1
|
Sopić M, Vladimirov S, Munjas J, Mitić T, Hall IF, Jusic A, Ruzic D, Devaux Y. Targeting noncoding RNAs to treat atherosclerosis. Br J Pharmacol 2025; 182:220-245. [PMID: 38720437 DOI: 10.1111/bph.16412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/06/2024] [Accepted: 04/05/2024] [Indexed: 12/13/2024] Open
Abstract
Noncoding RNAs (ncRNAs) are pivotal for various pathological processes, impacting disease progression. The potential for leveraging ncRNAs to prevent or treat atherosclerosis and associated cardiovascular diseases is of great significance, especially given the increasing prevalence of atherosclerosis in an ageing and sedentary population. Together, these diseases impose a substantial socio-economic burden, demanding innovative therapeutic solutions. This review explores the potential of ncRNAs in atherosclerosis treatment. We commence by examining approaches for identifying and characterizing atherosclerosis-associated ncRNAs. We then delve into the functional aspects of ncRNAs in atherosclerosis development and progression. Additionally, we review current RNA and RNA-targeting molecules in development or under approval for clinical use, offering insights into their pharmacological potential. The importance of improved ncRNA delivery strategies is highlighted. Finally, we suggest avenues for advanced research to accelerate the use of ncRNAs in treating atherosclerosis and mitigating its societal impact. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Miron Sopić
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Sandra Vladimirov
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Tijana Mitić
- BHF/University Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ignacio Fernando Hall
- BHF/University Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Amela Jusic
- HAYA Therapeutics SA, SuperLab Suisse - Bâtiment Serine, Lausanne, Vaud, Switzerland
| | - Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
2
|
Wang X, Yu JR, Tian CH, Tao L. Role of intestinal flora imbalance in formation of abdominal aortic aneurysms. Shijie Huaren Xiaohua Zazhi 2024; 32:859-864. [DOI: 10.11569/wcjd.v32.i12.859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a potentially fatal vascular disease that lacks effective non-surgical interventions. Gut flora dysfunction plays a crucial role in various cardiovascular diseases, such as atherosclerosis and hypertension, but its relationship with AAA has not been fully elucidated. This article elaborates the relationship between gut flora and AAA, analyzes the potential mechanisms of gut flora dysfunction in the formation and development of AAA, and provides suggestions for AAA prevention.
Collapse
Affiliation(s)
- Xiao Wang
- First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jia-Rui Yu
- First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Cui-Hong Tian
- First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Liang Tao
- First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Wuhan Asia Heart Hospital, Wuhan 430022, Hubei Province, China
| |
Collapse
|
3
|
Hou N, Zhou H, Li J, Xiong X, Deng H, Xiong S. Macrophage polarization and metabolic reprogramming in abdominal aortic aneurysm. Immun Inflamm Dis 2024; 12:e1268. [PMID: 39530309 PMCID: PMC11555488 DOI: 10.1002/iid3.1268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a macrovascular disease with high morbidity and mortality in the elderly. The limitation of the current management is that most patients can only be followed up until the AAA diameter increases to a threshold, and surgical intervention is recommended. The development of preventive and curative drugs for AAA is urgently needed. Macrophage-mediated immune inflammation is one of the key pathological links in the occurrence and development of AAA. AIMS This review article aims to evaluate the impact of immunometabolism on macrophage biology and its role in AAA. METHODS We analyze publications focusing on the polarization and metabolic reprogramming in macrophages as well as their potential impact on AAA, and summarize the potential interventions that are currently available to regulate these processes. RESULTS The phenotypic and functional changes in macrophages are accompanied by significant alterations in metabolic pathways. The interaction between macrophage polarization and metabolic pathways significantly influences the progression of AAA. CONCLUSION Macrophage polarization is a manifestation of the gross dichotomy of macrophage function into pro-inflammatory killing and tissue repair, that is, classically activated M1 macrophages and alternatively activated M2 macrophages. Macrophage functions are closely linked to metabolic changes, and the emerging field of immunometabolism is providing unique insights into the role of macrophages in AAA. It is essential to further investigate the precise metabolic changes and their functional consequences in AAA-associated macrophages.
Collapse
Affiliation(s)
- Ningxin Hou
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongmin Zhou
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jun Li
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Hongping Deng
- Department of Vascular SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Sizheng Xiong
- Department of Vascular SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
4
|
Hu K, Wen H, Song T, Che Z, Song Y, Song M. Deciphering the Role of LncRNAs in Osteoarthritis: Inflammatory Pathways Unveiled. J Inflamm Res 2024; 17:6563-6581. [PMID: 39318993 PMCID: PMC11421445 DOI: 10.2147/jir.s489682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Long non-coding RNA (LncRNA), with transcripts over 200 nucleotides in length, play critical roles in numerous biological functions and have emerged as significant players in the pathogenesis of osteoarthritis (OA), an inflammatory condition traditionally viewed as a degenerative joint disease. This review comprehensively examines the influence of LncRNA on the inflammatory processes driving OA progression, focusing on their role in regulating gene expression, cellular activities, and inflammatory pathways. Notably, LncRNAs such as MALAT1, H19, and HOTAIR are upregulated in OA and exacerbate the inflammatory milieu by modulating key signaling pathways like NF-κB, TGF-β/SMAD, and Wnt/β-catenin. Conversely, LncRNA like MEG3 and GAS5, which are downregulated in OA, show potential in dampening inflammatory responses and protecting against cartilage degradation by influencing miRNA interactions and cytokine production. By enhancing our understanding of LncRNA' roles in OA inflammation, we can better leverage them as potential biomarkers for the disease and develop innovative therapeutic strategies for OA management. This paper aims to delineate the mechanisms by which LncRNA influence inflammatory responses in OA and propose them as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kangyi Hu
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Haonan Wen
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Ting Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Zhixin Che
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Yongjia Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Min Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| |
Collapse
|
5
|
Jiang R, He X, Chen W, Cai H, Su Z, Xie Z, Zhang B, Yang J, Wang Y, Huang L, Cao G, Zhong X, Xie H, Zhu H, Cao J, Lu W. lncRNA H19 facilitates vascular neointima formation by targeting miR-125a-3p/FLT1 axis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1437-1445. [PMID: 39238439 PMCID: PMC11532204 DOI: 10.3724/abbs.2024087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/28/2024] [Indexed: 09/07/2024] Open
Abstract
The aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the development of neointima formation in vascular restenosis. This study aims to explore the function of the long noncoding RNA H19 in neointima formation. A mouse carotid ligation model was established, and human vascular smooth muscle cells (VSMCs) were used as a cell model. lncRNA H19 overexpression promoted VSMC proliferation and migration. Moreover, miR-125a-3p potentially bound to lncRNA H19, and Fms-like tyrosine kinase-1 (FLT1) might be a direct target of miR-125a-3p in VSMCs. Upregulation of miR-125a-3p alleviated lncRNA H19-enhanced VSMC proliferation and migration. Furthermore, rescue experiments showed that enhanced expression of miR-125a-3p attenuated lncRNA H19-induced FLT1 expression in VSMCs. In addition, the overexpression of lncRNA H19 significantly exacerbated neointima formation in a mouse carotid ligation model. In summary, lncRNA H19 stimulates VSMC proliferation and migration by acting as a competing endogenous RNA (ceRNA) of miR-125a-3p. lncRNA H19 may be a therapeutic target for restenosis.
Collapse
MESH Headings
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Animals
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neointima/pathology
- Neointima/metabolism
- Neointima/genetics
- Humans
- Cell Proliferation/genetics
- Cell Movement/genetics
- Mice
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/cytology
- Vascular Endothelial Growth Factor Receptor-1/genetics
- Vascular Endothelial Growth Factor Receptor-1/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Mice, Inbred C57BL
- Male
- Cells, Cultured
Collapse
Affiliation(s)
- Rengui Jiang
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Xuyu He
- Guangdong Cardiovascular InstituteGuangdong Provincial Key Laboratory of Coronary Heart Disease PreventionGuangdong General HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Weidong Chen
- The Second Clinical Medical College of Guangzhou University of Chinese MedicineGuangzhou510120China
| | - Huoying Cai
- Department of Vascular SurgeryThe First Affiliated HospitalSun Yat-sen UniversityGuangzhou510080China
| | - Zhaohai Su
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Zheng Xie
- Department of General PracticeGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Bilong Zhang
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Jiangyong Yang
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Yueting Wang
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Ling Huang
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Gang Cao
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Xiutong Zhong
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Hui Xie
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Hengqing Zhu
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Jun Cao
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Weiling Lu
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| |
Collapse
|
6
|
Liu Y, Sun X, Gou Z, Deng Z, Zhang Y, Zhao P, Sun W, Bai Y, Jing Y. Epigenetic modifications in abdominal aortic aneurysms: from basic to clinical. Front Cardiovasc Med 2024; 11:1394889. [PMID: 38895538 PMCID: PMC11183338 DOI: 10.3389/fcvm.2024.1394889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Abdominal Aortic Aneurysm (AAA) is a disease characterized by localized dilation of the abdominal aorta, involving multiple factors in its occurrence and development, ultimately leading to vessel rupture and severe bleeding. AAA has a high mortality rate, and there is a lack of targeted therapeutic drugs. Epigenetic regulation plays a crucial role in AAA, and the treatment of AAA in the epigenetic field may involve a series of related genes and pathways. Abnormal expression of these genes may be a key factor in the occurrence of the disease and could potentially serve as promising therapeutic targets. Understanding the epigenetic regulation of AAA is of significant importance in revealing the mechanisms underlying the disease and identifying new therapeutic targets. This knowledge can contribute to offering AAA patients better clinical treatment options beyond surgery. This review systematically explores various aspects of epigenetic regulation in AAA, including DNA methylation, histone modification, non-coding RNA, and RNA modification. The analysis of the roles of these regulatory mechanisms, along with the identification of relevant genes and pathways associated with AAA, is discussed comprehensively. Additionally, a comprehensive discussion is provided on existing treatment strategies and prospects for epigenetics-based treatments, offering insights for future clinical interventions.
Collapse
Affiliation(s)
- YuChen Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - XiaoYun Sun
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Zhen Gou
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - ZhenKun Deng
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - YunRui Zhang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - PingPing Zhao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Wei Sun
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Yang Bai
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - YuChen Jing
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Zhang Y, Liu H, Niu M, Wang Y, Xu R, Guo Y, Zhang C. Roles of long noncoding RNAs in human inflammatory diseases. Cell Death Discov 2024; 10:235. [PMID: 38750059 PMCID: PMC11096177 DOI: 10.1038/s41420-024-02002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Chemokines, cytokines, and inflammatory cells mediate the onset and progression of many diseases through the induction of an inflammatory response. LncRNAs have emerged as important regulators of gene expression and signaling pathways. Increasing evidence suggests that lncRNAs are key players in the inflammatory response, making it a potential therapeutic target for various diseases. From the perspective of lncRNAs and inflammatory factors, we summarized the expression level and regulatory mechanisms of lncRNAs in human inflammatory diseases, such as cardiovascular disease, osteoarthritis, sepsis, chronic obstructive pulmonary disease, asthma, acute lung injury, diabetic retinopathy, and Parkinson's disease. We also summarized the functions of lncRNAs in the macrophages polarization and discussed the potential applications of lncRNAs in human inflammatory diseases. Although our understanding of lncRNAs is still in its infancy, these data will provide a theoretical basis for the clinical application of lncRNAs.
