1
|
Wang L, Song J, Yang Z, Zhang H, Wang Y, Liu J, Wang S, Shi J, Tong X. SERCA2 dysfunction accelerates angiotensin II-induced aortic aneurysm and atherosclerosis by induction of oxidative stress in aortic smooth muscle cells. J Mol Cell Cardiol 2025; 200:68-81. [PMID: 39884553 DOI: 10.1016/j.yjmcc.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/27/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND AND AIM Our previous research indicates that sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) dysfunction facilitates the phenotypic transformation of aortic smooth muscle cells (ASMCs) and intensifies aortic aneurysm through the regulation of calcium-dependent pathways and endoplasmic reticulum stress. Our hypothesis is that additional mechanisms are involved in aortic aneurysm and atherosclerosis induced by SERCA2 dysfunction from the perspective of ASMC phenotypic transformation. METHODS & RESULTS In SERCA2 dysfunctional mice and their control littermates, ASMCs were isolated to analyze protein expression and cell functions, and angiotensin II was infused into these mice that were backcrossed into LDL receptor deficient background to induce aortic aneurysm and atherosclerosis. In ASMCs from SERCA2 dysfunctional mice, the cell cycle was accelerated, and proliferation and migration were enhanced, which could be reversed by SERCA agonist CDN1163 or calcium chelator BAPTA-AM. In ASMCs, SERCA2 dysfunction increased reactive oxygen species (ROS) production, activating extracellular signal-regulated kinases 1 and 2 (ERK1/2) and angiotensin II/angiotensin II type 1 receptor (AT1R) pathways. Both ERK1/2 and angiotensin II/AT1R activations are implicated in SERCA2 dysfunction-induced ASMC phenotypic transformation and ROS production. The redox modulator Tempol suppressed ERK1/2 and angiotensin II/AT1R pathways, inhibiting ASMC phenotypic transformation and alleviating angiotensin II-induced aortic aneurysm and atherosclerosis. CONCLUSION SERCA2 dysfunction accelerates aortic aneurysm and atherosclerosis by inducing oxidative stress in ASMCs, with activations of ERK1/2 and angiotensin II/AT1R involved in ASMC phenotypic transformation. Inhibition of oxidative stress in ASMCs is beneficial in alleviating angiotensin II-induced aortic aneurysm and atherosclerosis caused by SERCA2 dysfunction.
Collapse
Affiliation(s)
- Langtao Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China; School of Biosciences and Technology, Chengdu Medical College, Chengdu 610500, China; The Third Affiliated Hospital, Chengdu Medical College, Chengdu 610500, China
| | - Jiarou Song
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhen Yang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Hailong Zhang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yaping Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jin Liu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Sai Wang
- Southwest Medical University Zigong Affiliated Hospital, Zigong 643020, China.
| | - Jian Shi
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK.
| | - Xiaoyong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, China; Chongqing Key Laboratory of New Drug Delivery System, Chongqing 400038, China.
| |
Collapse
|
2
|
Su Z, Lu W, Cao J, Xie Z, Zhao P. Endoplasmic reticulum stress in abdominal aortic aneurysm. INTERNATIONAL JOURNAL OF CARDIOLOGY. HEART & VASCULATURE 2024; 54:101500. [PMID: 39280692 PMCID: PMC11402186 DOI: 10.1016/j.ijcha.2024.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
Abdominal aortic aneurysms (AAAs) are characterized by permanent dilatation of the abdominal aorta, which is accompanied by inflammation, degradation of the extracellular matrix (ECM) and disruption of vascular smooth muscle cell (VSMC) homeostasis. Endoplasmic reticulum (ER) stress is involved in the regulation of inflammation, oxidative stress and VSMC apoptosis, all of which are critical factors in AAA development. Although several studies have revealed the occurrence of ER stress in AAA development, the specific biological functions of ER stress in AAA development remain largely unknown. Given that targeting ER stress is a promising strategy for treating AAAs, further investigation of the physiological and pathological roles of ER stress in AAA development is warranted.
