1
|
Campos ACS, Araújo TM, Moraes L, Corrêa dos Santos RA, Goldman GH, Riano-Pachon DM, Oliveira JVDC, Squina FM, Castro IDM, Trópia MJM, da Cunha AC, Rosse IC, Brandão RL. Selected cachaça yeast strains share a genomic profile related to traits relevant to industrial fermentation processes. Appl Environ Microbiol 2024; 90:e0175923. [PMID: 38112453 PMCID: PMC10807443 DOI: 10.1128/aem.01759-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/01/2023] [Indexed: 12/21/2023] Open
Abstract
The isolation and selection of yeast strains to improve the quality of the cachaça-Brazilian Spirit-have been studied in our research group. Our strategy considers Saccharomyces cerevisiae as the predominant species involved in sugarcane juice fermentation and the presence of different stressors (osmolarity, temperature, ethanol content, and competition with other microorganisms). It also considers producing balanced concentrations of volatile compounds (higher alcohols and acetate and/or ethyl esters), flocculation capacity, and ethanol production. Since the genetic bases behind these traits of interest are not fully established, the whole genome sequencing of 11 different Saccharomyces cerevisiae strains isolated and selected from different places was analyzed to identify the presence of a specific genetic variation common to cachaça yeast strains. We have identified 20,128 single-nucleotide variants shared by all genomes. Of these shared variants, 37 were new variants (being six missenses), and 4,451 were identified as missenses. We performed a detailed functional annotation (using enrichment analysis, protein-protein interaction network analysis, and database and in-depth literature searches) of these new and missense variants. Many genes carrying these variations were involved in the phenotypes of flocculation, tolerance to fermentative stresses, and production of volatile compounds and ethanol. These results demonstrate the existence of a genetic profile shared by the 11 strains under study that could be associated with the applied selective strategy. Thus, this study points out genes and variants that may be used as molecular markers for selecting strains well suited to the fermentation process, including genetic improvement by genome editing, ultimately producing high-quality beverages and adding value.IMPORTANCEThis work demonstrates the existence of new genetic markers related to different phenotypes used to select yeast strains and mutations in genes directly involved in producing flavoring compounds and ethanol, and others related to flocculation and stress resistance.
Collapse
Affiliation(s)
- Anna Clara Silva Campos
- Laboratório de Biologia Celular e Molecular, Departamento de Farmácia, Escola de Farmácia, Ouro Preto, Brazil
| | - Thalita Macedo Araújo
- Laboratório de Biologia Celular e Molecular, Departamento de Farmácia, Escola de Farmácia, Ouro Preto, Brazil
- Área de Ciências Biológicas, Instituto Federal de Minas Gerais, Campus Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Lauro Moraes
- Laboratório Multiusuário de Bioinformática, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Renato Augusto Corrêa dos Santos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Laboratório de Biologia Computacional, Evolutiva e de Sistemas, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Diego Maurício Riano-Pachon
- Laboratório de Biologia Computacional, Evolutiva e de Sistemas, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | | | | | - Ieso de Miranda Castro
- Laboratório de Biologia Celular e Molecular, Departamento de Farmácia, Escola de Farmácia, Ouro Preto, Brazil
| | - Maria José Magalhães Trópia
- Laboratório de Biologia Celular e Molecular, Departamento de Farmácia, Escola de Farmácia, Ouro Preto, Brazil
| | - Aureliano Claret da Cunha
- Laboratório de Biologia Celular e Molecular, Departamento de Farmácia, Escola de Farmácia, Ouro Preto, Brazil
- Laboratório de Engenharia de Alimentos, Departamento de Alimentos, Escola de Nutrição, Salvador, Brazil
| | - Izinara C. Rosse
- Laboratório de Biologia Celular e Molecular, Departamento de Farmácia, Escola de Farmácia, Ouro Preto, Brazil
- Laboratório Multiusuário de Bioinformática, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Rogelio Lopes Brandão
- Laboratório de Biologia Celular e Molecular, Departamento de Farmácia, Escola de Farmácia, Ouro Preto, Brazil
| |
Collapse
|
2
|
Bennis NX, Kostanjšek M, van den Broek M, Daran JMG. Improving CRISPR-Cas9 mediated genome integration in interspecific hybrid yeasts. N Biotechnol 2023; 76:49-62. [PMID: 37028644 DOI: 10.1016/j.nbt.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Saccharomyces pastorianus is not a classical taxon, it is an interspecific hybrid resulting from the cross of Saccharomyces cerevisiae and Saccharomyces eubayanus. Exhibiting heterosis for phenotypic traits such as wort α-oligosaccharide consumption and fermentation at low temperature, it has been domesticated to become the main workhorse of the brewing industry. Although CRISPR-Cas9 has been shown to be functional in S. pastorianus, repair of CRISPR- induced double strand break is unpredictable and preferentially uses the homoeologous chromosome as template, preventing targeted introduction of the desired repair construct. Here, we demonstrate that lager hybrids can be edited with near 100% efficiency at carefully selected landing sites on the chimeric SeScCHRIII. The landing sites were systematically selected and evaluated for (i) absence of loss of heterozygosity upon CRISPR-editing, (ii) efficiency of the gRNA, and (iii) absence of effect on strain physiology. Successful examples of highly efficient single and double gene integration illustrated that genome editing can be applied in interspecies hybrids, paving the way to a new impulse to lager yeast strain development. DATA AVAILABILITY: Data underlying graphs and figures found in this manuscript are deposited at the 4TU research dat center (https://data.4tu.nl/info/en/) and available through the doi: 10.4121/21648329.