Collapse
Affiliation(s)
- Yuliang Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Min Niu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ying Wang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Rong Xu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chunming Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
8
|
Zhang J, Zhang X, Liu X, Chen H, Wang J, Ji M. M1 Macrophage-Derived Exosome LncRNA PVT1 Promotes Inflammation and Pyroptosis of Vascular Smooth Muscle Cells in Abdominal Aortic Aneurysm by Inhibiting miR-186-5p and Regulating HMGB1. Cardiovasc Toxicol 2024; 24:302-320. [PMID: 38453799 PMCID: PMC10937795 DOI: 10.1007/s12012-024-09838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/03/2024] [Indexed: 03/09/2024]
Abstract
Abdominal aortic aneurysm (AAA) is a chronic vascular degenerative disease. Vascular smooth muscle cells (VSMCs) are essential for maintaining the integrity of healthy blood vessels. Macrophages play an important role in the inflammatory process of AAA. However, the effect of macrophage-derived exosome LncRNA PVT1 on VSMCs is unclear. Exosomes from M1 macrophages (M1φ-exos) were isolated and identified. The expression of LncRNA PVT1 in M1φ-exos was determined. AAA cell model was constructed by treating VSMCs with Ang-II. AAA cell model was treated with M1φ exosomes transfected with si-LncRNA PVT1 (M1φsi-LncRNA PVT1-exo). VSMCs were transfected with miR-186-5p mimic and oe-HMGB1. Cell viability was detected by CCK-8. The accumulation of LDH was detected by ELISA. Western blot was used to detect the expression of HMGB1, inflammatory factors (IL-6, TNF-α and IL-1β) and pyroptosis-related proteins (GSDMD, N-GSDMD, ASC, NLRP3, Caspase-1 and Cleaved-Capase-1). Cell pyroptosis rate was detected by flow cytometry. At the same time, the targeting relationship between miR-186-5p and LncRNA PVT1 and HMGB1 was verified by double fluorescein experiment. Exosomes from M1φ were successfully extracted. The expression of LncRNA PVT1 in M1φ-exos was significantly increased. M1φ-exo promotes inflammation and pyroptosis of VSMCs. M1φsi-LncRNA PVT1-exos inhibited the inflammation and pyroptosis of VSMCs. LncRNA PVT1 can sponge miR-186-5p mimic to regulate HMGB1 expression. MiR-186-5p mimic further inhibited inflammation and pyroptosis induced by M1φsi-LncRNA PVT1-exos. However, oe-HMGB1 could inhibit the reversal effect of miR-186-5p mimic. LncRNA PVT1 in exosomes secreted by M1φ can regulate HMGB1 by acting as ceRNA on sponge miR-186-5p, thereby promoting cell inflammatory and pyroptosis and accelerating AAA progression.
Collapse
Affiliation(s)
- Jinhui Zhang
- Yan'an Hospital Affiliated To Kunming Medical University, Kunming, 650032, China.
| | - Xili Zhang
- First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xunqiang Liu
- Yan'an Hospital Affiliated To Kunming Medical University, Kunming, 650032, China
| | - Huanjun Chen
- Yan'an Hospital Affiliated To Kunming Medical University, Kunming, 650032, China
| | - Jifeng Wang
- Yan'an Hospital Affiliated To Kunming Medical University, Kunming, 650032, China
| | - Min Ji
- Yan'an Hospital Affiliated To Kunming Medical University, Kunming, 650032, China
| |
Collapse
|
9
|
Kucher AN, Koroleva IA, Nazarenko MS. Pathogenetic Significance of Long Non-Coding RNAs in the Development of Thoracic and Abdominal Aortic Aneurysms. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:130-147. [PMID: 38467550 DOI: 10.1134/s0006297924010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 03/13/2024]
Abstract
Aortic aneurysm (AA) is a life-threatening condition with a high prevalence and risk of severe complications. The aim of this review was to summarize the data on the role of long non-coding RNAs (lncRNAs) in the development of AAs of various location. Within less than a decade of studies on the role of lncRNAs in AA, using experimental and bioinformatic approaches, scientists have obtained the data confirming the involvement of these molecules in metabolic pathways and pathogenetic mechanisms critical for the aneurysm development. Regardless of the location of pathological process (thoracic or abdominal aorta), AA was found to be associated with changes in the expression of various lncRNAs in the tissue of the affected vessels. The consistency of changes in the expression level of lncRNA, mRNA and microRNA in aortic tissues during AA development has been recordedand regulatory networks implicated in the AA pathogenesis in which lncRNAs act as competing endogenous RNAs (ceRNA networks) have been identified. It was found that the same lncRNA can be involved in different ceRNA networks and regulate different biochemical and cellular events; on the other hand, the same pathological process can be controlled by different lncRNAs. Despite some similarities in pathogenesis and overlapping of involved lncRNAs, the ceRNA networks described for abdominal and thoracic AA are different. Interactions between lncRNAs and other molecules, including those participating in epigenetic processes, have also been identified as potentially relevant to the AA pathogenesis. The expression levels of some lncRNAs were found to correlate with clinically significant aortic features and biochemical parameters. Identification of regulatory RNAs functionally significant in the aneurysm development is important for clarification of disease pathogenesis and will provide a basis for early diagnostics and development of new preventive and therapeutic drugs.
Collapse
Affiliation(s)
- Aksana N Kucher
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia
| | - Iuliia A Koroleva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia
| | - Maria S Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia.
| |
Collapse
|
10
|
Zhang X, Wang J, Liu N, Wu W, Li H, Lu W, Guo X. Umbilical Cord Blood-Derived M1 Macrophage Exosomes Loaded with Cisplatin Target Ovarian Cancer In Vivo and Reverse Cisplatin Resistance. Mol Pharm 2023; 20:5440-5453. [PMID: 37819754 DOI: 10.1021/acs.molpharmaceut.3c00132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
We investigated the therapeutic efficacy of umbilical cord blood (UCB)-derived M1 macrophage exosomes loaded with cisplatin (CIS) in ovarian cancer and platinum resistance. M1 macrophages were purified by using CD14 magnetic beads and characterized by flow cytometry. Our analyses included morphology, particle size, particle concentration, potential, drug loading capacity, counts of entry into cells, antitumor effect in vivo, and the ability to reverse drug resistance. A2780, SKOV3, and A2780/DDP, SKOV3/DDP ovarian cancer cells (CIS-sensitive and CIS-resistant cell lines, respectively) were treated with CIS or CIS-loaded M1 macrophage exosomes (M1exoCISs). The encapsulation efficiency of CIS loading into M1 macrophage exosomes was approximately 30%. In vitro, M1exoCIS treatment reduced the CIS IC50 values of both A2780, SKOV3, and A2780/DDP, SKOV3/DDP cells. We evaluated the effect of M1exoCIS on tumor growth using a mouse ovarian cancer subcutaneous transplantation tumor model inoculated with A2780/DDP cells. M1exoCIS was observed in the liver, spleen, and tumor sites 24 h posttreatment; the fluorescence intensity of M1exoCIS is higher than that of CIS. After 7 days, M1exoCIS significantly inhibited the growth of subcutaneously transplanted tumors compared with CIS alone and had a longer survival time. Moreover, the toxicity test shows that M1exoCIS has less hepatorenal toxicity than CIS. To investigate the mechanism of M1exoCIS targeting, homing, and reversing drug resistance, we performed RT-PCR, Western blotting, and Proteome Profiler Human Receptor Array analyses. We found that A2780 and A2780/DDP cells expressed the integrin β1/CD29 receptor, while M1 exosomes expressed integrin β1/CD29. In addition, M1exos carries long noncoding RNA H19, implicated in PTEN protein upregulation and miR-130a and Pgp gene downregulation, leading to the reversal of CIS drug resistance. Therefore, UCB-derived M1exoCIS target tumor sites of ovarian cancer in vivo and can be used to increase the CIS sensitivity and cytotoxicity.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai 201204, China
| | - Jiapo Wang
- Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai 201204, China
| | - Na Liu
- Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai 201204, China
| | - Weimin Wu
- Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai 201204, China
| | - Hong Li
- Shanghai Institute of Biochemistry and Cell Biology, Shanghai 200031, China
| | - Wen Lu
- Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai 201204, China
| | - Xiaoqing Guo
- Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai 201204, China
| |
Collapse
|
11
|
Puertas-Umbert L, Almendra-Pegueros R, Jiménez-Altayó F, Sirvent M, Galán M, Martínez-González J, Rodríguez C. Novel pharmacological approaches in abdominal aortic aneurysm. Clin Sci (Lond) 2023; 137:1167-1194. [PMID: 37559446 PMCID: PMC10415166 DOI: 10.1042/cs20220795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/05/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a severe vascular disease and a major public health issue with an unmet medical need for therapy. This disease is featured by a progressive dilation of the abdominal aorta, boosted by atherosclerosis, ageing, and smoking as major risk factors. Aneurysm growth increases the risk of aortic rupture, a life-threatening emergency with high mortality rates. Despite the increasing progress in our knowledge about the etiopathology of AAA, an effective pharmacological treatment against this disorder remains elusive and surgical repair is still the unique available therapeutic approach for high-risk patients. Meanwhile, there is no medical alternative for patients with small aneurysms but close surveillance. Clinical trials assessing the efficacy of antihypertensive agents, statins, doxycycline, or anti-platelet drugs, among others, failed to demonstrate a clear benefit limiting AAA growth, while data from ongoing clinical trials addressing the benefit of metformin on aneurysm progression are eagerly awaited. Recent preclinical studies have postulated new therapeutic targets and pharmacological strategies paving the way for the implementation of future clinical studies exploring these novel therapeutic strategies. This review summarises some of the most relevant clinical and preclinical studies in search of new therapeutic approaches for AAA.
Collapse
Affiliation(s)
- Lídia Puertas-Umbert
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| | | | - Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutics and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Sirvent
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Departamento de Angiología y Cirugía Vascular del Hospital Universitari General de Granollers, Granollers, Barcelona, Spain
| | - María Galán
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - José Martínez-González
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Cristina Rodríguez
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| |
Collapse
|
12
|
Xu Y, Yang S, Xue G. The role of long non-coding RNA in abdominal aortic aneurysm. Front Genet 2023; 14:1153899. [PMID: 37007957 PMCID: PMC10050724 DOI: 10.3389/fgene.2023.1153899] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
The abdominal aortic aneurysm (AAA) is characterized by segmental expansion of the abdominal aorta and a high mortality rate. The characteristics of AAA suggest that apoptosis of smooth muscle cells, the production of reactive oxygen species, and inflammation are potential pathways for the formation and development of AAA. Long non-coding RNA (lncRNA) is becoming a new and essential regulator of gene expression. Researchers and physicians are focusing on these lncRNAs to use them as clinical biomarkers and new treatment targets for AAAs. LncRNA studies are beginning to emerge, suggesting that they may play a significant but yet unidentified role in vascular physiology and disease. This review examines the role of lncRNA and their target genes in AAA to increase our understanding of the disease’s onset and progression, which is crucial for developing potential AAA therapies.
Collapse
|
13
|
Bergeron A, Hertig V, Villeneuve L, Sirois MG, Demers P, El-Hamamsy I, Calderone A. Structural dysregulation of the pulmonary autograft was associated with a greater density of p16 INK4A-vascular smooth muscle cells. Cardiovasc Pathol 2023; 63:107512. [PMID: 36529416 DOI: 10.1016/j.carpath.2022.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The present study tested the hypothesis that a senescent phenotype of vascular smooth muscle cells (VSMCs) may represent the seminal event linked to maladaptive pulmonary autograft remodeling of a small number of patients that underwent the Ross procedure. The diameter of the pulmonary autograft (47±4 mm) of three male patients was significantly greater compared to the pulmonary artery (26±1 mm) excised from bicuspid aortic valve (BAV) patients. The pulmonary autograft was associated with a neointimal region and the adjacent medial region was significantly thinner compared to the pulmonary artery of BAV patients. Structural dysregulation was evident as elastin content of the medial region was significantly reduced in the pulmonary autograft compared to the pulmonary artery of BAV patients. By contrast, collagen content of the medial region of the pulmonary autograft and the pulmonary artery of BAV patients was not significantly different. Reduced medial elastin content of the pulmonary autograft was associated with increased protein levels of matrix metalloproteinase-9. The latter phenotype was not attributed to a robust inflammatory response as the percentage of Mac-2(+)-infiltrating monocytes/macrophages was similar between groups. A senescent phenotype was identified as protein levels of the cell cycle inhibitor p27kip1 were upregulated and the density of p16INK4A/non-muscle myosin IIB(+)-VSMCs was significantly greater in the pulmonary autograft compared to the pulmonary artery of BAV patients. Thus, senescent VSMCs may represent the predominant cellular source of increased matrix metalloproteinase-9 protein expression translating to maladaptive pulmonary autograft remodeling characterized by elastin degradation, medial thinning and neointimal formation.