Collapse
Affiliation(s)
- Zhaohai Su
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu 225001, PR China
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Weiling Lu
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Jun Cao
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Zheng Xie
- Department of General Practice, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Pei Zhao
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu 225001, PR China
| |
Collapse
|
3
|
Bailly C. Covalent binding of withanolides to cysteines of protein targets. Biochem Pharmacol 2024; 226:116405. [PMID: 38969301 DOI: 10.1016/j.bcp.2024.116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Withanolides represent an important category of natural products with a steroidal lactone core. Many of them contain an α,β-unsaturated carbonyl moiety with a high reactivity toward sulfhydryl groups, including protein cysteine thiols. Different withanolides endowed with marked antitumor and anti-inflammatory have been shown to form stable covalent complexes with exposed cysteines present in the active site of oncogenic kinases (BTK, IKKβ, Zap70), metabolism enzymes (Prdx-1/6, Pin1, PHGDH), transcription factors (Nrf2, NFκB, C/EBPβ) and other structural and signaling molecules (GFAP, β-tubulin, p97, Hsp90, vimentin, Mpro, IPO5, NEMO, …). The present review analyzed the covalent complexes formed through Michael addition alkylation reactions between six major withanolides (withaferin A, physalin A, withangulatin A, 4β-hydroxywithanolide E, withanone and tubocapsanolide A) and key cysteine residues of about 20 proteins and the resulting biological effects. The covalent conjugation of the α,β-unsaturated carbonyl system of withanolides with reactive protein thiols can occur with a large set of soluble and membrane proteins. It points to a general mechanism, well described with the leading natural product withaferin A, but likely valid for most withanolides harboring a reactive (electrophilic) enone moiety susceptible to react covalently with cysteinyl residues of proteins. The multiplicity of reactive proteins should be taken into account when studying the mechanism of action of new withanolides. Proteomic and network analyses shall be implemented to capture and compare the cysteine covalent-binding map for the major withanolides, so as to identify the protein targets at the origin of their activity and/or unwanted effects. Screening of the cysteinome will help understanding the mechanism of action and designing cysteine-reactive electrophilic drug candidates.
Collapse
Affiliation(s)
- Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, University of Lille, F-59000 Lille, France; Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France; OncoWitan, Scientific Consulting Office, F-59290 Lille, France.
| |
Collapse
|
4
|
Pang ASR, Dinesh T, Pang NYL, Dinesh V, Pang KYL, Yong CL, Lee SJJ, Yip GW, Bay BH, Srinivasan DK. Nanoparticles as Drug Delivery Systems for the Targeted Treatment of Atherosclerosis. Molecules 2024; 29:2873. [PMID: 38930939 PMCID: PMC11206617 DOI: 10.3390/molecules29122873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis continues to be a leading cause of morbidity and mortality globally. The precise evaluation of the extent of an atherosclerotic plaque is essential for forecasting its likelihood of causing health concerns and tracking treatment outcomes. When compared to conventional methods used, nanoparticles offer clear benefits and excellent development opportunities for the detection and characterisation of susceptible atherosclerotic plaques. In this review, we analyse the recent advancements of nanoparticles as theranostics in the management of atherosclerosis, with an emphasis on applications in drug delivery. Furthermore, the main issues that must be resolved in order to advance clinical utility and future developments of NP research are discussed. It is anticipated that medical NPs will develop into complex and advanced next-generation nanobotics that can carry out a variety of functions in the bloodstream.
Collapse
Affiliation(s)
- Alexander Shao-Rong Pang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (A.S.-R.P.); (N.Y.-L.P.); (C.L.Y.)
| | - Tarini Dinesh
- Department of Medicine, Government Kilpauk Medical College, Chennai 600010, Tamilnadu, India;
| | - Natalie Yan-Lin Pang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (A.S.-R.P.); (N.Y.-L.P.); (C.L.Y.)
| | - Vishalli Dinesh
- Department of Pathology, Dhanalakshmi Srinivasan Medical College Hospital, Perambalur 621113, Tamilnadu, India;
| | - Kimberley Yun-Lin Pang
- Division of Medicine, South Australia Health, Northern Adelaide Local Health Network, Adelaide, SA 5112, Australia; (K.Y.-L.P.); (S.J.J.L.)
| | - Cai Ling Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (A.S.-R.P.); (N.Y.-L.P.); (C.L.Y.)
| | - Shawn Jia Jun Lee
- Division of Medicine, South Australia Health, Northern Adelaide Local Health Network, Adelaide, SA 5112, Australia; (K.Y.-L.P.); (S.J.J.L.)
| | - George W. Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (G.W.Y.); (B.H.B.)
