1
|
Yang H, Zhang X, Liu Y, Liu L, Li J, Du G, Chen J. Synthetic biology-driven microbial production of folates: Advances and perspectives. BIORESOURCE TECHNOLOGY 2021; 324:124624. [PMID: 33434873 DOI: 10.1016/j.biortech.2020.124624] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
With the development and application of synthetic biology, significant progress has been made in the production of folate by microbial fermentation using cell factories, especially for using generally regarded as safe (GRAS) microorganism as production host. In this review, the physiological functions and applications of folates were firstly discussed. Second, the current advances of folate-producing GRAS strains development were summarized. Third, the applications of synthetic biology-based metabolic regulatory tools in GRAS strains were introduced, and the progress in the application of these tools for folate production were summarized. Finally, the challenges to folates efficient production and corresponding emerging strategies to overcome them by synthetic biology were discussed, including the construction of biosensors using tetrahydrofolate riboswitches to regulate metabolic pathways, adaptive evolution to overcome the flux limitations of the folate pathway. The combination of new strategies and tools of synthetic biology is expected to further improve the efficiency of microbial folate synthesis.
Collapse
Affiliation(s)
- Han Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaolong Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| |
Collapse
|
2
|
Volke DC, Friis L, Wirth NT, Turlin J, Nikel PI. Synthetic control of plasmid replication enables target- and self-curing of vectors and expedites genome engineering of Pseudomonas putida. Metab Eng Commun 2020; 10:e00126. [PMID: 32215253 PMCID: PMC7090339 DOI: 10.1016/j.mec.2020.e00126] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/23/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023] Open
Abstract
Genome engineering of non-conventional microorganisms calls for the development of dedicated synthetic biology tools. Pseudomonas putida is a Gram-negative, non-pathogenic soil bacterium widely used for metabolic engineering owing to its versatile metabolism and high levels of tolerance to different types of stress. Genome editing of P. putida largely relies on homologous recombination events, assisted by helper plasmid-based expression of genes encoding DNA modifying enzymes. Plasmid curing from selected isolates is the most tedious and time-consuming step of this procedure, and implementing commonly used methods to this end in P. putida (e.g. temperature-sensitive replicons) is often impractical. To tackle this issue, we have developed a toolbox for both target- and self-curing of plasmid DNA in Pseudomonas species. Our method enables plasmid-curing in a simple cultivation step by combining in vivo digestion of vectors by the I-SceI homing nuclease with synthetic control of plasmid replication, triggered by the addition of a cheap chemical inducer (3-methylbenzoate) to the medium. The system displays an efficiency of vector curing >90% and the screening of plasmid-free clones is greatly facilitated by the use of fluorescent markers that can be selected according to the application intended. Furthermore, quick genome engineering of P. putida using self-curing plasmids is demonstrated through genome reduction of the platform strain EM42 by eliminating all genes encoding β-lactamases, the catabolic ben gene cluster, and the pyoverdine synthesis machinery. Physiological characterization of the resulting streamlined strain, P. putida SEM10, revealed advantageous features that could be exploited for metabolic engineering. Plasmid-curing is the most time-consuming step in genome engineering approaches. We have developed a system for easy target- and self-curing of plasmid DNA. Synthetic control of replication and highly-specific in vivo DNA digestion were used. Plasmid curing with this system displays an efficiency >90% in a 24-h cultivation. Quick genome engineering facilitated genome reduction of P. putida.