Collapse
Affiliation(s)
- Alexandre Bergeron
- Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada
| | - Vanessa Hertig
- Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada
| | - Louis Villeneuve
- Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada
| | - Martin G Sirois
- Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada; Department of Pharmacology & Physiology, Université de Montréal, Quebec, Montreal, Canada
| | - Philippe Demers
- Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada; Department of Cardiac Surgery, Université de Montréal, Montreal, Quebec Canada
| | - Ismail El-Hamamsy
- Department of Cardiovascular Surgery, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Angelino Calderone
- Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada; Department of Pharmacology & Physiology, Université de Montréal, Quebec, Montreal, Canada.
| |
Collapse
|
14
|
Wang S, Wang J, Cai D, Li X, Zhong L, He X, Lin Z, Lai Y, Zheng H, Zhou Y, Xiao Z, Liao W, Liao Y, Xiu J, Bin J. Reactive oxygen species-induced long intergenic noncoding RNA p21 accelerates abdominal aortic aneurysm formation by promoting secretary smooth muscle cell phenotypes. J Mol Cell Cardiol 2023; 174:63-76. [PMID: 36436251 DOI: 10.1016/j.yjmcc.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022]
Abstract
Whether long noncoding RNAs participate in the formation of abdominal aortic aneurysms (AAAs) through the regulation of SMC phenotypic switching is unknown. lincRNA-p21 induced by reactive oxygen species (ROS) is likely functionally associated with SMC phenotypic switching. We thus investigated the role of lincRNA-p21 in SMC phenotypic switching-associated AAA formation and its underlying mechanisms. An analysis of human and mouse abdominal aortic samples revealed that the lincRNA-p21 levels were significantly higher in AAA tissue. Stimulation with hydrogen peroxide upregulated the expression of lincRNA-p21 in a dose-dependent manner and converted SMCs from a contractile phenotype to a synthetic, proteolytic, and proinflammatory phenotype in vitro. Moreover, lincRNA-p21 promoted fracture of elastic fibres, reconstruction of the vascular wall, and AAA formation in vivo by modulating SMC phenotypic switching in two mouse models of AAA induced by angiotensin II or porcine pancreatic elastase (PPE) perfusion. Using a bioinformatics prediction method and luciferase reporter gene assays, we further proved that lincRNA-p21 sponged miR-204-5p to release the transcriptional activity of Mekk3 and promoted the NF-κB pathway and thereby played a role in the SMC phenotypic switch and AAA formation. The ROS levels were positively correlated with the lincRNA-p21 levels in human and mouse AAA tissues. The knockdown of lincRNA-p21 in a PPE-induced mouse AAA model increased the miR-204-5p levels and reduced the expression of Mekk3, whereas lincRNA-p21 overexpression had the opposite effect. Collectively, the results indicated that ROS-induced lincRNA-p21 sponges miR-204-5p to accelerate synthetic and proinflammatory SMC phenotypes through the Mekk3/NF-κB pathway in AAA formation. Thus, lincRNA-p21 may have therapeutic potential for AAA formation.
Collapse
Affiliation(s)
- Shifei Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junfen Wang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Donghua Cai
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lintao Zhong
- Department of Cardiology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), 519000 Zhuhai, China
| | - Xiang He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhongqiu Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Geriatrics, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Yanxian Lai
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yilin Zhou
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiwen Xiao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiancheng Xiu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Liu S, Liao Y, Liu C, Zhou H, Chen G, Lu W, Huang Z. Identification of a miRSNP Regulatory Axis in Abdominal Aortic Aneurysm by a Network and Pathway-Based Integrative Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8776566. [PMID: 36275900 PMCID: PMC9586150 DOI: 10.1155/2022/8776566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
Abdominal aortic aneurysm (AAA) refers to local abnormal expansion of the abdominal aorta and mostly occurs in elderly men. MicroRNA (miRNA) is single-stranded RNA consisting of 18-25 nucleotides. It plays a key role in posttranscriptional gene expression and in the regulation of human functions and disease development. miRNA exerts its function mainly through the binding of complementary base pairs to the 3' regulatory region of mRNA transcripts. Therefore, miRNA-related single-nucleotide polymorphisms (miRSNPs) can affect miRNA expression and processing kinetics. miRSNPs can be classified based on their location: miRSNPs within miRNA-producing genes and miRSNPs within miRNA target genes. Increasing evidence indicates that miRSNPs play an important role in the pathogenic kinetics of cardiovascular diseases. The aim of this study was to identify potential miRNAs and integrate them into a miRSNP-based disease-related pathway network, the results of which are of great significance to the interpretation of the potential mechanisms and functions of miRSNPs in the pathogenesis of diseases.
Collapse
Affiliation(s)
- Shenrong Liu
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Yanfen Liao
- Department of Stomatology, The Second People's Hospital of Panyu Guangzhou, Guangdong 511470, China
| | - Changsong Liu
- Department of Cardiology, The Second Affiliated Hospital, Army Medical University, Chongqing 400000, China
| | - Haobin Zhou
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Gui Chen
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Weiling Lu
- Department of Cardiology, Ganzhou Municipal Hospital, 49th, Grand Highway, 341000 Ganzhou, China
| | - Zheng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| |
Collapse
|
16
|
Li X, Qi H, Cui W, Wang Z, Fu X, Li T, Ma H, Yang Y, Yu T. Recent advances in targeted delivery of non-coding RNA-based therapeutics for atherosclerosis. Mol Ther 2022; 30:3118-3132. [PMID: 35918894 PMCID: PMC9552813 DOI: 10.1016/j.ymthe.2022.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022] Open
Abstract
Cardiovascular disease (CVD) has overtaken infectious illnesses as the leading cause of mortality and disability worldwide. The pathology that underpins CVD is atherosclerosis, characterized by chronic inflammation caused by the accumulation of plaques in the arteries. As our knowledge about the microenvironment of blood vessel walls deepens, there is an opportunity to fine-tune treatments to target the mechanisms driving atherosclerosis more directly. The application of non-coding RNAs (ncRNAs) as biomarkers or intervention targets is increasing. Although these ncRNAs play an important role in driving atherosclerosis and vascular dysfunction, the cellular and extracellular environments pose a challenge for targeted transmission and therapeutic regulation of ncRNAs. Specificity, delivery, and tolerance have hampered the clinical translation of ncRNA-based therapeutics. Nanomedicine is an emerging field that uses nanotechnology for targeted drug delivery and advanced imaging. Recently, nanoscale carriers have shown promising results and have introduced new possibilities for nucleic acid targeted drug delivery, particularly for atherosclerosis. In this review, we discuss the latest developments in nanoparticles to aid ncRNA-based drug development, particularly miRNA, and we analyze the current challenges in ncRNA targeted delivery. In particular, we highlight the emergence of various kinds of nanotherapeutic approaches based on ncRNAs, which can improve treatment options for atherosclerosis.
Collapse
Affiliation(s)
- Xiaoxin Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Hongzhao Qi
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Weigang Cui
- Department of Cardiology, People's Hospital of Rizhao, No. 126 Taian Road, Rizhao 276827, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, China
| | - Tianxiang Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Huibo Ma
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao 266021, People's Republic of China.
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, China.
| |
Collapse
|
17
|
The multifaceted actions of the lncRNA H19 in cardiovascular biology and diseases. Clin Sci (Lond) 2022; 136:1157-1178. [PMID: 35946958 PMCID: PMC9366862 DOI: 10.1042/cs20210994] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases are the leading cause of death and debility worldwide. Various molecular mechanisms have been studied to better understand the development and progression of cardiovascular pathologies with hope to eradicate these diseases. With the advancement of the sequencing technology, it is revealed that the majority of our genome is non-coding. A growing body of literature demonstrates the critical role of long non-coding RNAs (lncRNAs) as epigenetic regulators of gene expression. LncRNAs can regulate cellular biological processes through various distinct molecular mechanisms. The abundance of lncRNAs in the cardiovascular system indicates their significance in cardiovascular physiology and pathology. LncRNA H19, in particular, is a highly evolutionarily conserved lncRNA that is enriched in cardiac and vascular tissue, underlining its importance in maintaining homeostasis of the cardiovascular system. In this review, we discuss the versatile function of H19 in various types of cardiovascular diseases. We highlight the current literature on H19 in the cardiovascular system and demonstrate how dysregulation of H19 induces the development of cardiovascular pathophysiology.
Collapse
|
18
|
Zhou F, Zheng Z, Zha Z, Xiong T, Pan Y. Nuclear Paraspeckle Assembly Transcript 1 Enhances Hydrogen Peroxide-Induced Human Vascular Smooth Muscle Cell Injury by Regulating miR-30d-5p/A Disintegrin and Metalloprotease 10. Circ J 2022; 86:1007-1018. [PMID: 34880199 DOI: 10.1253/circj.cj-21-0042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Nuclear paraspeckle assembly transcript 1 (NEAT1) has been reported to be involved in the progression of many cancers; however, the role and mechanisms underlying NEAT1 in abdominal aortic aneurysm (AAA) remain unclear. METHODS AND RESULTS The expression of NEAT1, miR-30d-5p and A disintegrin and metalloprotease 10 (ADAM10) was measured by qRT-PCR and western blot. Functional experiments were conducted by using a CCK-8 assay, EDU assay, flow cytometry, western blot, ELISA, and commercial kits. The target relation was confirmed by dual-luciferase reporter assay and the RIP assay. It was then found that NEAT1 was upregulated in peripheral blood of AAA patients ~3.46-fold, smooth muscle cells (SMCs) isolated from AAA tissues ~2.6-fold and in a hydrogen peroxide (H2O2)-induced injury model of human vascular SMC (HVSMCs) ~2.0- and 3.9-fold at 50 µmol/L and 200 µmol/L H2O2treatment, respectively. NEAT1 deletion attenuated H2O2-induced cell proliferation promotion (40.0% vs. 74.3%), apoptosis inhibition (25.0% vs. 13.5%), and reduction of inflammatory response and oxidative stress in HVSMCs. Mechanistically, NEAT1 targeted miR-30d-5p to prevent the degradation of its target, ADAM10, in HVSMCs. Further rescue experiments suggested miR-30d-5p inhibition mitigated the effects of NEAT1 deletion on H2O2-induced HVSMCs. Moreover, ADAM10 overexpression counteracted the inhibitory functions of miR-30d-5p on H2O2-evoked HVSMC injury. CONCLUSIONS NEAT1 promoted H2O2-induced HVSMC injury by inducing cell apoptosis, inflammation and oxidative stress through miR-30d-5p/ADAM10 axis, indicating the possible involvement of NEAT1 in the pathogenesis of AAA.
Collapse
Affiliation(s)
- Fushuo Zhou
- Department of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology
| | - Zhi Zheng
- Department of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology
| | - Zhengbiao Zha
- Department of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology
| | - Tianxin Xiong
- Department of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology
| | - Youmin Pan
- Department of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology
| |
Collapse
|
19
|
Jia L, Wang J, Luoreng Z, Wang X, Wei D, Yang J, Hu Q, Ma Y. Progress in Expression Pattern and Molecular Regulation Mechanism of LncRNA in Bovine Mastitis. Animals (Basel) 2022; 12:ani12091059. [PMID: 35565486 PMCID: PMC9105470 DOI: 10.3390/ani12091059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Bovine mastitis is an inflammatory disease of the mammary glands that causes serious harm to cow health and huge economic losses. Susceptibility or resistance to mastitis in individual cows is mainly determined by genetic factors, including coding genes and non-coding genes. Long non-coding RNAs (lncRNAs) are non-coding RNA molecules with a length of more than 200 nucleotides (nt) that have recently been discovered. They can regulate a variety of diseases of humans and animals, especially the immune response and inflammatory disease process. This paper reviews the role of long non-coding RNA (lncRNA) in inflammatory diseases, emphasizes on the latest research progress of lncRNA expression and the molecular regulatory mechanism in bovine mastitis, and looks forward to the research and application prospect of lncRNA in bovine mastitis, intending to provide a reference for scientific researchers to systematically understand this research field. Abstract Bovine mastitis is an inflammatory disease caused by pathogenic microbial infection, trauma, or other factors. Its morbidity is high, and it is difficult to cure, causing great harm to the health of cows and the safety of dairy products. Susceptibility or resistance to mastitis in individual cows is mainly determined by genetic factors, including coding genes and non-coding genes. Long non-coding RNAs (lncRNAs) are a class of endogenous non-coding RNA molecules with a length of more than 200 nucleotides (nt) that have recently been discovered. They can regulate the immune response of humans and animals on three levels (transcription, epigenetic modification, and post-transcription), and are widely involved in the pathological process of inflammatory diseases. Over the past few years, extensive findings revealed basic roles of lncRNAs in inflammation, especially bovine mastitis. This paper reviews the expression pattern and mechanism of long non-coding RNA (lncRNA) in inflammatory diseases, emphasizes on the latest research progress of the lncRNA expression pattern and molecular regulatory mechanism in bovine mastitis, analyzes the molecular regulatory network of differentially expressed lncRNAs, and looks forward to the research and application prospect of lncRNA in bovine mastitis, laying a foundation for molecular breeding and the biological therapy of bovine mastitis.