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (G.W.Y.); (B.H.B.)
| | - Dinesh Kumar Srinivasan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (G.W.Y.); (B.H.B.)
| |
Collapse
|
5
|
Que Y, Shi J, Zhang Z, Sun L, Li H, Qin X, Zeng Z, Yang X, Chen Y, Liu C, Liu C, Sun S, Jin Q, Zhang Y, Li X, Lei M, Yang C, Tian H, Tian J, Chang J. Ion cocktail therapy for myocardial infarction by synergistic regulation of both structural and electrical remodeling. EXPLORATION (BEIJING, CHINA) 2024; 4:20230067. [PMID: 38939858 PMCID: PMC11189571 DOI: 10.1002/exp.20230067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/27/2023] [Indexed: 06/29/2024]
Abstract
Myocardial infarction (MI) is a leading cause of death worldwide. Few drugs hold the ability to depress cardiac electrical and structural remodeling simultaneously after MI, which is crucial for the treatment of MI. The aim of this study is to investigate an effective therapy to improve both electrical and structural remodeling of the heart caused by MI. Here, an "ion cocktail therapy" is proposed to simultaneously reverse cardiac structural and electrical remodeling post-MI in rats and minipigs by applying a unique combination of silicate, strontium (Sr) and copper (Cu) ions due to their specific regulatory effects on the behavior of the key cells involved in MI including angiogenesis of endothelial cells, M2 polarization of macrophages and apoptosis of cardiomyocyte. The results demonstrate that ion cocktail treatment attenuates structural remodeling post-MI by ameliorating infarct size, promoting angiogenesis in both peri-infarct and infarct areas. Meantime, to some extent, ion cocktail treatment reverses the deteriorative electrical remodeling by reducing the incidence rate of early/delayed afterdepolarizations and minimizing the heterogeneity of cardiac electrophysiology. This ion cocktail therapy reveals a new strategy to effectively treat MI with great clinical translation potential due to the high effectiveness and safety of the ion cocktail combination.
Collapse
Affiliation(s)
- Yumei Que
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Jiaxin Shi
- Department of UltrasoundThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhaowenbin Zhang
- Shanghai Institute of CeramicsChinese Academy of Sciences (CAS)ShanghaiChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of CASBeijingChina
| | - Lu Sun
- Department of Cardiovascular SurgeryPeking University Shenzhen HospitalShenzhenChina
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Hairu Li
- Department of UltrasoundThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xionghai Qin
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Department of Cardiovascular SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhen Zeng
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Xiao Yang
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Yanxin Chen
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Chong Liu
- Department of UltrasoundThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Chang Liu
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Shijie Sun
- Department of UltrasoundThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Qishu Jin
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Yanxin Zhang
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Xin Li
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Ming Lei
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Chen Yang
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Hai Tian
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Department of Cardiovascular SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jiawei Tian
- Department of UltrasoundThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jiang Chang
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
- Shanghai Institute of CeramicsChinese Academy of Sciences (CAS)ShanghaiChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of CASBeijingChina
| |
Collapse
|
6
|
Yu W, Zhang Q, Qiu Y, Chen H, Huang X, Xiao L, Xu G, Li S, Hu P, Tong X. CDN1163 alleviates SERCA2 dysfunction-induced pulmonary vascular remodeling by inhibiting the phenotypic transition of pulmonary artery smooth muscle cells. Clin Exp Hypertens 2023; 45:2272062. [PMID: 37899350 DOI: 10.1080/10641963.2023.2272062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND AND PURPOSE Substitution of Cys674 (C674) in the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) causes SERCA2 dysfunction which leads to activated inositol requiring enzyme 1 alpha (IRE1α) and spliced X-box binding protein 1 (XBP1s) pathway accelerating cell proliferation of pulmonary artery smooth muscle cells (PASMCs) followed by significant pulmonary vascular remodeling resembling human pulmonary hypertension. Based on this knowledge, we intend to investigate other potential mechanisms involved in SERCA2 dysfunction-induced pulmonary vascular remodeling. EXPERIMENTAL APPROACH Heterozygous SERCA2 C674S knock-in (SKI) mice of which half of cysteine in 674 was substituted by serine to mimic the partial irreversible oxidation of C674 were used. The