Collapse
Affiliation(s)
- Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Laura Friis
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Nicolas T Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Justine Turlin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| |
Collapse
|
3
|
Construction of Halomonas bluephagenesis capable of high cell density growth for efficient PHA production. Appl Microbiol Biotechnol 2018; 102:4499-4510. [DOI: 10.1007/s00253-018-8931-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 12/13/2022]
|
4
|
Lu W, Ye L, Lv X, Xie W, Gu J, Chen Z, Zhu Y, Li A, Yu H. Identification and elimination of metabolic bottlenecks in the quinone modification pathway for enhanced coenzyme Q10 production in Rhodobacter sphaeroides. Metab Eng 2015; 29:208-216. [DOI: 10.1016/j.ymben.2015.03.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 02/09/2015] [Accepted: 03/18/2015] [Indexed: 01/09/2023]
|
5
|
Development of a plasmid addicted system that is independent of co-inducers, antibiotics and specific carbon source additions for bioproduct (1-butanol) synthesis in Escherichia coli. Metab Eng Commun 2014; 2:6-12. [PMID: 34150503 PMCID: PMC8193244 DOI: 10.1016/j.meteno.2014.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/24/2014] [Accepted: 12/02/2014] [Indexed: 10/29/2022] Open
Abstract
Synthetic biology approaches for the synthesis of value-based products provide interesting and potentially fruitful possibilities for generating a wide variety of useful compounds and biofuels. However, industrial production is hampered by the costs associated with the need to supplement large microbial cultures with expensive but necessary co-inducer compounds and antibiotics that are required for up-regulating synthetic gene expression and maintaining plasmid-borne synthetic genes, respectively. To address these issues, a metabolism-based plasmid addiction system, which relies on lipopolysaccharide biosynthesis and maintenance of cellular redox balance for 1-butanol production; and utilizes an active constitutive promoter, was developed in Escherichia coli. Expression of the plasmid is absolutely required for cell viability and 1-butanol production. This system abrogates the need for expensive antibiotics and co-inducer molecules so that plasmid-borne synthetic genes may be expressed at high levels in a cost-effective manner. To illustrate these principles, high level and sustained production of 1-butanol by E. coli was demonstrated under different growth conditions and in semi-continuous batch cultures, in the absence of antibiotics and co-inducer molecules.
Collapse
|
6
|
Shin JH, Lee SY. Metabolic engineering of microorganisms for the production of L-arginine and its derivatives. Microb Cell Fact 2014; 13:166. [PMID: 25467280 PMCID: PMC4258820 DOI: 10.1186/s12934-014-0166-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/15/2014] [Indexed: 12/18/2022] Open
Abstract
L-arginine (ARG) is an important amino acid for both medicinal and industrial applications. For almost six decades, the research has been going on for its improved industrial level production using different microorganisms. While the initial approaches involved random mutagenesis for increased tolerance to ARG and consequently higher ARG titer, it is laborious and often leads to unwanted phenotypes, such as retarded growth. Discovery of L-glutamate (GLU) overproducing strains and using them as base strains for ARG production led to improved ARG production titer. Continued effort to unveil molecular mechanisms led to the accumulation of detailed knowledge on amino acid metabolism, which has contributed to better understanding of ARG biosynthesis and its regulation. Moreover, systems metabolic engineering now enables scientists and engineers to efficiently construct genetically defined microorganisms for ARG overproduction in a more rational and system-wide manner. Despite such effort, ARG biosynthesis is still not fully understood and many of the genes in the pathway are mislabeled. Here, we review the major metabolic pathways and its regulation involved in ARG biosynthesis in different prokaryotes including recent discoveries. Also, various strategies for metabolic engineering of bacteria for the overproduction of ARG are described. Furthermore, metabolic engineering approaches for producing ARG derivatives such as L-ornithine (ORN), putrescine and cyanophycin are described. ORN is used in medical applications, while putrescine can be used as a bio-based precursor for the synthesis of nylon-4,6 and nylon-4,10. Cyanophycin is also an important compound for the production of polyaspartate, another important bio-based polymer. Strategies outlined here will serve as a general guideline for rationally designing of cell-factories for overproduction of ARG and related compounds that are industrially valuable.
Collapse
Affiliation(s)
- Jae Ho Shin
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea.