Collapse
Affiliation(s)
- Li Jia
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jinpeng Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Zhuoma Luoreng
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
- Correspondence: (Z.L.); (X.W.)
| | - Xingping Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
- Correspondence: (Z.L.); (X.W.)
| | - Dawei Wei
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jian Yang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Qichao Hu
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| |
Collapse
|
20
|
Hu YY, Cheng XM, Wu N, Tao Y, Wang XN. Non-coding RNAs Regulate the Pathogenesis of Aortic Dissection. Front Cardiovasc Med 2022; 9:890607. [PMID: 35498004 PMCID: PMC9051029 DOI: 10.3389/fcvm.2022.890607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Aortic dissection (AD) is a fatal cardiovascular disease. It is caused by a rupture of the aortic intima or bleeding of the aortic wall that leads to the separation of different aortic wall layers. Patients with untreated AD have a mortality rate of 1–2% per hour after symptom onset. Therefore, effective biomarkers and therapeutic targets are needed to reduce AD-associated mortality. With the development of molecular technology, researchers have begun to explore the pathogenesis of AD at gene and protein levels, and have made some progress, but the pathogenesis of AD remains unclear. Non-coding RNAs, such as microRNAs, lncRNAs, and circRNAs, have been identified as basic regulators of gene expression and are found to play a key role in the pathogenesis of AD. Thus, providing a theoretical basis for developing these non-coding RNAs as clinical biomarkers and new therapeutic targets for AD in the future. Previous studies on the pathogenesis of AD focused on miRNAs, but recently, there have been an increasing number of studies that explore the role of lncRNAs, and circRNAs in AD. This review summarizes the existing knowledge on the roles of various non-coding RNAs in the pathogenesis of AD, discusses their potential role as clinical biomarkers and therapeutic targets, states the limitations of existing evidence, and recommends future avenues of research on the pathogenesis of AD.
Collapse
|
21
|
Li W, Feng SS, Wu H, Deng J, Zhou WY, Jia MX, Shi Y, Ma L, Zeng XX, Zuberi Z, Fu D, Liu X, Chen Z. Comprehensive Analysis of CDK1-Associated ceRNA Network Revealing the Key Pathways LINC00460/LINC00525-Hsa-Mir-338-FAM111/ZWINT as Prognostic Biomarkers in Lung Adenocarcinoma Combined with Experiments. Cells 2022; 11:cells11071220. [PMID: 35406786 PMCID: PMC8997540 DOI: 10.3390/cells11071220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the leading cause of cancer deaths worldwide, and effective biomarkers are still lacking for early detection and prognosis prediction. Here, based on gene expression profiles of LUAD patients from The Cancer Genome Atlas (TCGA), 806 long non-coding RNAs (lncRNAs), 122 microRNAs (miRNAs) and 1269 mRNAs associated with CDK1 were identified. The regulatory axis of LINC00460/LINC00525-hsa-mir-338-FAM111B/ZWINT was determined according to the correlation between gene expression and patient prognosis. The abnormal up-regulation of FAM111B/ZWINT in LUAD was related to hypomethylation. Furthermore, immune infiltration analysis suggested FAM111B/ZWINT could affect the development and prognosis of cancer by regulating the LUAD immune microenvironment. EMT feature analysis suggested that FAM111B/ZWINT promoted tumor spread through the EMT process. Functional analysis showed FAM111B/ZWINT was involved in cell cycle events such as DNA replication and chromosome separation. We analyzed the HERB and GSCALite databases to identify potential target medicines that may play a role in the treatment of LUAD. Finally, the expression of LINC00460/LINC00525-hsa-mir-338-FAM111B/ZWINT axis was verified in LUAD cells by RT-qPCR, and these results were consistent with bioinformatics analysis. Overall, we constructed a CDK1-related ceRNA network and revealed the LINC00460/LINC00525-hsa-mir-338-FAM111/ZWINT pathways as potential diagnostic biomarkers or therapeutic targets of LUAD.
Collapse
Affiliation(s)
- Wen Li
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (S.-S.F.); (J.D.); (L.M.); (X.-X.Z.)
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (M.-X.J.); (Y.S.)
| | - Shan-Shan Feng
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (S.-S.F.); (J.D.); (L.M.); (X.-X.Z.)
| | - Hao Wu
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (M.-X.J.); (Y.S.)
| | - Jing Deng
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (S.-S.F.); (J.D.); (L.M.); (X.-X.Z.)
| | - Wang-Yan Zhou
- Department of Medical Record, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang 421001, China;
| | - Ming-Xi Jia
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (M.-X.J.); (Y.S.)
| | - Yi Shi
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (M.-X.J.); (Y.S.)
| | - Liang Ma
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (S.-S.F.); (J.D.); (L.M.); (X.-X.Z.)
| | - Xiao-Xi Zeng
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (S.-S.F.); (J.D.); (L.M.); (X.-X.Z.)
| | - Zavuga Zuberi
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, Dar es Salaam P.O. Box 2958, Tanzania;
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China;
| | - Xiang Liu
- Department of Thoracic Surgery, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang 421001, China
- Correspondence: (X.L.); (Z.C.); Tel.: +86-0734-889-9990 (X.L.); +86-158-6971-6968 (Z.C.)
| | - Zhu Chen
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (S.-S.F.); (J.D.); (L.M.); (X.-X.Z.)
- Correspondence: (X.L.); (Z.C.); Tel.: +86-0734-889-9990 (X.L.); +86-158-6971-6968 (Z.C.)
| |
Collapse
|
22
|
He X, Li X, Han Y, Chen G, Xu T, Cai D, Sun Y, Wang S, Lai Y, Teng Z, Huang S, Liao W, Liao Y, Bin J, Xiu J. CircRNA Chordc1 protects mice from abdominal aortic aneurysm by contributing to the phenotype and growth of vascular smooth muscle cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:81-98. [PMID: 34938608 PMCID: PMC8649900 DOI: 10.1016/j.omtn.2021.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/23/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022]
Abstract
Circular RNAs (circRNAs) have important potential in modulating vascular smooth muscle cell (VSMC) activity, but their roles in abdominal aortic aneurysm (AAA) are unknown. We performed in situ hybridization and immunohistochemistry and determined that circChordc1 (cysteine and histidine-rich domain containing 1) was markedly downregulated in aneurysm tissue compared with normal arteries. A gene gain and loss strategy was used to confirm that circChordc1 transformed VSMCs into a contracted phenotype and improved their growth, which significantly suppressed aneurysm formation and reduced the risk of rupture in mouse models of angiotensin (Ang) II- and CaCl2-induced AAA. RNA pull-down, immunoprecipitation, and immunoblotting indicated that circChordc1 facilitated the VSMC phenotype and growth determination by binding to vimentin and ANXA2 (annexin A2), which not only increased vimentin phosphorylation to promote its degradation but also promoted the interaction between ANXA2 and glycogen synthase kinase 3 beta (GSK3β) to induce the nuclear entry of β-catenin. Thus, our present study revealed that circChordc1 optimized the VSMC phenotype and improved their growth by inducing vimentin degradation and increasing the activity of the GSK3β/β-catenin pathway, thereby extenuating vascular wall remodeling and reversing pathological aneurysm progression.
Collapse
Affiliation(s)
- Xiang He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Yuan Han
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Guojun Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| | - Tong Xu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| | - Donghua Cai
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| | - Yili Sun
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| | - Shifei Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| | - Yanxian Lai
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 1 Panfu Road, Guangzhou 510180, China
| | - Zhonghua Teng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| | - Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Jiancheng Xiu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| |
Collapse
|
23
|
Hennessy EJ. LncRNAs and Cardiovascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1363:71-95. [PMID: 35220566 DOI: 10.1007/978-3-030-92034-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A novel class of RNA molecule emerged from human transcriptome sequencing studies termed long non-coding RNAs. These RNA molecules differ from other classes of non-coding RNAs such as microRNAs in their sizes, sequence motifs and structures. Studies have demonstrated that long non-coding RNAs play a prominent role in the development and progression of cardiovascular disease. They provide the cell with tiered levels of gene regulation interacting with DNA, other RNA molecules or proteins acting in various capacities to control a variety of cellular mechanisms. Cell specificity is a hallmark of lncRNA studies and they have been identified in macrophages, smooth muscle cells, endothelial cells and hepatocytes. Recent lncRNA studies have uncovered functional micropeptides encoded within lncRNA genes that can have a different function to the lncRNA. Disease associated mutations in the genome tend to occur in non-coding regions signifying the importance of non-coding genes in disease associations. There is a great deal of work to be done in the non-coding RNA field and tremendous therapeutic potential due to their cell type specificity. A better understanding of the functions and interactions of lncRNAs will inevitably have clinical implications.
Collapse
Affiliation(s)
- Elizabeth J Hennessy
- University of Pennsylvania, Perelman School of Medicine, Institute for Translational Medicine and Therapeutics (ITMAT), Philadelphia, PA, USA.
| |
Collapse
|
24
|
Zhang D, Lu D, Xu R, Zhai S, Zhang K. Inhibition of XIST attenuates abdominal aortic aneurysm in mice by regulating apoptosis of vascular smooth muscle cells through miR-762/MAP2K4 axis. Microvasc Res 2022; 140:104299. [PMID: 34942175 DOI: 10.1016/j.mvr.2021.104299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a common chronic aortic degenerative disease. Long non-coding RNA X-inactive specific transcript (XIST) is associated with the progression of AAA, while the underlying mechanism is still unclear. We investigated the functional role of XIST in AAA. AAA mouse model was established by administration of Angiotensin II (Ang II). Primary mouse vascular smooth muscle cells (VSMCs) were separated from the abdominal aorta of Ang II-induced AAA mice, and then treated with Ang II. XIST was highly expressed in Ang II-treated VSMCs. Cell proliferation ability was decreased and apoptosis was increased in VSMCs following Ang II treatment. XIST knockdown reversed the impact of Ang II on cell proliferation and apoptosis in VSMCs. XIST promoted mitogen-activated protein kinase kinase 4 (MAP2K4) expression by sponging miR-762. XIST overexpression suppressed cell proliferation and apoptosis of Ang II-treated VSMCs by regulating miR-762/MAP2K4 axis. Finally, Ang II-induced AAA mouse model was established to verify the function of XIST in AAA. Inhibition of XIST significantly attenuated the pathological changes of abdominal aorta tissues in Ang II-induced mice. The expression of miR-762 was inhibited, and MAP2K4 expression was enhanced by XIST knockdown in the abdominal aorta tissues of AAA mice. In conclusion, these data demonstrate that inhibition of XIST attenuates AAA in mice, which attributes to inhibit apoptosis of VSMCs by regulating miR-762/MAP2K4 axis. Thus, this study highlights a novel ceRNA circuitry involving key regulators in the pathogenesis of AAA.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/enzymology
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Apoptosis
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Gene Expression Regulation, Enzymologic
- MAP Kinase Kinase 4/genetics
- MAP Kinase Kinase 4/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- RNA Interference
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Dongbin Zhang
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Danghui Lu
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Rutao Xu
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Shuiting Zhai
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Kewei Zhang
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China.
| |
Collapse
|
25
|
Wei W, Wang X, Wei Y, Liu S, Gao S, Tian H, Su D. lncRNA TUG1 protects intestinal epithelial cells from damage induced by high glucose and high fat via AMPK/SIRT1. Mol Med Rep 2022; 25:139. [PMID: 35211764 DOI: 10.3892/mmr.2022.12655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/12/2021] [Indexed: 11/05/2022] Open
Abstract
he incidence of obesity and type 2 diabetes mellitus (T2DM) is increasing year by year and shows a trend towards younger age groups worldwide. It has become a disease that endangers the health of individuals all over the world. Among numerous weight loss surgeries, sleeve gastrectomy (SG) has become one of the most common surgical strategies for the treatment of T2DM. However, SG‑mediated alterations to the molecular mechanism of metabolism require further investigation. Thus, reverse transcription‑quantitative PCR was used to detect the expression levels of long non‑coding (lnc)RNA taurine‑upregulated gene 1 (TUG1), Sirtuin 1 (SIRT1), AMP‑activated protein kinase (AMPK) and uncoupling protein 2 (UCP2) in the serum of T2DM patients, as well as in HIEC‑6 and SW480 cells following treatment with high glucose and high fat (HGHF). Protein expression was detected by western blotting. Cell Counting Kit‑8 assays were performed to analyze cell viability, and flow cytometry and a TUNEL assay was performed to evaluate cell apoptosis. The secretion of ILs in the culture medium was detected by conducting ELISAs. The results showed that lncRNA TUG1 and UCP2 expression was upregulated, SIRT1 and AMPK expression levels were decreased by SG. Under HGHF conditions, HIEC‑6 and SW480 cell viability was inhibited, apoptosis was promoted, TUG1 expression was downregulated, and SIRT1 and AMPK expression levels were upregulated. The secretory levels of IL‑1β, IL‑6 and IL‑8 were increased, whereas the secretion of IL‑10 was decreased under HGHF conditions. lncRNA TUG1 overexpression significantly reversed the effects of HGHF on cell viability, apoptosis and SIRT1, AMPK, UCP2 and Bcl‑2 expression levels. Together, the findings of the present study demonstrated that lncRNA TUG1 alleviated the damage induced by HGHF in intestinal epithelial cells by downregulating SIRT1 and AMPK expression, and upregulating UCP2 expression. Thus, the lncRNA TUG1/AMPK/SIRT1/UCP2 axis may serve an important role in the treatment of T2DM.