lungs of SKI mice and their littermate wild-type mice were collected for PASMC culture, protein expression, and pulmonary vascular remodeling analysis. RESULTS SERCA2 dysfunction increased intracellular Ca2+ levels, which activated Ca2+-dependent calcineurin (CaN) and promoted the nuclear translocation and protein expression of the nuclear factor of activated T-lymphocytes 4 (NFAT4) in an IRE1α/XBP1s pathway-independent manner. In SKI PASMCs, the scavenge of intracellular Ca2+ by BAPTA-AM or inhibition of CaN by cyclosporin A can prevent PASMC phenotypic transition. CDN1163, a SERCA2 agonist, suppressed the activation of CaN/NFAT4 and IRE1α/XBP1s pathways, reversed the protein expression of PASMC phenotypic transition markers and cell cycle-related proteins, and inhibited cell proliferation and migration when given to SKI PASMCs. Furthermore, CDN1163 ameliorated pulmonary vascular remodeling in SKI mice. CONCLUSIONS AND IMPLICATIONS SERCA2 dysfunction promotes PASMC phenotypic transition and pulmonary vascular remodeling by multiple mechanisms, which could be improved by SERCA2 agonist CDN1163.
Collapse
Affiliation(s)
- Weimin Yu
- Institute of Health Biological Chemical Medication, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Qian Zhang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yixiang Qiu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Hui Chen
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiaoyang Huang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Li Xiao
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Gang Xu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Siqi Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Central Clinical School, Monash University, Melbourne, Australia
| | - Pingping Hu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xiaoyong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
7
|
Yang Y, Xie E, Liu Y, Peng Z, Yu C, Hua K, Yang X. Calcium promotes vascular smooth muscle cell phenotypic switching in Marfan syndrome. Biochem Biophys Res Commun 2023; 665:124-132. [PMID: 37156050 DOI: 10.1016/j.bbrc.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
Fibrillin 1 (Fbn1) mutations cause Marfan syndrome (MFS), with aortic root dilatation, dissection, and rupture. Few studies reported the blood calcium and lipid profile of MFS, and the effect of vascular smooth muscle cell (VSMC) phenotypic switching on MFS aortic aneurysm is unclear. Here, we aimed to investigate the role of calcium-related VSMC phenotypic switching in MFS. We retrospectively collected MFS patients' clinical data, performed bioinformatics analysis to screen the enriched biological process in MFS patients and mice, and detected markers of VSMC phenotypic switching on Fbn1C1039G/+ mice and primary aortic vascular smooth muscle cells. We found that patients with MFS have elevated blood calcium levels and dyslipidemia. Furthermore, the calcium concentration levels were increased with age in MFS mice, accompanied by the promoted VSMC phenotypic switching, and SERCA2 contributed to maintaining the contractile phenotype of VSMCs. This study provides the first evidence that the increased calcium is associated with the promoted VSMC phenotype switching in MFS. SERCA may become a novel therapeutic target for suppressing aneurysm progression in MFS.
Collapse
Affiliation(s)
- Yunxiao Yang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Enzehua Xie
- Department of Cardiovascular Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100047, China
| | - Yuhua Liu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Zhan Peng
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Cuntao Yu
- Department of Cardiovascular Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100047, China.
| | - Kun Hua
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| | - Xiubin Yang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
8
|
Hu PP, Luo SX, Fan XQ, Li D, Tong XY. Macrophage-targeted nanomedicine for the diagnosis and management of atherosclerosis. Front Pharmacol 2022; 13:1000316. [PMID: 36160452 PMCID: PMC9501673 DOI: 10.3389/fphar.2022.1000316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
Atherosclerosis is the primary cause of cardiovascular diseases, such as myocardial infarction and stroke, which account for the highest death toll worldwide. Macrophage is the major contributor to atherosclerosis progression, and therefore, macrophage-associated pathological process is considered an extremely important target for the diagnosis and treatment of atherosclerosis. However, the existing clinical strategies still have many bottlenecks and challenges in atherosclerosis’s early detection and management. Nanomedicine, using various nanoparticles/nanocarriers for medical purposes, can effectively load therapeutic agents, significantly improve their stability and accurately deliver them to the atherosclerotic plaques. In this review, we summarized the latest progress of the macrophage-targeted nanomedicine in the diagnosis and treatment of atherosclerosis, and their potential applications and clinical benefits are also discussed.