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea. .,BioProcess Engineering Research Center, KAIST, Daejeon, 305-701, Republic of Korea. .,BioInformatics Research Center, KAIST, Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
7
|
Engineering Escherichia coli for enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in larger cellular space. Metab Eng 2014; 25:183-93. [DOI: 10.1016/j.ymben.2014.07.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/28/2014] [Accepted: 07/23/2014] [Indexed: 11/20/2022]
|
8
|
Development of genetically stable Escherichia coli strains for poly(3-hydroxypropionate) production. PLoS One 2014; 9:e97845. [PMID: 24837211 PMCID: PMC4023983 DOI: 10.1371/journal.pone.0097845] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/25/2014] [Indexed: 11/24/2022] Open
Abstract
Poly(3-hydroxypropionate) (P3HP) is a biodegradable and biocompatible thermoplastic. In our previous study, a pathway for P3HP production was constructed in recombinant Esecherichia coli. Seven exogenous genes in P3HP synthesis pathway were carried by two plasmid vectors. However, the P3HP production was severely suppressed by strain instability due to plasmid loss. In this paper, two strategies, chromosomal gene integration and plasmid addiction system (PAS) based on amino acid anabolism, were applied to construct a genetically stable strain. Finally, a combination of those two methods resulted in the best results. The resultant strain carried a portion of P3HP synthesis genes on chromosome and the others on plasmid, and also brought a tyrosine-auxotrophy based PAS. In aerobic fed-batch fermentation, this strain produced 25.7 g/L P3HP from glycerol, about 2.5-time higher than the previous strain with two plasmids. To the best of our knowledge, this is the highest P3HP production from inexpensive carbon sources.
Collapse
|
9
|
Extracellular recombinant protein production under continuous culture conditions with Escherichia coli using an alternative plasmid selection mechanism. Bioprocess Biosyst Eng 2013; 37:401-13. [PMID: 23820825 DOI: 10.1007/s00449-013-1005-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/17/2013] [Indexed: 12/11/2022]
Abstract
The secretion of recombinant proteins into the extracellular space by Escherichia coli presents advantages like easier purification and protection from proteolytic degradation. The controlled co-expression of a bacteriocin release protein aids in moving periplasmic proteins through the outer membrane. Since such systems have rarely been applied in continuous culture it seemed to be attractive to study the interplay between growth-phase regulated promoters controlling release protein genes and the productivity of a chemostat process. To avoid the use of antibiotics and render this process more sustainable, alternative plasmid selection mechanisms were required. In the current study, the strain E. coli JM109 harboring plasmid p582 was shown to stably express and secrete recombinant β-glucanase in continuous culture using a minimal medium. The segregational instability of the plasmid in the absence of antibiotic selection pressure was demonstrated. The leuB gene, crucial in the leucine biosynthetic pathway, was cloned onto plasmid p582 and the new construct transformed into an E. coli Keio (ΔleuB) knockout strain. The ability of the construct to complement the leucine auxotrophy was initially tested in shake-flasks and batch cultivation. Later, this strain was successfully grown for more than 200 h in a chemostat and was found to be able to express the recombinant protein. Significantly, it showed a stable maintenance of the recombinant plasmid in the absence of any antibiotics. The plasmid stability in a continuously cultivated E. coli fermentation, in the absence of antibiotics, with extracellular secretion of recombinant protein provides an interesting model for further improvements.
Collapse
|
10
|
Heinrich D, Andreessen B, Madkour MH, Al-Ghamdi MA, Shabbaj II, Steinbüchel A. From waste to plastic: synthesis of poly(3-hydroxypropionate) in Shimwellia blattae. Appl Environ Microbiol 2013; 79:3582-9. [PMID: 23542629 PMCID: PMC3675910 DOI: 10.1128/aem.00161-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/27/2013] [Indexed: 11/20/2022] Open
Abstract
In recent years, glycerol has become an attractive carbon source for microbial processes, as it accumulates massively as a by-product of biodiesel production, also resulting in a decline of its price. A potential use of glycerol in biotechnology is the synthesis of poly(3-hydroxypropionate) [poly(3HP)], a biopolymer with promising properties which is not synthesized by any known wild-type organism. In this study, the genes for 1,3-propanediol dehydrogenase (dhaT) and aldehyde dehydrogenase (aldD) of Pseudomonas putida KT2442, propionate-coenzyme A (propionate-CoA) transferase (pct) of Clostridium propionicum X2, and polyhydroxyalkanoate (PHA) synthase (phaC1) of Ralstonia eutropha H16 were cloned and expressed in the 1,3-propanediol producer Shimwellia blattae. In a two-step cultivation process, recombinant S. blattae cells accumulated up to 9.8% ± 0.4% (wt/wt [cell dry weight]) poly(3HP) with glycerol as the sole carbon source. Furthermore, the engineered strain tolerated the application of crude glycerol derived from biodiesel production, yielding a cell density of 4.05 g cell dry weight/liter in a 2-liter fed-batch fermentation process.