Collapse
Affiliation(s)
- Weiwei Wei
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Xingquan Wang
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Yaqing Wei
- Department of Infectious Diseases, The Central Hospital of Jiamusi City, Jiamusi, Heilongjiang 154002, P.R. China
| | - Shilin Liu
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Shengyu Gao
- Department of General Surgery, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Hao Tian
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Dewang Su
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| |
Collapse
|
26
|
Wang L, Zhou S, Liu Y, Li Y, Sun X. Bibliometric analysis of the inflammatory mechanism in aortic disease. Rev Cardiovasc Med 2022; 23:67. [PMID: 35229558 DOI: 10.31083/j.rcm2302067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND In view of the key role of inflammation in the pathogenesis of aortic disease, we visually analyzed the research hotspots of inflammatory mechanism in aortic disease in this work through the method of bibliometrics from the Web of Science (WOS) Core database over the past three decades. METHODS A visual bibliometric network of research articles on inflammatory mechanisms in aortic disease was obtained from VOSviewer and Citespace based on the WOS Core Collection. RESULTS A total of 1278 documents from January 1990 to February 2021 were selected for analysis. The United States and China had the highest percentage of articles, comprising 34.01% and 24.92% of articles worldwide, respectively. Harvard University has published the most articles in this field, followed by the University of Michigan and Huazhong University of Science and Technology. The top 3 research hotspots were atherosclerosis, oxidative stress, and macrophages. The journal with the most articles in this area was Arteriosclerosis Thrombosis and Vascular Biology, followed by Atherosclerosis and PLOS One. The research trend on inflammatory mechanisms in the aortic system has 5 distinct directions: (1) atherosclerosis, NF-κB, expression, smooth muscle cell, and oxidative stress; (2) coronary artery disease, C-reactive protein, risk factors, endothelial dysfunction, and aortic stenosis; (3) abdominal aortic aneurysm, matrix metalloproteinases, macrophage, and pathogenesis; (4) cholesterol, metabolism, low-density lipoprotein, gene expression, and a therosclerotic lesions; and (5) calcific aortic valve disease, interstitial cells, calcification, and stenosis. CONCLUSIONS Inflammatory mechanism research has shown a tendency to rise gradually in the aortic field. Numerous studies have explored the role of inflammatory responses in aortic disease, which may increase the risk of endothelial dysfunction (aortic fibrosis and stiffness) and induce plaque formation. Among them, NFκB activation, nitric-oxide synthase expression, and oxidative stress are particularly essential.
Collapse
Affiliation(s)
- Luchen Wang
- Aortic and Vascular Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Sangyu Zhou
- Aortic and Vascular Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Yanxiang Liu
- Aortic and Vascular Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Yunfeng Li
- Aortic and Vascular Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
- Shandong University, Qilu Hospital, 250012 Jinan, Shandong, China
| | - Xiaogang Sun
- Aortic and Vascular Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| |
Collapse
|
27
|
Xu B, Yang R, Yang B, Li L, Chen J, Fu J, Qu X, Huo D, Tan C, Chen H, Peng Z, Wang X. Long non-coding RNA lncC11orf54-1 modulates neuroinflammatory responses by activating NF-κB signaling during meningitic Escherichia coli infection. Mol Brain 2022; 15:4. [PMID: 34980188 PMCID: PMC8722204 DOI: 10.1186/s13041-021-00890-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
Escherichia coli is the most common gram-negative pathogenic bacterium causing meningitis. It penetrates the blood–brain barrier (BBB) and activates nuclear factor kappa B (NF-κB) signaling, which are vital events leading to the development of meningitis. Long non-coding RNAs (lncRNAs) have been implicated in regulating neuroinflammatory signaling, and our previous study showed that E. coli can induce differential expression of lncRNAs, including lncC11orf54-1, in human brain microvascular endothelial cells (hBMECs). The hBMECs constitute the structural and functional basis for the BBB, however, it is unclear whether lncRNAs are involved in the regulation of inflammatory responses of hBMECs during meningitic E. coli infection. In this study, we characterized an abundantly expressed lncRNA, lncC11orf54-1, which was degraded by translocated coilin to produce mgU2-19 and mgU2-30 in hBMECs during E. coli infection. Functionally, lncC11orf54-1-originated non-coding RNA mgU2-30 interacted with interleukin-1 receptor-associated kinase 1 (IRAK1) to induce its oligomerization and autophosphorylation, thus promoting the activation of NF-κB signaling and facilitating the production of pro-inflammatory cytokines. In summary, our study uncovers the involvement of lncC11orf54-1 in IRAK1–NF-κB signaling, and it functions as a positive regulator of inflammatory responses in meningitic E. coli-induced neuroinflammation, which may be a valuable therapeutic and diagnostic target for bacterial meningitis.
Collapse
Affiliation(s)
- Bojie Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Ruicheng Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Bo Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Liang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Jiaqi Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Jiyang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Xinyi Qu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Dong Huo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Zhong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China. .,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China. .,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China.
| |
Collapse
|
28
|
LncRNA GAS5 promotes abdominal aortic aneurysm formation through regulating the miR-185-5p/ADCY7 axis. Anticancer Drugs 2021; 33:225-234. [DOI: 10.1097/cad.0000000000001090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Lin Y, Huang H, Yu Y, Zhu F, Xiao W, Yang Z, Shao L, Shen Z. Long non-coding RNA RP11-465L10.10 promotes vascular smooth muscle cells phenotype switching and MMP9 expression via the NF-κB pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1776. [PMID: 35071470 PMCID: PMC8756256 DOI: 10.21037/atm-21-6402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/17/2021] [Indexed: 01/02/2023]
Abstract
Background Thoracic aortic aneurysm/dissection (TAA/D) are complicated vascular disorders with rapid development and high mortality. Vascular smooth muscle cells (VSMCs) phenotype switching plays an important role in the pathological process of TAA/D. Previous studies have indicated a potential correlation between long non-coding RNA (lncRNA) RP11-465L10.10 and matrix metallopeptidase 9 (MMP9) involved in the development of TAA/D. This study aims to investigate the role of lncRNA RP11-465L10.10 in VSMCs phenotype switching and the molecular mechanism in regulating MMP9 expression. Methods The expression of RP11-465L10.10 in vascular tissues and in VMSCs was detected by RT-qPCR. To investigate the role of RP11-465L10.10 on VSMCs phenotype switching, an RP11-465L10.10-overexpressed lentiviral vector was constructed and transfected into VSMCs. Through EdU staining, migration assay, flow cytometry analysis, the roles of RP11-465L10.10 were estimated. Bioinformatics indicated that RP11-465L10.10 upregulating MMP9 expression via NF-κB signaling, and SN50 (a specific inhibitor of NF-κB pathway) was used to inhibit the NF-κB pathway activation, then the expression of MMP9 was detected in RP11-465L10.10 overexpressed VMSCs. Results In this study, we found RP11-465L10.10 and MMP9 were highly increased in TAD patient tissues, which was consistent in angiotensin II-induced VSMCs phenotype switching. RP11-465L10.10 overexpression facilitated VSMCs phenotype switching and MMP9 expression. Mechanismly, NF-κB signal pathway was involved in RP11-465L10.10 induced VSMCs phenotype switching and MMP9 expression by transcriptome data analysis and experimental confirm. Conclusion This study demonstrated that RP11-465L10.10 induces VSMCs phenotype switching and MMP9 expression via the NF-κB signal pathway, suggesting that RP11-465L10.10 might be a potential therapeutic target for TAA/D treatment.
Collapse
Affiliation(s)
- Yang Lin
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haoyue Huang
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China.,Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - You Yu
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China.,Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Feng Zhu
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Weizhang Xiao
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziying Yang
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China.,Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Lianbo Shao
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China.,Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China.,Institute for Cardiovascular Science, Soochow University, Suzhou, China
| |
Collapse
|
30
|
Huang SF, Zhao G, Peng XF, Ye WC. The Pathogenic Role of Long Non-coding RNA H19 in Atherosclerosis via the miR-146a-5p/ANGPTL4 Pathway. Front Cardiovasc Med 2021; 8:770163. [PMID: 34820432 PMCID: PMC8606739 DOI: 10.3389/fcvm.2021.770163] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022] Open
Abstract
The abnormally expressed long non-coding RNA (lncRNA) H19 has a crucial function in the development and progression of cardiovascular disease; however, its role in atherosclerosis is yet to be known. We aimed to examine the impacts of lncRNA H19 on atherogenesis as well as the involved mechanism. The outcomes from this research illustrated that the expression of lncRNA H19 was elevated in mouse blood and aorta with lipid-loaded macrophages and atherosclerosis. Adeno-associated virus (AAV)-mediated lncRNA H19 overexpression significantly increased the atherosclerotic plaque area in apoE−/− mice supplied with a Western diet. The upregulation of lncRNA H19 decreased the miR-146a-5p expression but increased the levels of ANGPTL4 in mouse blood and aorta and THP-1 cells. Furthermore, lncRNA H19 overexpression promoted lipid accumulation in oxidized low-density lipoprotein (ox-LDL)-induced THP-1 macrophages. However, the knockdown of lncRNA H19 served as a protection against atherosclerosis in apoE−/− mice and lowered the accumulation of lipids in ox-LDL-induced THP-1 macrophages. lncRNA H19 promoted the expression of ANGPTL4 via competitively binding to miR-146a-5p, thus promoting lipid accumulation in atherosclerosis. These findings altogether demonstrated that lncRNA H19 facilitated the accumulation of lipid in macrophages and aggravated the progression of atherosclerosis through the miR-146a-5p/ANGPTL4 pathway. Targeting lncRNA H19 might be an auspicious therapeutic approach for preventing and treating atherosclerotic disease.
Collapse
Affiliation(s)
- Shi-Feng Huang
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Guifang Zhao
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Xiao-Fei Peng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Wen-Chu Ye
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
31
|
Li T, Wang T, Yan L, Ma C. Identification of potential novel biomarkers for abdominal aortic aneurysm based on comprehensive analysis of circRNA-miRNA-mRNA networks. Exp Ther Med 2021; 22:1468. [PMID: 34737808 PMCID: PMC8561771 DOI: 10.3892/etm.2021.10903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/08/2021] [Indexed: 01/10/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening disorder and, therefore, investigation into its underlying mechanisms in light of the competing endogenous RNAs (ceRNAs) hypothesis has gradually increased. However, there is still lacking systematic analysis on AAA-associated circular RNA (circRNA)-microRNA (miRNA/miR)-messenger RNA (mRNA) interaction networks based on bioinformatics methods. The present study attempted to identify novel molecular biomarkers for AAA by profiling circRNA-miRNA-mRNA networks using three public microarray datasets (GSE7084, GSE57691 and GSE144431). A total of 135 differentially expressed genes (DEGs) and 142 differentially expressed circRNAs were detected using the limma R package with the statistical threshold of P<0.05 and |log2fold change (FC)| >1.5. In addition, 12 circRNA-miRNA-mRNA axes were identified to construct upregulated and downregulated ceRNA networks using Cytoscape. Based on molecular complex detection algorithm, (hsa_circ_0057691/0092108/0006845/0082182)- miR-330-5p-calponin 1 (CNN1) and (hsa_circ_0061482/0011450/0008351/0004121)-miR-326-CD8a molecule (CD8A) were recognized as the center axes in ceRNA networks. Reverse transcription-quantitative PCR results verified the significant downregulation of CNN1 and upregulation of CD8A in human AAA tissues (P<0.05). In addition, four upregulated circRNA/mRNA axes, and five downregulated circRNA/mRNA axes were revealed to have possible biological functions in the pathogenesis of AAA using the Cytoscape software. Receiver operating characteristic analysis demonstrated the accuracy of these nine DEGs involved in these axes for AAA diagnosis with area under the curves >0.80. The present study revealed novel circRNA-miRNA-mRNA networks associated with AAA, especially for CNN1 and CD8A axes with the potential function of ‘focal adhesion’ and ‘immune response’, respectively. Overall, the present findings may provide evidence to explore the implicated ceRNAs in the molecular mechanisms and as novel biomarkers for AAA.
