-induced retinal neovascularization in vivo.Conclusions: AE ameliorates retinal neovascularization throuth inhibition of the HIF-1α/VEGF signaling pathway. AE may be developed as a potential drug for the prevention and treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Jianming Wu
- Laboratory of Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China;; Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu, Sichuan 610036, China;; Post-Doctoral Mobile Station, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiao Ke
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu, Sichuan 610036, China
| | - Wei Wang
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu, Sichuan 610036, China
| | - Hongcheng Zhang
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu, Sichuan 610036, China
| | - Na Ma
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu, Sichuan 610036, China
| | - Wei Fu
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu, Sichuan 610036, China
| | - Manxi Zhao
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu, Sichuan 610036, China
| | - Xiaoping Gao
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu, Sichuan 610036, China
| | - Xiaofeng Hao
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu, Sichuan 610036, China
| | - Zhirong Zhang
- Post-Doctoral Mobile Station, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
11
|
Wu J, Ke X, Ma N, Wang W, Fu W, Zhang H, Zhao M, Gao X, Hao X, Zhang Z. Formononetin, an active compound of Astragalus membranaceus (Fisch) Bunge, inhibits hypoxia-induced retinal neovascularization via the HIF-1α/VEGF signaling pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3071-3081. [PMID: 27729769 PMCID: PMC5042190 DOI: 10.2147/dddt.s114022] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND It has been reported that formononetin (FMN), one of the main ingredients from famous traditional Chinese medicine "Huang-qi" (Astragalus membranaceus [Fisch] Bunge) for Qi-tonifying, exhibits the effects of immunomodulation and tumor growth inhibition via antiangiogenesis. Furthermore, A. membranaceus may alleviate the retinal neovascularization (NV) of diabetic retinopathy. However, the information of FMN on retinal NV is limited so far. In the present study, we investigated the effects of FMN on the hypoxia-induced retinal NV and the possible related mechanisms. MATERIALS AND METHODS The VEGF secretion model of acute retinal pigment epithelial-19 (ARPE-19) cells under chemical hypoxia was established by the exposure of cells to 150 μM CoCl2 and then cells were treated with 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1, a potent HIF-1α inhibitor, 1.0 μg/mL) or different concentrations of FMN (0.2 μg/mL, 1.0 μg/mL, and 5.0 μg/mL). The supernatants of cells were collected 48 hours later to measure the VEGF concentrations, following the manufacturer's instruction. The mRNA expressions of VEGF, HIF-1α, PHD-2, and β-actin were analyzed by quantitative reverse transcription polymerase chain reaction, and the protein expressions of HIF-1α and PHD-2 were determined by Western blot analysis. Furthermore, the rats with retinopathy were treated by intraperitoneal administration of conbercept injection (1.0 mg/kg) or FMN (5.0 mg/kg and 10.0 mg/kg) in an 80% oxygen atmosphere. The retinal avascular areas were assessed through visualization of the retinal vasculature by adenosine diphosphatase staining and hematoxylin and eosin staining. RESULTS FMN can indeed inhibit the VEGF secretion of ARPE-19 cells under hypoxia, downregulate the mRNA expression of VEGFA and PHD-2, and decrease the protein expression of VEGF, HIF-1α, and PHD-2 in vitro. Furthermore, FMN can prevent hypoxia-induced retinal NV in vivo. CONCLUSION FMN can ameliorate retinal NV via the HIF-1α/VEGF signaling pathway, and it may become a potential drug for the prevention and treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Jianming Wu
- Laboratory of Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou; Post-Doctoral Research Station, Kanghong Pharmaceutical Group; Post-Doctoral Mobile Station, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xiao Ke
- Post-Doctoral Research Station, Kanghong Pharmaceutical Group
| | - Na Ma
- Post-Doctoral Research Station, Kanghong Pharmaceutical Group
| | - Wei Wang
- Post-Doctoral Research Station, Kanghong Pharmaceutical Group
| | - Wei Fu
- Post-Doctoral Research Station, Kanghong Pharmaceutical Group
| | - Hongcheng Zhang
- Post-Doctoral Research Station, Kanghong Pharmaceutical Group
| | - Manxi Zhao
- Post-Doctoral Research Station, Kanghong Pharmaceutical Group
| | - Xiaoping Gao
- Post-Doctoral Research Station, Kanghong Pharmaceutical Group
| | - Xiaofeng Hao
- Post-Doctoral Research Station, Kanghong Pharmaceutical Group
| | - Zhirong Zhang
- Post-Doctoral Mobile Station, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
12
|
Parameswaran S, Sharma RK. Expression of calcineurin, calpastatin and heat shock proteins during ischemia and reperfusion. Biochem Biophys Rep 2015; 4:207-214. [PMID: 30338302 PMCID: PMC6189699 DOI: 10.1016/j.bbrep.2015.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 12/24/2022] Open
Abstract
Objective Calcineurin (CaN) interacts with calpains (Calpn) and causes cellular damage eventually leading to cell death. Calpastatin (Calp) is a specific Calpn inhibitor, along with CaN stimulation has been implicated in reduced cell death and self-repair. Molecular chaperones, heat shock proteins (Hsp70 and Hsp90) acts as regulators in Calpn signaling. This study aims to elucidate the role of CaN, Calp and Hsps during induced ischemia and reperfusion in primary cardiomyocyte cultures (murine). Methods and results Protein expression was analyzed concurrently with viability using flow cytometry (FACS) in ischemia- and reperfusion-induced murine cardiomyocyte cultures. The expression of Hsp70 and Hsp90, both being molecular chaperones, increased during ischemia with a concurrent increase in death of cells expressing these proteins. The relative expression of Hsp70 and Hsp90 during ischemia with respect to CaN was enhanced in comparison to Calp. Reperfusion slightly decreased the number of cells expressing these chaperones. There was no increase in death of cells co-expressing Hsp70 and Hsp90 along with CaN and Calp. CaN expression peaked during ischemia and subsequent reperfusion reduced its expression and cell death. Calp expression increased both during ischemia and subsequent reperfusion but cell death decreased during reperfusion. Conclusion The present study adds to the existing knowledge that Hsp70, Hsp90, CaN and Calp interact with each other and play significant role in cardio protection. Differential expression of calcineurin and calpastatin during ischemia and reperfusion. Enhanced ischemia induced cell death in cells expressing Hsp70 and Hsp90. Cardio protective role of calcineurin, calpastatin, Hsp70 and Hsp90.
Collapse
Key Words
- CaN, calcineurin
- Calcineurin
- Calp, Calpastatin
- Calpastatin
- Calpn, calpain
- FACS, flow cytometry
- FITC, fluorescein isothiocyanate
- HMWCaMBP, high molecular weight calmodulin-binding protein
- Heat shock proteins
- I/R, Ischemia and Reperfusion
- Ischemia
- NDB, nutrient deficient buffer
- NMCC, primary neonatal mouse cardiomyocyte culture
- PE, R-phycoerythrin
- Primary cardiomyocyte culture
- Reperfusion
Collapse
|