Collapse
Affiliation(s)
- Ping Ping Hu
- Chongqing Engineering Research Center for Pharmacodynamics Evaluation, College of Pharmacy, Chongqing Medical University, Chongqing, China
- *Correspondence: Ping Ping Hu, ; Xiao Yong Tong,
| | - Shuang Xue Luo
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiao Qing Fan
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Di Li
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Yong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- *Correspondence: Ping Ping Hu, ; Xiao Yong Tong,
| |
Collapse
|
9
|
Wang L, Yang Z, Wang S, Que Y, Shu X, Wu F, Liu G, Li S, Hu P, Chen H, Shi J, Tong X. Substitution of SERCA2 Cys 674 accelerates aortic aneurysm by inducing endoplasmic reticulum stress and promoting cell apoptosis. Br J Pharmacol 2022; 179:4423-4439. [PMID: 35491240 DOI: 10.1111/bph.15864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The Cys674 residue (C674) in the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) is key to maintaining its enzyme activity. The irreversible oxidation of C674 occurs broadly in aortic aneurysms. Substitution of C674 promotes a phenotypic transition of aortic smooth muscle cells (SMCs) and exacerbates angiotensin II-induced aortic aneurysm. However, its underlying mechanism remains enigmatic. EXPERIMENTAL APPROACH Heterozygous SERCA2 C674S knock-in (SKI) mice, in which half of C674 was replaced by serine, were used to mimic partially irreversible oxidation of C674 thiol. The aortas of SKI mice and their littermate wild-type mice under an LDL receptor-deficient background were collected for histological and immunohistochemical analysis. Cultured aortic SMCs were used for protein expression, apoptosis analysis, and cell function studies. KEY RESULTS The substitution of SERCA2 C674 caused endoplasmic reticulum (ER) stress and induced SMC apoptosis. The inhibition of ER stress by 4-phenylbutyric acid (4-PBA) in SKI aortic SMCs decreased the expression of marker proteins for cell apoptosis as well as phenotypic transition, and prevented cell apoptosis, proliferation, migration, and macrophage adhesion to SMCs. 4-PBA also ameliorated angiotensin II-induced aortic aneurysm in SKI mice. CONCLUSIONS AND IMPLICATIONS The irreversible oxidation of SERCA2 C674 promotes the development of aortic aneurysm by inducing ER stress and subsequent SMC apoptosis. Our study illustrates that ER stress caused by oxidative inactivation of C674 is related to the pathogenesis of aortic aneurysm. Therefore, ER stress and SERCA2 are potential therapeutic targets for treating aortic aneurysm.
Collapse
Affiliation(s)
- Langtao Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Zhen Yang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Sai Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yumei Que
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xi Shu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Fuhua Wu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Gang Liu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Siqi Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Pingping Hu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Hao Chen
- Chongqing General Hospital, University of Chinese Academy of Science, Chongqing, China
| | - Jian Shi
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Xiaoyong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
10
|
Huang X, Lin X, Wang L, Xie Y, Que Y, Li S, Hu P, Tong X. Substitution of SERCA2 Cys 674 aggravates cardiac fibrosis by promoting the transformation of cardiac fibroblasts to cardiac myofibroblasts. Biochem Pharmacol 2022; 203:115164. [PMID: 35809651 DOI: 10.1016/j.bcp.2022.115164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022]
Abstract
Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) is vital to maintain intracellular calcium homeostasis, and its redox Cys674 (C674) is the key to regulating activity. Our goal was to investigate whether the redox state of SERCA2 C674 is critical for cardiac fibrosis and the mechanisms involved. Heterozygous SERCA2 C674S knock-in (SKI) mice, in which half of C674 was substituted by serine, were used to mimic the partial loss of the reactive C674 thiol in pathological conditions. In cardiac fibroblasts, the substitution of C674 thiol increased Ca2+ levels in cytoplasm and mitochondria, and intracellular ROS levels, and activated calcineurin/nuclear factor of activated T-lymphocytes (NFAT) pathway, increased the protein expression of profibrotic factors TGF beta 1 (TGF-β1), alpha smooth muscle actin, collagen I and collagen III, and promoted the transformation of cardiac fibroblasts to cardiac myofibroblasts, which could be reversed by calcineurin/NFAT inhibitor, SERCA2 agonist, or ROS scavenger. Activation of SERCA2 or scavenging ROS is beneficial to alleviate cardiac fibrosis caused by the substitution of C674. In conclusion, the partial loss of the reactive C674 thiol in the SERCA2 exacerbates cardiac fibrosis by activating the calcineurin/NFAT/TGF-β1 pathway to promote the transformation of cardiac fibroblasts to cardiac myofibroblasts, which highlights the importance of C674 redox state in maintaining the homeostasis of cardiac fibroblasts. SERCA2 is a potential therapeutic target for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Xiaoyang Huang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaojuan Lin