Collapse
Affiliation(s)
- Tan Li
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tianlong Wang
- The First Clinical College of China Medical University, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lirong Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
32
|
Zhang H, Bian C, Tu S, Yin F, Guo P, Zhang J, Song X, Liu Q, Chen C, Han Y. Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in human aortic dissection. BMC Genomics 2021; 22:724. [PMID: 34620091 PMCID: PMC8495997 DOI: 10.1186/s12864-021-08012-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Background Many studies on long chain non-coding RNAs (lncRNAs) are published in recent years. But the roles of lncRNAs in aortic dissection (AD) are still unclear and should be further examined. The present work focused on determining the molecular mechanisms underlying lncRNAs regulation in aortic dissection on the basis of the lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network. Methods This study collected the lncRNAs (GSE52093), mRNAs (GSE52093) and miRNAs (GSE92427) expression data within human tissue samples with aortic dissection group and normal group based on Gene Expression Omnibus (GEO) database. Results This study identified three differentially expressed lncRNAs (DELs), 19 differentially expressed miRNAs (DEmiRs) and 1046 differentially expressed mRNAs (DEGs) identified regarding aortic dissection. Furthermore, we constructed a lncRNA-miRNA-mRNA network through three lncRNAs (including two with up-regulation and one with down-regulation), five miRNAs (five with up-regulation), as well as 211 mRNAs (including 103 with up-regulation and 108 with down-regulation). Simultaneously, we conducted functional enrichment and pathway analyses on genes within the as-constructed ceRNA network. According to our PPI/ceRNA network and functional enrichment analysis results, four critical genes were found (E2F2, IGF1R, BDNF and PPP2R1B). In addition, E2F2 level was possibly modulated via lncRNA FAM87A-hsa-miR-31-5p/hsa-miR-7-5p or lncRNA C9orf106-hsa-miR-7-5p. The expression of IGF1R may be regulated by lncRNA FAM87A-hsa-miR-16-5p/hsa-miR-7-5p or lncRNA C9orf106-hsa-miR-7-5p. Conclusion In conclusion, the ceRNA interaction axis we identified is a potentially critical target for treating AD. Our results shed more lights on the possible pathogenic mechanism in AD using a lncRNA-associated ceRNA network.
Collapse
Affiliation(s)
- Hao Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Ce Bian
- Department of Cardiovascular Surgery, The General Hospital of the PLA Rocket Force, Beijing Normal University, Beijing, China
| | - Simei Tu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Fanxing Yin
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Panpan Guo
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Jian Zhang
- Department for Vascular Surgery, First Hospital of China Medical University, Shenyang, China
| | - Xiaotong Song
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Qingyang Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Chen Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Yanshuo Han
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China.
| |
Collapse
|
33
|
Abstract
Cardiac hypertrophy, characterized by the enlargement of cardiomyocytes, is initially an adaptive response to physiological and pathological stimuli. Decompensated cardiac hypertrophy is related to fibrosis, inflammatory cytokine, maladaptive remodeling, and heart failure. Although pathological myocardial hypertrophy is the main cause of hypertrophy-related morbidity and mortality, our understanding of its mechanism is still poor. Long noncoding RNAs (lncRNAs) are noncoding RNAs that regulate various physiological and pathological processes through multiple molecular mechanisms. Recently, accumulating evidence has indicated that lncRNA-H19 is a potent regulator of the progression of cardiac hypertrophy. For the first time, this review summarizes the current studies about the role of lncRNA-H19 in cardiac hypertrophy, including its pathophysiological processes and underlying pathological mechanism, including calcium regulation, fibrosis, apoptosis, angiogenesis, inflammation, and methylation. The context within which lncRNA-H19 might be developed as a target for cardiac hypertrophy treatment is then discussed to gain better insight into the possible biological functions of lncRNA-H19 in cardiac hypertrophy.
Collapse
|
34
|
Wang Z, Lin F, Cai Z, Lyu G. MiR-143 Mediates the TLR2/NF-κB Pathway to Attenuate AngII-induced Damage to VSMCs. Folia Biol (Praha) 2021. [DOI: 10.3409/fb_69-2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a perilous vascular disease with inflammatory response as its main feature. It is known that the expression of miR-143 is down-regulated in the human aortic aneurysm. In this study, we investigated the effect of miR-143 on AngII-induced VSMCs to learn
the potential mechanisms of miR-143 on AAA at the cellular level. The experimental results showed that the expressions of IL-1β, MCP-1, MMP9/13, TLR2, and NF-κB p65 and the percentage of TUNEL-positive cells in AngII-VSMCs were increased significantly compared with the control group.
miR-143 had the opposite result. When the expression of miR-143 was up-regulated, the expression of IL-β, MCP-1, and MMP9/13 and the percentage of TUNEL-positive cells in AngII-VSMCs was suppressed. With the transfection of miR-143 over-expression plasmid, IL-1β, MCP-1, and MMP9/13
and the percentage of TUNEL-positive cells were reversed, compared to the AngII group and the AngII+oe-TLR2+miR-143 mimic group. In AngII-induced mouse VSMC, the up-regulation of the miR-143 expression could inactivate the TLR2/NF-κB pathway, thereby alleviating inflammatory response,
ECM degradation, and cell apoptosis.
Collapse
|
35
|
Circular RNA Expression: Its Potential Regulation and Function in Abdominal Aortic Aneurysms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9934951. [PMID: 34306317 PMCID: PMC8263248 DOI: 10.1155/2021/9934951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/30/2021] [Indexed: 12/18/2022]
Abstract
Abdominal aortic aneurysms (AAAs) have posed a great threat to human life, and the necessity of its monitoring and treatment is decided by symptomatology and/or the aneurysm size. Accumulating evidence suggests that circular RNAs (circRNAs) contribute a part to the pathogenesis of AAAs. circRNAs are novel single-stranded RNAs with a closed loop structure and high stability, having become the candidate biomarkers for numerous kinds of human disorders. Besides, circRNAs act as molecular "sponge" in organisms, capable of regulating the transcription level. Here, we characterize that the molecular mechanisms underlying the role of circRNAs in AAA development were further elucidated. In the present work, studies on the biosynthesis, bibliometrics, and mechanisms of action of circRNAs were aims comprehensively reviewed, the role of circRNAs in the AAA pathogenic mechanism was illustrated, and their potential in diagnosing AAAs was examined. Moreover, the current evidence about the effects of circRNAs on AAA development through modulating endothelial cells (ECs), macrophages, and vascular smooth muscle cells (VSMCs) was summarized. Through thorough investigation, the molecular mechanisms underlying the role of circRNAs in AAA development were further elucidated. The results demonstrated that circRNAs had the application potential in the diagnosis and prevention of AAAs in clinical practice. The study of circRNA regulatory pathways would be of great assistance to the etiologic research of AAAs.
Collapse
|
36
|
Chen L, Li Q, Jiang Z, Li C, Hu H, Wang T, Gao Y, Wang D. Chrysin Induced Cell Apoptosis Through H19/let-7a/ COPB2 Axis in Gastric Cancer Cells and Inhibited Tumor Growth. Front Oncol 2021; 11:651644. [PMID: 34150620 PMCID: PMC8209501 DOI: 10.3389/fonc.2021.651644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Background Chrysin is a natural flavone that is present in honey and has exhibited anti-tumor properties. It has been widely studied as a therapeutic agent for the treatment of various types of cancers. The objectives of this present study were to elucidate how chrysin regulates non-coding RNA expression to exert anti-tumor effects in gastric cancer cells. Methods Through the use of RNA sequencing, we investigated the differential expression of mRNAs in gastric cancer cells treated with chrysin. Furthermore, COPB2, H19 and let-7a overexpression and knockdown were conducted. Other features, including cell growth, apoptosis, migration and invasion, were also analyzed. Knockout of the COPB2 gene was generated using the CRISPR/Cas9 system for tumor growth analysis in vivo. Results Our results identified COPB2 as a differentially expressed mRNA that is down-regulated following treatment with chrysin. Moreover, the results showed that chrysin can induce cellular apoptosis and inhibit cell migration and invasion. To further determine the underlying mechanism of COPB2 expression, we investigated the expression of the long non-coding RNA (lncRNA) H19 and microRNA let-7a. Our results showed that treatment with chrysin significantly increased let-7a expression and reduced the expression of H19 and COPB2. In addition, our results demonstrated that reduced expression of COPB2 markedly promotes cell apoptosis. Finally, in vivo data suggested that COPB2 expression is related to tumor growth. Conclusions This study suggests that chrysin exhibited anti-tumor effects through a H19/let-7a/COPB2 axis.
Collapse
Affiliation(s)
- Lin Chen
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| | - Chengshun Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Haobo Hu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Tiedong Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yan Gao
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
37
|
STAT3-induced up-regulation of lncRNA NEAT1 as a ceRNA facilitates abdominal aortic aneurysm formation by elevating TULP3. Biosci Rep 2021; 40:221717. [PMID: 31868202 PMCID: PMC6960067 DOI: 10.1042/bsr20193299] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) were viewed as crucial participants in the pathogenesis of abdominal aortic aneurysm (AAA). LncRNA NEAT1 was recognized as an oncogenic gene in various diseases. However, its function and mechanism in AAA were not precisely documented. Here, we explored the functional role and molecular mechanism of NEAT1 in AAA. Functionally, the effect of NEAT1 on the proliferation was assessed by CCK-8 and EdU assay, while its impact on the apoptosis was evaluated through caspase-3/9 activity and TUNEL assays. As a result, we found that NEAT1 knockdown enhanced the proliferation and impaired the apoptosis of vascular smooth muscle cells (VSMCs). Reversely, overexpressed NEAT1 exerted anti-proliferation and pro-apoptosis effects in VSMCs. Mechanically, we found that STAT3 acted as a transcription factor and contributed to NEAT1 transcription by ChIP and luciferase reporter assays. In addition, NEAT1 was confirmed as a sponge of miR-4688 and thereby increase the expression of TULP3 in VSMCs via RIP assay and RNA pull-down assay. Rescue experiments indicted that TULP3 overexpressing countervailed the impact of NEAT1 depletion on AAA biological processes. Conclusively, lncRNA NEAT1 induced by STAT3 was identified as a ceRNA and facilitated AAA formation by targeting miR-4688/TULP3 axis.
Collapse
|
38
|
Meng Q, Meng W, Bian H, Zheng F, Gu H, Zuo R, Miao X, Zhou Z, Wang L, Wen Z, Ma J, Su X. Total glucosides of paeony protects THP-1 macrophages against monosodium urate-induced inflammation via MALAT1/miR-876-5p/NLRP3 signaling cascade in gouty arthritis. Biomed Pharmacother 2021; 138:111413. [PMID: 33677310 DOI: 10.1016/j.biopha.2021.111413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/06/2021] [Accepted: 02/16/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Monosodium urate (MSU)-mediated inflammatory response is a crucial inducing factor in gouty arthritis. Here, we explored the underlying mechanism of total glucosides of paeony (TGP) in MSU-induced inflammation of THP-1 macrophages in gouty arthritis. METHODS 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect cell viability. Enzyme-linked immunosorbent assay (ELISA) was utilized to measure the production of interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α). Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot assay were conducted to determine RNA and protein expression. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull down assay were used to confirm the interaction between miR-876-5p and MALAT1 or NLR family pyrin domain containing 3 (NLRP3). RESULTS MSU-induced damage and inflammatory response in THP-1 macrophages were alleviated by the treatment of TGP in a dose-dependent manner. Overexpression of NLRP3 or MALAT1 reversed the protective effects of TGP in MSU-induced THP-1 macrophages. The binding relation between miR-876-5p and MALAT1 or NLRP3 was identified in THP-1 macrophages. MALAT1 up-regulated the expression of NLRP3 by sponging miR-876-5p in THP-1 macrophages. TGP suppressed MSU-induced inflammation in THP-1 macrophages through regulating MALAT1/miR-876-5p/NLRP3 axis. TGP suppressed MSU-induced activation of TLR4/MyD88/NF-κB pathway through regulating MALAT1/miR-876-5p/NLRP3 axis. CONCLUSION In conclusion, TGP suppressed MSU-induced inflammation in THP-1 macrophages through regulating MALAT1/miR-876-5p/NLRP3 axis and TLR4/MyD88/NF-κB pathway, suggesting that TGP was a promising active ingredient for gouty arthritis treatment.
