1
|
Xue H, Xi J, Wu XF, Feng S, Wang J, Chen L. Evaluation of paclitaxel-coated balloon angioplasty for the treatment of symptomatic intracranial in-stent restenosis. Front Neurol 2024; 15:1360609. [PMID: 38841701 PMCID: PMC11150793 DOI: 10.3389/fneur.2024.1360609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Background Symptomatic intracranial in-stent restenosis (sISR) poses a major challenge in the management of cerebrovascular diseases, often requiring effective and safe treatment options. Objectives This study aims to evaluate the efficacy and safety of paclitaxel-coated balloon (PCB) angioplasty for treating sISR. Methods We conducted a retrospective analysis of five patients aged 49-74 years, who were treated with PCB angioplasty between January 2017 and June 2022. Treatment procedures included pre-operative digital subtraction angiography, antiplatelet therapy, and the use of the SeQuent Please balloon. Patients received aspirin and clopidogrel prior to and after the procedure. Results The procedure achieved a 100% success rate. The degree of ISR was significantly reduced from an average pre-operative rate of 72±18.9% to a post-operative rate of 34±8.22%. Long-term follow-up showed that the majority of patients did not experience restenosis, confirming the long-term effectiveness of the treatment. Conclusions PCB angioplasty demonstrates significant potential as an effective and safe treatment option for patients with sISR, especially those considered to be at high risk. This study supports further investigation into PCB angioplasty as a standard treatment for sISR.
Collapse
Affiliation(s)
| | | | | | | | | | - Liwei Chen
- Department of Neurology, Sanmenxia Hospital of the Yellow River, Sanmenxia, China
| |
Collapse
|
2
|
Takahashi N, Yokoi S, Kimura H, Naiki H, Matsusaka T, Yamamoto Y, Nakatani K, Kasuno K, Iwano M. Renoprotective effects of extracellular fibroblast specific protein 1 via nuclear factor erythroid 2-related factor-mediated antioxidant activity. Sci Rep 2023; 13:22540. [PMID: 38110482 PMCID: PMC10728167 DOI: 10.1038/s41598-023-49863-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
Podocyte expression of fibroblast specific protein 1 (FSP1) is observed in various types of human glomerulonephritis. Considering that FSP1 is secreted extracellularly and has been shown to have multiple biological effects on distant cells, we postulated that secreted FSP1 from podocytes might impact renal tubules. Our RNA microarray analysis in a tubular epithelial cell line (mProx) revealed that FSP1 induced the expression of heme oxygenase 1, sequestosome 1, solute carrier family 7, member 11, and cystathionine gamma-lyase, all of which are associated with nuclear factor erythroid 2-related factor (Nrf2) activation. Therefore, FSP1 is likely to exert cytoprotective effects through Nrf2-induced antioxidant activity. Moreover, in mProx, FSP1 facilitated Nrf2 translocation to the nucleus, increased levels of reduced glutathione, inhibited the production of reactive oxygen species (ROS), and reduced cisplatin-induced cell death. FSP1 also ameliorated acute tubular injury in mice with cisplatin nephrotoxicity, which is a representative model of ROS-mediated tissue injury. Similarly, in transgenic mice that express FSP1 specifically in podocytes, tubular injury associated with cisplatin nephrotoxicity was also mitigated. Extracellular FSP1 secreted from podocytes acts on downstream tubular cells, exerting renoprotective effects through Nrf2-mediated antioxidant activity. Consequently, podocytes and tubular epithelial cells have a remote communication network to limit injury.
Collapse
Affiliation(s)
- Naoki Takahashi
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Seiji Yokoi
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Hideki Kimura
- Department of Clinical Laboratory, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hironobu Naiki
- Department of Molecular Pathology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Taiji Matsusaka
- Institute of Medical Sciences and Department of Basic Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kimihiko Nakatani
- Department of Nephrology, Yamashiro General Medical Center, Kizugawa, Kyoto, Japan
| | - Kenji Kasuno
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Masayuki Iwano
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan.
| |
Collapse
|
3
|
Wang Y, Liu Y, Huang T, Chen Y, Song W, Chen F, Jiang Y, Zhang C, Yang X. Nrf2: A Main Responsive Element of the Toxicity Effect Caused by Trichothecene (T-2) Mycotoxin. TOXICS 2023; 11:393. [PMID: 37112621 PMCID: PMC10146852 DOI: 10.3390/toxics11040393] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
T-2 toxin, the most toxic type A trichothecene mycotoxin, is produced by Fusarium, and is widely found in contaminated feed and stored grains. T-2 toxin is physicochemically stable and is challenging to eradicate from contaminated feed and cereal, resulting in food contamination that is inescapable and poses a major hazard to both human and animal health, according to the World Health Organization. Oxidative stress is the upstream cause of all pathogenic variables, and is the primary mechanism through which T-2 toxin causes poisoning. Nuclear factor E2-related factor 2 (Nrf2) also plays a crucial part in oxidative stress, iron metabolism and mitochondrial homeostasis. The major ideas and emerging trends in future study are comprehensively discussed in this review, along with research progress and the molecular mechanism of Nrf2's involvement in the toxicity impact brought on by T-2 toxin. This paper could provide a theoretical foundation for elucidating how Nrf2 reduces oxidative damage caused by T-2 toxin, and a theoretical reference for exploring target drugs to alleviate T-2 toxin toxicity with Nrf2 molecules.
Collapse
Affiliation(s)
- Youshuang Wang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New District, Zhengzhou 450002, China
| | - Yu Liu
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New District, Zhengzhou 450002, China
| | - Tingyu Huang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New District, Zhengzhou 450002, China
| | - Yunhe Chen
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New District, Zhengzhou 450002, China
| | - Wenxi Song
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New District, Zhengzhou 450002, China
| | - Fengjuan Chen
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New District, Zhengzhou 450002, China
| | - Yibao Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New District, Zhengzhou 450002, China
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New District, Zhengzhou 450002, China
| |
Collapse
|