Collapse
Affiliation(s)
- Daniel Heinrich
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms Universität Münster, Münster, Germany
| | - Björn Andreessen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms Universität Münster, Münster, Germany
| | - Mohamed H. Madkour
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mansour A. Al-Ghamdi
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahim I. Shabbaj
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms Universität Münster, Münster, Germany
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Carlsen S, Ajikumar PK, Formenti LR, Zhou K, Phon TH, Nielsen ML, Lantz AE, Kielland-Brandt MC, Stephanopoulos G. Heterologous expression and characterization of bacterial 2-C-methyl-D-erythritol-4-phosphate pathway in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2013; 97:5753-69. [PMID: 23636690 DOI: 10.1007/s00253-013-4877-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 10/26/2022]
Abstract
Transfer of a biosynthetic pathway between evolutionary distant organisms can create a metabolic shunt capable of bypassing the native regulation of the host organism, hereby improving the production of secondary metabolite precursor molecules for important natural products. Here, we report the engineering of Escherichia coli genes encoding the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway into the genome of Saccharomyces cerevisiae and the characterization of intermediate metabolites synthesized by the MEP pathway in yeast. Our UPLC-MS analysis of the MEP pathway metabolites from engineered yeast showed that the pathway is active until the synthesis of 2-C-methyl-D-erythritol-2,4-cyclodiphosphate, but appears to lack functionality of the last two steps of the MEP pathway, catalyzed by the [4Fe-4S] iron sulfur cluster proteins encoded by ispG and ispH. In order to functionalize the last two steps of the MEP pathway, we co-expressed the genes for the E. coli iron sulfur cluster (ISC) assembly machinery. By deleting ERG13, thereby incapacitating the mevalonate pathway, in conjunction with labeling experiments with U-¹³C₆ glucose and growth experiments, we found that the ISC assembly machinery was unable to functionalize ispG and ispH. However, we have found that leuC and leuD, encoding the heterodimeric iron-sulfur cluster protein, isopropylmalate isomerase, can complement the S. cerevisiae leu1 auxotrophy. To our knowledge, this is the first time a bacterial iron-sulfur cluster protein has been functionally expressed in the cytosol of S. cerevisiae under aerobic conditions and shows that S. cerevisiae has the capability to functionally express at least some bacterial iron-sulfur cluster proteins in its cytosol.
Collapse
Affiliation(s)
- Simon Carlsen
- Department of Systems Biology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kong J, Yang Y, Wang W, Cheng K, Zhu P. Artemisinic acid: A promising molecule potentially suitable for the semi-synthesis of artemisinin. RSC Adv 2013. [DOI: 10.1039/c3ra40525g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
13
|
Investigations on three genes in Ralstonia eutropha H16 encoding putative cyanophycin metabolizing enzymes. Appl Microbiol Biotechnol 2012; 97:3579-91. [PMID: 23224585 DOI: 10.1007/s00253-012-4599-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/11/2012] [Accepted: 11/13/2012] [Indexed: 10/27/2022]
Abstract
The genome sequence of the facultative chemolithoautotrophic bacterium Ralstonia eutropha H16 exhibited two coding sequences with high homologies to cyanophycin synthetases (CphA) as well as one gene coding for a putative cyanophycinase (CphB). To investigate whether or not the genes cphA H16 (H16_A0774), cphA'H16 (H16_A0775) and cphB H16 (H16_B1013) encode active cyanophycin (CGP) metabolism proteins, several functional analyses were performed. Extensive in silico analysis revealed that all characteristic motifs are conserved within CphAH16, whereas CphA'H16 misses a large part of the so-called J-loop present in other active cyanophycin synthetases. Although transcription of both genes was demonstrated by RT-PCR, and heterologously expressed cphA genes led to light-scattering inclusions in recombinant cells of Escherichia coli, no CGP could be isolated from the cells or detected by HPLC analysis. For all enzyme assay experiments carried out, significant enzyme activities were determined for CphA and CphA' in recombinant E. coli cells if crude cell extracts were applied. Homologous expression of cphA genes in cells of R. eutropha H16∆phaC1 did not result in the formation of light-scattering inclusions, and no CGP could be isolated from the cells or detected by HPLC analysis. No transcription of cphB encoding a putative cyanophycinase could be detected by RT-PCR analysis and no overexpression was achieved in several strains of E. coli. Furthermore, no enzyme activity was detected by using CGP overlay agar plates.