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Langtao Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yufei Xie
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yumei Que
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Siqi Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Pingping Hu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoyong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
11
|
Que Y, Zhang Z, Zhang Y, Li X, Chen L, Chen P, Ou C, Yang C, Chang J. Silicate ions as soluble form of bioactive ceramics alleviate aortic aneurysm and dissection. Bioact Mater 2022; 25:716-731. [PMID: 37056259 PMCID: PMC10086764 DOI: 10.1016/j.bioactmat.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022] Open
Abstract
Aortic aneurysm and dissection (AAD) are leading causes of death in the elderly. Recent studies have demonstrated that silicate ions can manipulate multiple cells, especially vascular-related cells. We demonstrated in this study that silicate ions as soluble form of bioactive ceramics effectively alleviated aortic aneurysm and dissection in both Ang II and β-BAPN induced AAD models. Different from the single targeting therapeutic drug approaches, the bioactive ceramic derived approach attributes to the effect of bioactive silicate ions on the inhibition of the AAD progression through regulating the local vascular microenvironment of aorta systematically in a multi-functional way. The in vitro experiments revealed that silicate ions did not only alleviate senescence and inflammation of the mouse aortic endothelial cells, enhance M2 polarization of mouse bone marrow-derived macrophages, and reduce apoptosis of mouse aortic smooth muscle cells, but also regulate their interactions. The in vivo studies further confirm that silicate ions could effectively alleviate senescence, inflammation, and cell apoptosis of aortas, accomplished with reduced aortic dilation, collagen deposition, and elastin laminae degradation. This bioactive ceramic derived therapy provides a potential new treatment strategy in attenuating AAD progression.
Collapse
|
12
|
Su H, Mei Y, Luo S, Wu H, He Y, Shiraishi Y, Hu P, Cohen RA, Tong X. Substitution of the SERCA2 Cys 674 reactive thiol accelerates atherosclerosis by inducing endoplasmic reticulum stress and inflammation. Br J Pharmacol 2022; 179:4778-4791. [PMID: 35763220 DOI: 10.1111/bph.15912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE The cysteine674 (C674) thiol of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 is easily and irreversibly oxidized under atherosclerotic conditions. However, the contribution of the C674 thiol redox status in the development of atherosclerosis remains unclear. Our goal was to elucidate the possible mechanism involved. EXPERIMENTAL APPROACH Heterozygous SERCA2 C674S knock-in mice in which half of the C674 was substituted by serine674 (S674) were used to mimic the removal of the reactive C674 thiol which occurs under pathological conditions. Bone marrow-derived macrophages (BMDMs) and cardiac endothelial cells (ECs) were used for intracellular Ca2+ , macrophage adhesion, and protein expression analysis. The whole aorta and aortic root were isolated for histological analysis. KEY RESULTS Cell culture studies suggest the partial substitution of SERCA2 C674 increased intracellular Ca2+ levels and induced ER stress in both BMDMs and ECs. The release of pro-inflammatory factors and macrophage adhesion increased in SKI BMDMs. In ECs, the overexpression of S674 induced endothelial inflammation and promoted macrophage recruitment. SKI mice developed more severe atherosclerotic plaque and macrophage accumulation. Additionally, 4-phenyl butyric acid (PBA), an ER stress inhibitor, suppressed ER stress and inflammatory responses in BMDMs and ECs, and alleviate atherosclerosis in SKI mice. CONCLUSIONS AND IMPLICATIONS The substitution of SERCA2 C674 thiol accelerates the development of atherosclerosis by inducing ER stress and inflammation. Our findings highlight the importance of SERCA2 C674 redox state in the context of atherosclerosis and open up a novel therapeutic strategy to combat atherosclerosis.