Collapse
Affiliation(s)
- Qingliang Meng
- Department of Rheumatology, Henan province hospital of traditional Chinese medicine (The second affiliated hospital of Henan university of traditional Chinese medicine), Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Wanting Meng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Bian
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, China
| | - Fuzeng Zheng
- Department of Rheumatology, Henan province hospital of traditional Chinese medicine (The second affiliated hospital of Henan university of traditional Chinese medicine), Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Huimin Gu
- Department of Rheumatology, Henan province hospital of traditional Chinese medicine (The second affiliated hospital of Henan university of traditional Chinese medicine), Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ruiting Zuo
- Department of Rheumatology, Henan province hospital of traditional Chinese medicine (The second affiliated hospital of Henan university of traditional Chinese medicine), Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiyun Miao
- Department of Rheumatology, Henan province hospital of traditional Chinese medicine (The second affiliated hospital of Henan university of traditional Chinese medicine), Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zipeng Zhou
- Department of Rheumatology, Henan province hospital of traditional Chinese medicine (The second affiliated hospital of Henan university of traditional Chinese medicine), Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Liying Wang
- Henan province hospital of traditional Chinese medicine (The second affiliated hospital of Henan university of traditional Chinese medicine), Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhike Wen
- Henan province hospital of traditional Chinese medicine (The second affiliated hospital of Henan university of traditional Chinese medicine), Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Junfu Ma
- Department of Rheumatology, Henan province hospital of traditional Chinese medicine (The second affiliated hospital of Henan university of traditional Chinese medicine), Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| | - Xiao Su
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
39
|
LncRNA H19 regulates smooth muscle cell functions and participates in the development of aortic dissection through sponging miR-193b-3p. Biosci Rep 2021; 41:227493. [PMID: 33403385 PMCID: PMC7823186 DOI: 10.1042/bsr20202298] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/03/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Multiple studies showed that long-chain noncoding RNA H19 (LncRNA H19) is high-expressed in human and mouse abdominal aortic aneurysms (AAAs). We speculated that it plays an important role in arterial disease, and therefore studied the role and mechanism of H19 in aortic dissection (AD). METHODS The expressions of related genes in human aortic smooth muscle cells (HASMCs) induced by platelet-derived growth factor BB (PDGF-BB) or in the aortic tissue of AD patients/mice were identified by Western blot and quantitative real-time polymerase chain reaction. The targeting relationship between H19 and miR-193b-3p was predicted and verified by bioinformatics analysis, dual luciferase assay, RNA pull-down assay, RNA immunoprecipitation (RIP), and Pearson correlation coefficient. The H19 and miR-193b-3p effects on the biological functions of tissues and cells were examined by MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, thiazolyl blue tetrazolium bromide) assay, wound-healing assay, and Hematoxylin-Eosin (HE) staining. RESULTS LncRNA H19 was abnormally high-expressed in thoracic aorta tissues of AD patients, and it could competitively bind to and inhibit miR-193b-3p. In the PDGF-BB group, the expressions of H19, matrix metallopeptidase (MMP) 2 (MMP-2) and MMP-9 were up-regulated and the expressions of miR-193b-3p, α-SMA, and SM22α were down-regulated; moreover, the proliferation and migration rate of HASMCs were increased. However, H19 silencing reversed the regulation of PDGF-BB on HASMCs. More interestingly, miR-193b-3p inhibitor could partially reverse the effect of H19 silencing. In addition, the above results were verified by animal experiments, showing that shH19 and up-regulated miR-193b-3p could significantly reduce the thoracic aorta pathological damage in AD mice. CONCLUSION LncRNA H19 regulated smooth muscle cell function by sponging miR-193b-3p and it participated in the development of AD.
Collapse
|
40
|
Ono K, Horie T, Baba O, Kimura M, Tsuji S, Rodriguez RR, Miyagawa S, Kimura T. Functional non-coding RNAs in vascular diseases. FEBS J 2020; 288:6315-6330. [PMID: 33340430 PMCID: PMC9292203 DOI: 10.1111/febs.15678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/01/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022]
Abstract
Recently, advances in genomic technology such as RNA sequencing and genome‐wide profiling have enabled the identification of considerable numbers of non‐coding RNAs (ncRNAs). MicroRNAs have been studied for decades, leading to the identification of those with disease‐causing and/or protective effects in vascular disease. Although other ncRNAs such as long ncRNAs have not been fully described yet, recent studies have indicated their important functions in the development of vascular diseases. Here, we summarize the current understanding of the mechanisms and functions of ncRNAs, focusing on microRNAs, circular RNAs and long ncRNAs in vascular diseases.
Collapse
Affiliation(s)
- Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Takahiro Horie
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Osamu Baba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Masahiro Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Shuhei Tsuji
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | | | - Sawa Miyagawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
41
|
Wang S, Tian X, Liu D, Zhang X, Yan C, Han Y. TRPV5 attenuates abdominal aortic aneurysm in mice by regulating KLF4-dependent phenotype switch of aortic vascular smooth muscle cells. Arch Biochem Biophys 2020; 698:108724. [PMID: 33309615 DOI: 10.1016/j.abb.2020.108724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a fatal vascular disease with insidious symptoms. However, the mechanism behind its development remains unclear. The transient receptor potential vanilloid (TRPV) family has crucial protective effects against cardiovascular diseases, but the role of TRPV5 in AAA has yet to be reported. In this study, ApoE-/- mice were intraperitoneally injected with AAV-GFP or AAV-TRPV5. After 30 days, mice were further administered with angiotensin II (Ang II, 1.44 mg/kg/day) by using osmotic pumps to induce the AAA model or Saline for 28 days, (i.e., Saline + AAV-GFP, Saline + AAV-TRPV5, Ang II + AAV-GFP and Ang II + AAV-TRPV5 groups were established). Compared with the control group, the incidence of AAA and the maximal diameter of the abdominal aorta markedly decreased in Ang II + AAV-TRPV5, which was detected by vascular ultrasound at 28 day. Meanwhile, less collagen and elastin degradation were observed in the Ang II + AAV-TRPV5 group by using Masson and Elastin stains. Moreover, more α-SMA and less MMP2 was observed in the abdominal aortas collected at 28 day by immunohistochemistry. In vitro, primary mouse vascular smooth muscle cells (VSMCs) were treated with Ang II (1 μM) to induce phenotype switch. Sh-TRPV5 and AdTRPV5 were used to transfect VSMCs. PCR and Western blotting were used to access the expression of contractile marker, including α-SMA and SM-22α. The results showed that the mRNA and protein level of α-SMA and SM-22α were decreased under the stimulation of Ang II, but could be attenuated by TRPV5 overexpression. The cell scratch assay demonstrated that the migration ability of VSMCs was increased in Ang II treated group and could be ameliorated by TRPV5 overexpression. Above all, VSMCs transformed from the contractile into secretory phenotype under Ang II stimuli, but could be rescued by TRPV5 overexpression. Furthermore, TRPV5 overexpression suppressed the increased expression of KLF4 induced by Ang II treatment in VSMCs. The data demonstrated that TRPV5 could inhibit AAA formation and play a critical role in the VSMC phenotype switch by downregulating KLF4, suggesting TRPV5 as a new strategy for treating AAA.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaoxiang Tian
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan Liu
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaolin Zhang
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Yaling Han
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
42
|
Regnault V, Challande P, Pinet F, Li Z, Lacolley P. Cell senescence: basic mechanisms and the need for computational networks in vascular ageing. Cardiovasc Res 2020; 117:1841-1858. [PMID: 33206947 DOI: 10.1093/cvr/cvaa318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/26/2020] [Accepted: 10/28/2020] [Indexed: 01/10/2023] Open
Abstract
This review seeks to provide an update of the mechanisms of vascular cell senescence, from newly identified molecules to arterial ageing phenotypes, and finally to present a computational approach to connect these selected proteins in biological networks. We will discuss current key signalling and gene expression pathways by which these focus proteins and networks drive normal and accelerated vascular ageing. We also review the possibility that senolytic drugs, designed to restore normal cell differentiation and function, could effectively treat multiple age-related vascular diseases. Finally, we discuss how cell senescence is both a cause and a consequence of vascular ageing because of the possible feedback controls between identified networks.
Collapse
Affiliation(s)
- Véronique Regnault
- Université de Lorraine, INSERM, DCAC, 9 avenue de la forêt de Haye, CS 50184, 54000 Nancy, France
| | - Pascal Challande
- Sorbonne Université, CNRS, Institut Jean Le Rond d'Alembert, 4 place Jussieu, 75005 Paris, France
| | - Florence Pinet
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Zhenlin Li
- Sorbonne Université, CNRS, INSERM, IBPS, Biological Adaptation and Aging, Paris, France
| | - Patrick Lacolley
- Université de Lorraine, INSERM, DCAC, 9 avenue de la forêt de Haye, CS 50184, 54000 Nancy, France
| |
Collapse
|
43
|
Du J, Li Z, Wang X, Li J, Liu D, Wang X, Wei J, Ma S, Zhang Y, Hou Y. Long noncoding RNA TCONS-00106987 promotes atrial electrical remodelling during atrial fibrillation by sponging miR-26 to regulate KCNJ2. J Cell Mol Med 2020; 24:12777-12788. [PMID: 32954646 PMCID: PMC7687017 DOI: 10.1111/jcmm.15869] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been suggested to play indispensable roles in multiple heart diseases. However, the correlations between lncRNAs and atrial fibrillation (AF) are unclear. In this study, we performed comprehensive lncRNA profiling via high-throughput RNA sequencing analysis using non-AF and AF rabbit models. Based on a series of filtering pipelines and bioinformatics analyses, TCONS-00106987 was selected for further research. TCONS-00106987 levels were increased in the atria during AF. Moreover, the atrial effective refractory period was shortened and the AF inducibility was increased in vivo in response to lentiviral-mediated up-regulation of TCONS-00106987. TCONS-00106987 repression resulted in the opposite effects. Further studies indicated that TCONS-00106987 expression was positively correlated with the expression of the protein-coding gene KCNJ2. Luciferase reporter assays and whole-cell patch-clamp recording confirmed that TCONS-00106987 promoted electrical remodelling via endogenous competition with microRNA-26 (miR-26) to induce transcription of its target gene KCNJ2, thereby increasing inward-rectifier K+ current (IK1 ). In conclusion, our study reveals a pathogenic lncRNA-miRNA regulatory network specific to atrial electrical remodelling that offers potential therapeutic targets for AF.
Collapse
Affiliation(s)
- Juanjuan Du
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhan Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianhua Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Donglu Liu
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ximin Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinqiu Wei
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shenzhou Ma
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yujiao Zhang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yinglong Hou
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
44
|
Lu Y, Liu H, Yang XY, Liu JX, Dai MY, Wu JC, Guo YX, Luo TC, Sun FF, Pan W. Microarray Analysis of lncRNA and mRNA Reveals Enhanced Lipolysis Along With Metabolic Remodeling in Mice Infected With Larval Echinococcus granulosus. Front Physiol 2020; 11:1078. [PMID: 32973568 PMCID: PMC7472464 DOI: 10.3389/fphys.2020.01078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Parasitic infection improves metabolic homeostasis in “western diet”-induced obesity through the regulation of adipogenesis. However, the underlying mechanism is not yet fully understood. Using microarray analysis, this study investigated the long non-coding RNA (lncRNA) and messenger RNA (mRNA) profiles of subcutaneous adipose tissues from mice infected with Echinococcus granulosus protoscoleces. A total of 1052 mRNA (541 upregulated, 511 downregulated) and 220 lncRNA (126 upregulated, 94 downregulated) transcripts were differentially expressed (fold change ≥2, P < 0.05) in the infected subcutaneous adipose tissues. When compared with the control group, the infected mice showed a decrease in adipose tissue mass and a reduction in adipocyte size. Indirect calorimetry revealed the change in the energy metabolism after infection, characterized by a lower CO2 production and O2 consumption, a sharp decline in carbohydrate oxidation, and a slight increase in fat oxidation. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that the parasitic infection reprogrammed a complex metabolic network. Notably, “lipoxygenase” and “arginine and proline metabolism” pathways were significantly upregulated while “glycolysis,” “tricarboxylic acid cycle,” “de novo lipogenesis,” and “lipid droplet” pathways were dramatically downregulated. In addition, several key lncRNAs were associated with insulin resistance and adipocyte differentiation. Overall, the present study suggested that E. granulosus infection could enhance lipolysis. Thus, our findings provide novel insights into parasite-mediated metabolic homeostasis, and into the mechanism of hypertrophic adipocytes in obesity.