Collapse
|
14
|
Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol Adv 2012; 30:1102-7. [DOI: 10.1016/j.biotechadv.2011.09.013] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/07/2011] [Accepted: 09/17/2011] [Indexed: 11/17/2022]
|
15
|
Xu P, Vansiri A, Bhan N, Koffas MAG. ePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli. ACS Synth Biol 2012; 1:256-66. [PMID: 23651248 DOI: 10.1021/sb300016b] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Harnessing cell factories for producing biofuel and pharmaceutical molecules has stimulated efforts to develop novel synthetic biology tools customized for modular pathway engineering and optimization. Here we report the development of a set of vectors compatible with BioBrick standards and its application in metabolic engineering. The engineered ePathBrick vectors comprise four compatible restriction enzyme sites allocated on strategic positions so that different regulatory control signals can be reused and manipulation of expression cassette can be streamlined. Specifically, these vectors allow for fine-tuning gene expression by integrating multiple transcriptional activation or repression signals into the operator region. At the same time, ePathBrick vectors support the modular assembly of pathway components and combinatorial generation of pathway diversities with three distinct configurations. We also demonstrated the functionality of a seven-gene pathway (~9 Kb) assembled on one single ePathBrick vector. The ePathBrick vectors presented here provide a versatile platform for rapid design and optimization of metabolic pathways in E. coli.
Collapse
Affiliation(s)
- Peng Xu
- Center for Biotechnology and Interdisciplinary Studies and Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Amerin Vansiri
- Center for Biotechnology and Interdisciplinary Studies and Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Namita Bhan
- Center for Biotechnology and Interdisciplinary Studies and Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Mattheos A. G. Koffas
- Center for Biotechnology and Interdisciplinary Studies and Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
16
|
Liu H, Yu C, Feng D, Cheng T, Meng X, Liu W, Zou H, Xian M. Production of extracellular fatty acid using engineered Escherichia coli. Microb Cell Fact 2012; 11:41. [PMID: 22471973 PMCID: PMC3428649 DOI: 10.1186/1475-2859-11-41] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/03/2012] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND As an alternative for economic biodiesel production, the microbial production of extracellular fatty acid from renewable resources is receiving more concerns recently, since the separation of fatty acid from microorganism cells is normally involved in a series of energy-intensive steps. Many attempts have been made to construct fatty acid producing strains by targeting genes in the fatty acid biosynthetic pathway, while few studies focused on the cultivation process and the mass transfer kinetics. RESULTS In this study, both strain improvements and cultivation process strategies were applied to increase extracellular fatty acid production by engineered Escherichia coli. Our results showed overexpressing 'TesA and the deletion of fadL in E. coli BL21 (DE3) improved extracellular fatty acid production, while deletion of fadD didn't strengthen the extracellular fatty acid production for an undetermined mechanism. Moreover, the cultivation process controls contributed greatly to extracellular fatty acid production with respect to titer, cell growth and productivity by adjusting the temperature, adding ampicillin and employing on-line extraction. Under optimal conditions, the E. coli strain (pACY-'tesA-ΔfadL) produced 4.8 g L⁻¹ extracellular fatty acid, with the specific productivity of 0.02 g h⁻¹ g⁻¹ dry cell mass, and the yield of 4.4% on glucose, while the ratios of cell-associated fatty acid versus extracellular fatty acid were kept below 0.5 after 15 h of cultivation. The fatty acids included C12:1, C12:0, C14:1, C14:0, C16:1, C16:0, C18:1, C18:0. The composition was dominated by C14 and C16 saturated and unsaturated fatty acids. Using the strain pACY-'tesA, similar results appeared under the same culture conditions and the titer was also much higher than that ever reported previously, which suggested that the supposedly superior strain did not necessarily perform best for the efficient production of desired product. The strain pACY-'tesA could also be chosen as the original strain for the next genetic manipulations. CONCLUSIONS The general strategy of metabolic engineering for the extracellular fatty acid production should be the cyclic optimization between cultivation performance and strain improvements. On the basis of our cultivation process optimization, strain improvements should be further carried out for the effective and cost-effective production process.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Chao Yu