Collapse
Affiliation(s)
- Hang Su
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yu Mei
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Shuangxue Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Haixia Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yan He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yasumasa Shiraishi
- Department of Internal Medicine, Division of Cardiovascular Medicine, National Defense Medical College, Saitama, Japan
| | - Pingping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.,College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Richard A Cohen
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Xiaoyong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
13
|
Yu W, Xu G, Chen H, Xiao L, Liu G, Hu P, Li S, Kasim V, Zeng C, Tong X. The substitution of SERCA2 redox cysteine 674 promotes pulmonary vascular remodeling by activating IRE1 α/XBP1s pathway. Acta Pharm Sin B 2022; 12:2315-2329. [PMID: 35646520 PMCID: PMC9136575 DOI: 10.1016/j.apsb.2021.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening disease characterized by pulmonary vascular remodeling, in which hyperproliferation of pulmonary artery smooth muscle cells (PASMCs) plays an important role. The cysteine 674 (C674) in the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) is the critical redox regulatory cysteine to regulate SERCA2 activity. Heterozygous SERCA2 C674S knock-in mice (SKI), where one copy of C674 was substituted by serine to represent partial C674 oxidative inactivation, developed significant pulmonary vascular remodeling resembling human PH, and their right ventricular systolic pressure modestly increased with age. In PASMCs, substitution of C674 activated inositol requiring enzyme 1 alpha (IRE1α) and spliced X-box binding protein 1 (XBP1s) pathway, accelerated cell cycle and cell proliferation, which reversed by IRE1α/XBP1s pathway inhibitor 4μ8C. In addition, suppressing the IRE1α/XBP1s pathway prevented pulmonary vascular remodeling caused by substitution of C674. Similar to SERCA2a, SERCA2b is also important to restrict the proliferation of PASMCs. Our study articulates the causal effect of C674 oxidative inactivation on the development of pulmonary vascular remodeling and PH, emphasizing the importance of C674 in restricting PASMC proliferation to maintain pulmonary vascular homeostasis. Moreover, the IRE1α/XBP1s pathway and SERCA2 might be potential targets for PH therapy.
Collapse
Affiliation(s)
- Weimin Yu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Institute of Health Biological Chemical Medication, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Gang Xu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing 400038, China
| | - Hui Chen
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Li Xiao
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Gang Liu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Pingping Hu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Siqi Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Xiaoyong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Corresponding author.
| |
Collapse
|
14
|
Cross-Talk between Mechanosensitive Ion Channels and Calcium Regulatory Proteins in Cardiovascular Health and Disease. Int J Mol Sci 2021; 22:ijms22168782. [PMID: 34445487 PMCID: PMC8395829 DOI: 10.3390/ijms22168782] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/12/2022] Open
Abstract
Mechanosensitive ion channels are widely expressed in the cardiovascular system. They translate mechanical forces including shear stress and stretch into biological signals. The most prominent biological signal through which the cardiovascular physiological activity is initiated or maintained are intracellular calcium ions (Ca2+). Growing evidence show that the Ca2+ entry mediated by mechanosensitive ion channels is also precisely regulated by a variety of key proteins which are distributed in the cell membrane or endoplasmic reticulum. Recent studies have revealed that mechanosensitive ion channels can even physically interact with Ca2+ regulatory proteins and these interactions have wide implications for physiology and pathophysiology. Therefore, this paper reviews the cross-talk between mechanosensitive ion channels and some key Ca2+ regulatory proteins in the maintenance of calcium homeostasis and its relevance to cardiovascular health and disease.