Collapse
Affiliation(s)
- Yang Lu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Hua Liu
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Xiao-Ying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Jia-Xue Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Meng-Yu Dai
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Jia-Cheng Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Yu-Xin Guo
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Tian-Cheng Luo
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Fen-Fen Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
45
|
Gareev I, Beylerli O, Aliev G, Pavlov V, Izmailov A, Zhang Y, Liang Y, Yang G. The Role of Long Non-Coding RNAs in Intracranial Aneurysms and Subarachnoid Hemorrhage. Life (Basel) 2020; 10:life10090155. [PMID: 32825276 PMCID: PMC7555693 DOI: 10.3390/life10090155] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/06/2020] [Accepted: 08/15/2020] [Indexed: 12/14/2022] Open
Abstract
Intracranial aneurysms (IAs) represent the most complex and relevant problem of modern neurology and neurosurgery. They serve as one of the main causes of non-traumatic subarachnoid hemorrhage (SAH), causing up to 85% of all cases of intracranial hemorrhage, which is associated with frequent disability and high mortality among patients. Unfortunately, the molecular mechanisms of the development and rupture of IAs are still under study. Long non-coding RNAs (lncRNAs) are non-coding RNAs that typically have a length of more than 200 nucleotides. It is known that lncRNAs regulate many processes, such as transcription, translation, cell differentiation, regulation of gene expression, and regulation of the cell cycle. In recent years, a lot of evidence has established their role in human diseases from oncology to cardiovascular disease. Recent studies have shown that lncRNAs may be involved in the pathogenesis of IAs. The study of lncRNAs and its targets in various pathological conditions of a person is a rapidly developing field, and it is likely that the knowledge obtained from these studies regarding the pathogenesis of intracranial aneurysms will have the potential to use lncRNAs in therapy, as well as in the diagnosis and prediction of high aneurysms risk of rupture.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, 450008 Ufa, Republic of Bashkortostan, Russia; (I.G.); (O.B.); (V.P.)
| | - Ozal Beylerli
- Bashkir State Medical University, 450008 Ufa, Republic of Bashkortostan, Russia; (I.G.); (O.B.); (V.P.)
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
- Research Institute of Human Morphology, Russian Academy of Medical Science, 117418 Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia
- GALLY International Research Institute, San Antonio, TX 78229, USA
| | - Valentin Pavlov
- Bashkir State Medical University, 450008 Ufa, Republic of Bashkortostan, Russia; (I.G.); (O.B.); (V.P.)
| | - Adel Izmailov
- Regional Clinical Oncology Center, 450054 Ufa, Republic of Bashkortostan, Russia;
| | - Yiwei Zhang
- Harbin Medical University, Harbin 150081, China; or
| | - Yanchao Liang
- Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China;
- Institute of Brain Science, Harbin Medical University, Harbin 150001, China
| | - Guang Yang
- Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China;
- Institute of Brain Science, Harbin Medical University, Harbin 150001, China
- Correspondence: or ; Tel.: +86-187-4607-2927
| |
Collapse
|
46
|
Shi X, Wei YT, Li H, Jiang T, Zheng XL, Yin K, Zhao GJ. Long non-coding RNA H19 in atherosclerosis: what role? Mol Med 2020; 26:72. [PMID: 32698876 PMCID: PMC7374855 DOI: 10.1186/s10020-020-00196-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis (AS) is widely accepted to be a multistep pathophysiological process associated with several other processes such as angiogenesis and inflammatory response. Long non-coding RNAs (lncRNAs) are non-protein coding RNAs (more than 200 nucleotides in length) and can regulate gene expression at the transcriptional and post-transcriptional levels. Recent studies suggest that lncRNA-H19 plays important roles in the regulation of angiogenesis, adipocyte differentiation, lipid metabolism, inflammatory response, cellular proliferation and apoptosis. In this review, we primarily discuss the roles of lncRNA-H19 in atherosclerosis-related pathophysiological processes and the potential mechanisms by which lncRNA-H19 regulates the development of atherosclerosis, to help provide a better understanding of the biological functions of lncRNA-H19 in atherosclerosis.
Collapse
Affiliation(s)
- Xian Shi
- School of Medicine, Guilin Medical University, Guilin, 541100, Guangxi, China
| | - Ya-Ting Wei
- School of Medicine, Guilin Medical University, Guilin, 541100, Guangxi, China
| | - Heng Li
- Institute of Cardiovascular Research, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, Hunan, China
| | - Ting Jiang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, Calgary, AB, Canada.,Key Laboratory of Molecular Targets and Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Kai Yin
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541100, Guangxi, China.
| | - Guo-Jun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, 511518, Guangdong, China.
| |
Collapse
|
47
|
Song H, Xu T, Feng X, Lai Y, Yang Y, Zheng H, He X, Wei G, Liao W, Liao Y, Zhong L, Bin J. Itaconate prevents abdominal aortic aneurysm formation through inhibiting inflammation via activation of Nrf2. EBioMedicine 2020; 57:102832. [PMID: 32574955 PMCID: PMC7322255 DOI: 10.1016/j.ebiom.2020.102832] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Identifying effective drugs to suppress vascular inflammation is a promising strategy to delay the progression of abdominal aortic aneurysm (AAA). Itaconate has a vital role in regulating inflammatory activation in various inflammatory diseases. However, the role of itaconate in the progression of AAA is unknown. In this study, we explored the inhibitory effect of itaconate on AAA formation and its underlying mechanisms. METHODS Quantitative PCR, western blotting and immunohistochemistry were used to determine Irg1 and downstream Nrf2 expression in human and mouse AAA samples. Liquid chromatograph-mass spectrometry (LC-MS) analysis was performed to measure the abundance of itaconate. OI treatment and Irg1 knockdown were performed to study the role of OI in AAA formation. Nrf2 intervention in vivo was performed to detect the critical role of Nrf2 in the beneficial effect of OI on AAA. FINDINGS We found that itaconate suppressed the formation of angiotensin II (Ang II)-induced AAA in apolipoprotein E-deficient (Apoe-/-) mice, while Irg1 deficiency exerted the opposite effect. Mechanistically, itaconate inhibited vascular inflammation by enabling Nrf2 to function as a transcriptional repressor of downstream inflammatory genes via alkylation of Keap1. Moreover, Nrf2 deficiency significantly aggravated inflammatory factor expression and promoted AAA formation. In addition, Keap1 overexpression significantly promoted Ang II-induced AAA formation, which was inhibited by itaconate. INTERPRETATION Itaconate inhibited AAA formation by suppressing vascular inflammation, and therapeutic approaches to increase itaconate are potentially beneficial for preventing AAA formation. FUNDING National Natural Science Foundations of China and Guangzhou regenerative medicine and Health Laboratory of Guangdong.
Collapse
Affiliation(s)
- Haoyu Song
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Tong Xu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Xiaofei Feng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Yanxian Lai
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Yang Yang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Xiang He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Guoquan Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Lintao Zhong
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China; Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai 519000, China.
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China.
| |
Collapse
|
48
|
Non-coding RNA regulators of diabetic polyneuropathy. Neurosci Lett 2020; 731:135058. [PMID: 32454150 DOI: 10.1016/j.neulet.2020.135058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
Abstract
Diabetic polyneuropathy is a common and disturbing complication of diabetes mellitus, presenting patients and caregivers with a substantial disease burden. Emerging mechanisms which are underlying diabetes may provide novel pathways to understand diabetic polyneuropathy (DPN). Specifically, non-coding RNA molecules consisting of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are implicated in the biological processes underlying DPN, and may link it to clinical spheres such as other metabolic and neural pathologies. Here, we elaborate on several candidate non-coding RNAs which may be associated with DPN via regulatory roles governing phenomena related to inflammatory, pain-provoking, and metabolic syndrome pathways. Specific examples include miRNAs such as miR-106a, -146a, -9, -29b, -466a, and -98; likewise, lncRNAs MIAT, PVT1, H19, MEG3, and MALAT1 are implicated, often co-affecting the involved pathways. Incorporating newly discovered regulators into what we know about specific clinical applications may highlight novel avenues for diagnosis, prevention, and intervention with DPN.
Collapse
|
49
|
Cao T, Jiang Y, Li D, Sun X, Zhang Y, Qin L, Tellides G, Taylor HS, Huang Y. H19/TET1 axis promotes TGF-β signaling linked to endothelial-to-mesenchymal transition. FASEB J 2020; 34:8625-8640. [PMID: 32374060 PMCID: PMC7364839 DOI: 10.1096/fj.202000073rrrrr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
While emerging evidence suggests the link between endothelial activation of TGF-β signaling, induction of endothelial-to-mesenchymal transition (EndMT), and cardiovascular disease (CVD), the molecular underpinning of this connection remains enigmatic. Here, we report aberrant expression of H19 lncRNA and TET1 in endothelial cells (ECs) of human atherosclerotic coronary arteries. Using primary human umbilical vein endothelial cells (HUVECs) and aortic endothelial cells (HAoECs) we show that TNF-α, a known risk factor for endothelial dysfunction and CVD, induces H19 expression which in turn activates TGF-β signaling and EndMT via a TET1-dependent epigenetic mechanism. We also show that H19 regulates TET1 expression at the posttranscriptional level. Further, we provide evidence that this H19/TET1-mediated regulation of TGF-β signaling and EndMT occurs in mouse pulmonary microvascular ECs in vivo under hyperglycemic conditions. We propose that endothelial activation of the H19/TET1 axis may play an important role in EndMT and perhaps CVD.
Collapse
Affiliation(s)
- Tiefeng Cao
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Gynecology and Obstetrics, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ying Jiang
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Da Li
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoli Sun
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuanyuan Zhang
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - George Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Yingqun Huang
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
50
|
Li K, Cui M, Zhang K, Wang G, Zhai S. LncRNA CRNDE affects the proliferation and apoptosis of vascular smooth muscle cells in abdominal aortic aneurysms by regulating the expression of Smad3 by Bcl-3. Cell Cycle 2020; 19:1036-1047. [PMID: 32240036 PMCID: PMC7217363 DOI: 10.1080/15384101.2020.1743915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/21/2020] [Accepted: 03/05/2020] [Indexed: 10/24/2022] Open
Abstract
Previous studies show that Long non-coding RNAs (LncRNAs) are involved in the regulation of various human diseases. This study aimed to reveal how LncRNA CRNDE regulated vascular smooth muscle cells (VSMCs) proliferation and apoptosis in abdominal aortic aneurysms (AAA). Here, we found CRNDE was down-regulated in AAA tissues and AngII-stimulated VSMCs. The overexpression of CRNDE promoted VSMCs proliferation and inhibited cell apoptosis. The interaction between CRNDE and Bcl-3 or Bcl-3 and Smad3 was verified. The interference with Bcl-3 or CRNDE reduced Smad3 stability or promoted Smad3 ubiquitination. After pcDNA-CRNDE or pcDNA-CRNDE+si-Bcl-3 was transfected into VSMCs and stimulated with AngII, CRNDE affected VSMCs proliferation and apoptosis via regulating Smad3 via Bcl-3. Vivo experiments showed the overexpression of CRNDE repressed AAA growth. Therefore, we concluded that CRNDE was down-regulated in AAA tissues and AngII-stimulated VSMCs. Furthermore, the overexpression of CRNDE promoted VSMCs proliferation and repressed cell apoptosis in AAA by up-regulating Smad3 via Bcl-3.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Apoptosis/genetics
- B-Cell Lymphoma 3 Protein/genetics
- B-Cell Lymphoma 3 Protein/metabolism
- Cell Proliferation/genetics
- Cells, Cultured
- Disease Models, Animal
- Down-Regulation
- Genetic Vectors/administration & dosage
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction/genetics
- Smad3 Protein/metabolism
- Transfection
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Kun Li
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Mingzhe Cui
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Kewei Zhang
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Guoquan Wang
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Shuiting Zhai
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| |
Collapse
|