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Dexin Feng
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Tao Cheng
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Xin Meng
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Wei Liu
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Huibin Zou
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Mo Xian
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| |
Collapse
|
17
|
van Deenen N, Bachmann AL, Schmidt T, Schaller H, Sand J, Prüfer D, Schulze Gronover C. Molecular cloning of mevalonate pathway genes from Taraxacum brevicorniculatum and functional characterisation of the key enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Mol Biol Rep 2012; 39:4337-49. [PMID: 21833516 DOI: 10.1007/s11033-011-1221-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
Abstract
Taraxacum brevicorniculatum is known to produce high quality rubber. The biosynthesis of rubber is dependent on isopentenyl pyrophosphate (IPP) precursors derived from the mevalonate (MVA) pathway. The cDNA sequences of seven MVA pathway genes from latex of T. brevicorniculatum were isolated, including three cDNA sequences encoding for 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductases (TbHMGR1-3). Expression analyses indicate an important role of TbHMGR1 as well as for the HMG-CoA synthase (TbHMGS), the diphosphomevalonate decarboxylase and the mevalonate kinase in the provision of precursors for rubber biosynthesis. The amino acid sequences of the TbHMGRs show the typical motifs described for plant HMGRs such as two transmembrane domains and a catalytic domain containing two HMG-CoA and two NADP(H) binding sites. The functionality of the HMGRs was demonstrated by complementation assay using an IPP auxotroph mutant of Escherichia coli. Furthermore, the transient expression of the catalytic domains of TbHMGR1 and TbHMGR2 in Nicotiana benthamiana resulted in a strong accumulation of sterol precursors, one of the major groups of pathway end-products.
Collapse
Affiliation(s)
- Nicole van Deenen
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 55, 48143, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Wang C, Yoon SH, Jang HJ, Chung YR, Kim JY, Choi ES, Kim SW. Metabolic engineering of Escherichia coli for α-farnesene production. Metab Eng 2011; 13:648-55. [DOI: 10.1016/j.ymben.2011.08.001] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 07/02/2011] [Accepted: 08/15/2011] [Indexed: 11/25/2022]
|
19
|
Lange N, Steinbüchel A. β-Carotene production by Saccharomyces cerevisiae with regard to plasmid stability and culture media. Appl Microbiol Biotechnol 2011; 91:1611-22. [DOI: 10.1007/s00253-011-3315-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/20/2011] [Accepted: 04/21/2011] [Indexed: 11/24/2022]
|
20
|
Murphy AC. Metabolic engineering is key to a sustainable chemical industry. Nat Prod Rep 2011; 28:1406-25. [DOI: 10.1039/c1np00029b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Kroll J, Klinter S, Schneider C, Voss I, Steinbüchel A. Plasmid addiction systems: perspectives and applications in biotechnology. Microb Biotechnol 2010; 3:634-57. [PMID: 21255361 PMCID: PMC3815339 DOI: 10.1111/j.1751-7915.2010.00170.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/17/2010] [Indexed: 11/26/2022] Open
Abstract
Biotechnical production processes often operate with plasmid-based expression systems in well-established prokaryotic and eukaryotic hosts such as Escherichia coli or Saccharomyces cerevisiae, respectively. Genetically engineered organisms produce important chemicals, biopolymers, biofuels and high-value proteins like insulin. In those bioprocesses plasmids in recombinant hosts have an essential impact on productivity. Plasmid-free cells lead to losses in the entire product recovery and decrease the profitability of the whole process. Use of antibiotics in industrial fermentations is not an applicable option to maintain plasmid stability. Especially in pharmaceutical or GMP-based fermentation processes, deployed antibiotics must be inactivated and removed. Several plasmid addiction systems (PAS) were described in the literature. However, not every system has reached a full applicable state. This review compares most known addiction systems and is focusing on biotechnical applications.