Collapse
|
15
|
Que Y, Shu X, Wang L, Wang S, Li S, Hu P, Tong X. Inactivation of SERCA2 Cys 674 accelerates aortic aneurysms by suppressing PPARγ. Br J Pharmacol 2021; 178:2305-2323. [PMID: 33591571 DOI: 10.1111/bph.15411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/24/2020] [Accepted: 02/04/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Inactivation of Cys674 (C674) in the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) causes intracellular Ca2+ accumulation, which activates calcineurin-mediated nuclear factor of activated T-lymphocytes (NFAT)/NF-κB pathways, and results in the phenotypic modulation of smooth muscle cells (SMCs) to accelerate angiotensin II-induced aortic aneurysms. Our goal was to investigate the mechanism involved. EXPERIMENTAL APPROACH We used heterozygous SERCA2 C674S knock-in (SKI) mice, where half of C674 was substituted by serine, to mimic partial irreversible oxidation of C674. The aortas of SKI mice and their littermate wild-type mice were collected for RNA sequencing, cell culture, protein expression, luciferase activity and aortic aneurysm analysis. KEY RESULTS Inactivation of C674 inhibited the promoter activity and protein expression of PPARγ, which could be reversed by inhibitors of calcineurin or NF-κB. In SKI SMCs, inhibition of NF-κB by pyrrolidinedithiocarbamic acid (PDTC) or overexpression of PPARγ2 reversed the protein expression of SMC phenotypic modulation markers and inhibited cell proliferation, migration, and macrophage adhesion to SMCs. Pioglitazone, a PPARγ agonist, blocked the activation of NFAT/NF-κB, reversed the protein expression of SMC phenotypic modulation markers, and inhibited cell proliferation, migration, and macrophage adhesion to SMCs in SKI SMCs. Furthermore, pioglitazone also ameliorated angiotensin II-induced aortic aneurysms in SKI mice. CONCLUSIONS AND IMPLICATIONS The inactivation of SERCA2 C674 promotes the development of aortic aneurysms by disrupting the balance between PPARγ and NFAT/NF-κB. Our study highlights the importance of C674 redox status in regulating PPARγ to maintain aortic homeostasis.
Collapse
Affiliation(s)
- Yumei Que
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xi Shu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Langtao Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Sai Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Siqi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Pingping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiaoyong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
16
|
Yu W, Xiao L, Que Y, Li S, Chen L, Hu P, Xiong R, Seta F, Chen H, Tong X. Smooth muscle NADPH oxidase 4 promotes angiotensin II-induced aortic aneurysm and atherosclerosis by regulating osteopontin. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165912. [PMID: 32777344 DOI: 10.1016/j.bbadis.2020.165912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Angiotensin II (Ang II) is commonly used to induce aortic aneurysm and atherosclerosis in animal models. Ang II upregulates NADPH oxidase isoform Nox4 in aortic smooth muscle cells (SMCs) in mice. However, whether smooth muscle Nox4 is directly involved in Ang II-induced aortic aneurysm and atherosclerosis is unclear. METHODS & RESULTS To address this, we used smooth muscle-specific Nox4 dominant-negative (SDN) transgenic mice, in which Nox4 activity is constitutively inhibited. In non-transgenic (NTg) mice, Ang II increased the expression of proteins known to contribute to both aortic aneurysm and atherosclerosis, namely osteopontin (OPN), collagen type I&III (Col I&III), matrix metalloproteinase 2 (MMP2), and vascular cell adhesion molecule 1 (VCAM1), which were all significantly downregulated in SDN mice. The number and size of Ang II-induced aorta collateral aneurysms and atherosclerotic lesions in the renal artery and aortic root of SDN mice were significantly decreased compared to NTg mice, and directly correlated with a decrease in OPN expression. Replenishing OPN in SDN SMCs, increased the expression of Col I&III, MMP2, and VCAM1, and promoted SMC proliferation, migration, and inflammation. CONCLUSIONS Our data demonstrate that smooth muscle Nox4 directly promotes the development of Ang II-induced aortic aneurysm and atherosclerosis, at least in part, through regulating OPN expression.
Collapse
Affiliation(s)
- Weimin Yu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Li Xiao
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yumei Que
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Siqi Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Lili Chen
- Wuhan EasyDiagnosis Biomedicine Co., Ltd., Wuhan 430075, China
| | - Pingping Hu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Rui Xiong
- Chongqing General Hospital, University of Chinese Academy of Science, Chongqing 400013, China
| | - Francesca Seta
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Hao Chen
- Chongqing General Hospital, University of Chinese Academy of Science, Chongqing 400013, China
| | - Xiaoyong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|