Collapse
Affiliation(s)
- Jens Kroll
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
22
|
A novel plasmid addiction system for large-scale production of cyanophycin in Escherichia coli using mineral salts medium. Appl Microbiol Biotechnol 2010; 89:593-604. [DOI: 10.1007/s00253-010-2899-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/21/2010] [Accepted: 09/22/2010] [Indexed: 10/19/2022]
|
23
|
Metabolic selective pressure stabilizes plasmids carrying biosynthetic genes for reduced biochemicals in Escherichia coli redox mutants. Appl Microbiol Biotechnol 2010; 88:563-73. [DOI: 10.1007/s00253-010-2774-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
|
24
|
Pilot-scale production of fatty acid ethyl esters by an engineered Escherichia coli strain harboring the p(Microdiesel) plasmid. Appl Environ Microbiol 2010; 76:4560-5. [PMID: 20453138 DOI: 10.1128/aem.00515-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fatty acid ethyl esters (FAEEs) were produced in this study by the use of an engineered Escherichia coli p(Microdiesel) strain. Four fed-batch pilot scale cultivations were carried out by first using glycerol as sole carbon source for biomass production before glucose and oleic acid were added as carbon sources. Cultivations yielded a cell density of up to 61 +/- 3.1 g of cell dry mass (CDM) per liter and a maximal FAEE content of 25.4% +/- 1.1% (wt/wt) of CDM.
Collapse
|
25
|
Steinle A, Witthoff S, Krause JP, Steinbüchel A. Establishment of cyanophycin biosynthesis in Pichia pastoris and optimization by use of engineered cyanophycin synthetases. Appl Environ Microbiol 2010; 76:1062-70. [PMID: 20038708 PMCID: PMC2820970 DOI: 10.1128/aem.01659-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 12/12/2009] [Indexed: 11/20/2022] Open
Abstract
Two strains of the methylotrophic yeast Pichia pastoris were used to establish cyanophycin (multi-L-arginyl-poly-L-aspartic acid [CGP]) synthesis and to explore the applicability of this industrially widely used microorganism for the production of this polyamide. Therefore, the CGP synthetase gene from the cyanobacterium Synechocystis sp. strain PCC 6308 (cphA(6308)) was expressed under the control of the alcohol oxidase 1 promoter, yielding CGP contents of up to 10.4% (wt/wt), with the main fraction consisting of the soluble form of the polymer. To increase the polymer contents and to obtain further insights into the structural or catalytic properties of the enzyme, site-directed mutagenesis was applied to cphA(6308) and the mutated gene products were analyzed after expression in P. pastoris and Escherichia coli, respectively. CphA(6308)Delta1, which was truncated by one amino acid at the C terminus; point mutated CphA(6308)C595S; and the combined double-mutant CphA(6308)Delta1C595S protein were purified. They exhibited up to 2.5-fold higher enzyme activities of 4.95 U/mg, 3.20 U/mg, and 4.17 U/mg, respectively, than wild-type CphA(6308) (2.01 U/mg). On the other hand, CphA proteins truncated by two (CphA(6308)Delta2) or three (CphA(6308)Delta3) amino acids at the C terminus showed similar or reduced CphA enzyme activity in comparison to CphA(6308). In flask experiments, a maximum of 14.3% (wt/wt) CGP was detected after the expression of CphA(6308)Delta1 in P. pastoris. For stabilization of the expression plasmid, the his4 gene from Saccharomyces cerevisiae was cloned into the expression vector used and the constructs were transferred to histidine auxotrophic P. pastoris strain GS115. Parallel fermentations at a one-to-one scale revealed 26 degrees C and 6.0 as the optimal temperature and pH, respectively, for CGP synthesis. After optimization of fermentation parameters, medium composition, and the length of the cultivation period, CGP contents could be increased from 3.2 to 13.0% (wt/wt) in cells of P. pastoris GS115 expressing CphA(6308) and up to even 23.3% (wt/wt) in cells of P. pastoris GS115 expressing CphA(6308)Delta1.
Collapse
Affiliation(s)
- Anna Steinle
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Sabrina Witthoff
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Jens P. Krause
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| |
Collapse
|
26
|
Conversion of glycerol to poly(3-hydroxypropionate) in recombinant Escherichia coli. Appl Environ Microbiol 2009; 76:622-6. [PMID: 19933347 DOI: 10.1128/aem.02097-09] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed the conversion of glycerol into thermoplastic poly(3-hydroxypropionate) [poly(3HP)]. For this, the genes for glycerol dehydratase (dhaB1) of Clostridium butyricum, propionaldehyde dehydrogenase (pduP) of Salmonella enterica serovar Typhimurium LT2, and polyhydroxyalkanoate (PHA) synthase (phaC1) of Ralstonia eutropha were expressed in recombinant Escherichia coli. Poly(3HP) was accumulated up to 11.98% (wt/wt [cell dry weight]) in a two-step, fed-batch fermentation. The present study shows an interesting application to engineer a poly(3HP) synthesis pathway in bacteria.
Collapse
|
27
|
Steinle A, Steinbüchel A. Establishment of a simple and effective isolation method for cyanophycin from recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2009; 85:1393-9. [PMID: 19727702 DOI: 10.1007/s00253-009-2213-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/17/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
Abstract
An efficient, time-saving, and cost-effective method for isolation of the polyamide cyanophycin from recombinant Saccharomyces cerevisiae was established. Due to its simple procedure, this isolation method may be also applicable at industrial scale and also to other intracellular compounds in this yeast. Production of cyanophycin gained preferential interest in the past, as degradation products thereof are of pharmaceutical and technical interest. Recently, it was shown that Saccharomyces cerevisiae represents a putative candidate for cyanophycin synthesis at industrial scale. For identification of optimal isolation procedures, several parameters such as heat stress, freeze drying, and freeze/thaw cycles of transgenic yeast cells were compared for their effectiveness of cyanophycin isolation. Additionally, optimal resuspension solutions for the applied cells and minimal required materials or chemicals were determined to make the process most environmentally and economically friendly. Maximal cyanophycin granule polypeptide yields of 21% (w/w) were obtained after incubation of dry cells at 70 degrees C or 80 degrees C and precipitation of the polymer with two volumes of ethanol.
Collapse
Affiliation(s)
- Anna Steinle
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | | |
Collapse
|
28
|
Muntendam R, Melillo E, Ryden A, Kayser O. Perspectives and limits of engineering the isoprenoid metabolism in heterologous hosts. Appl Microbiol Biotechnol 2009; 84:1003-19. [PMID: 19669755 DOI: 10.1007/s00253-009-2150-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 07/14/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
Abstract
Terpenoids belong to the largest class of natural compounds and are produced in all living organisms. The isoprenoid skeleton is based on assembling of C5 building blocks, but the biosynthesis of a great variety of terpenoids ranging from monoterpenoids to polyterpenoids is not fully understood today. Terpenoids play a fundamental role in human nutrition, cosmetics, and medicine. In the past 10 years, many metabolic engineering efforts have been undertaken in plants but also in microorganisms to improve the production of various terpenoids like artemisinin and paclitaxel. Recently, inverse metabolic engineering and combinatorial biosynthesis as main strategies in synthetic biology have been applied to produce high-cost natural products like artemisinin and paclitaxel in heterologous microorganisms. This review describes the recent progresses made in metabolic engineering of the terpenoid pathway with particular focus on fundamental aspects of host selection, vector design, and system biotechnology.
Collapse
Affiliation(s)
- Remco Muntendam
- Department of Pharmaceutical Biology, GUIDE, University of Groningen, The Netherlands
| | | | | | | |
Collapse
|