Collapse
|
3
|
Gyurchev NY, Coral-Medina Á, Weening SM, Almayouf S, Kuijpers NGA, Nevoigt E, Louis EJ. Beyond Saccharomyces pastorianus for modern lager brews: Exploring non- cerevisiae Saccharomyces hybrids with heterotic maltotriose consumption and novel aroma profile. Front Microbiol 2022; 13:1025132. [PMID: 36439845 PMCID: PMC9687090 DOI: 10.3389/fmicb.2022.1025132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/21/2022] [Indexed: 09/11/2024] Open
Abstract
Non-domesticated, wild Saccharomyces yeasts have promising characteristics for beer diversification, particularly when used in the generation of de novo interspecific hybrids. A major motivation for the current work was the question whether attractive novel Saccharomyces interspecific hybrids can be created for the production of exotic lager beers without using the genomic resources of the ale yeast Saccharomyces cerevisiae. Importantly, maltotriose utilization is an essential characteristic typically associated with domesticated ale/lager brewing strains. A high-throughput screening on nearly 200 strains representing all eight species of the Saccharomyces genus was conducted. Three Saccharomyces mikatae strains were able to aerobically grow on maltotriose as the sole carbon source, a trait until recently unidentified for this species. Our screening also confirmed the recently reported maltotriose utilization of the S. jurei strain D5095T. Remarkably, de novo hybrids between a maltotriose-utilizing S. mikatae or S. jurei strain and the maltotriose-negative Saccharomyces eubayanus strain CBS 12357T displayed heterosis and outperformed both parents with regard to aerobically utilizing maltotriose as the sole source of carbon. Indeed, the maximum specific growth rates on this sugar were comparable to the well-known industrial strain, Saccharomyces pastorianus CBS 1513. In lager brewing settings (oxygen-limited), the new hybrids were able to ferment maltose, while maltotriose was not metabolized. Favorable fruity esters were produced, demonstrating that the novel hybrids have the potential to add to the diversity of lager brewing.
Collapse
Affiliation(s)
- Nikola Y. Gyurchev
- Centre of Genetic Architecture of Complex Traits, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- School of Science, Jacobs University Bremen, Bremen, Germany
| | - Ángela Coral-Medina
- SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier, France
- School of Microbiology, University College Cork, Cork, Ireland
| | - Susan M. Weening
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Salwa Almayouf
- Centre of Genetic Architecture of Complex Traits, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | | | - Elke Nevoigt
- School of Science, Jacobs University Bremen, Bremen, Germany
| | - Edward J. Louis
- Centre of Genetic Architecture of Complex Traits, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
4
|
Zhang J, Chen H, Wang Z, Xu H, Luo W, Xu J, Lv P. Heat-induced overexpression of the thermophilic lipase from Bacillus thermocatenulatus in Escherichia coli by fermentation and its application in preparation biodiesel using rapeseed oil. Biotechnol Appl Biochem 2021; 69:1812-1820. [PMID: 34486738 DOI: 10.1002/bab.2247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/30/2021] [Indexed: 11/12/2022]
Abstract
Due to its simple, less by-product and environment friendly properties, enzymatic transesterification of oil with short-chain alcohol to biodiesel, fatty acid methyl esters (FAMEs) is considered to be a promising way of green production and has attracted much attention. In this study, FAMEs were synthesized by an enzymatic method with recombinant lipase as catalysts. A thermophilic Bacillus thermocatenulatus lipase 2 (BTL2) was overexpressed in Escherichia coli BL21(DE3) through relative and quantitative analysis using real-time quantitative PCR. The results suggested that the BTL2 gene was overexpressed in E. coli at the mRNA level, and the recombinant strain harboring a high-copy number vectors was selected and applied to fermentation to produce BTL2 with enzyme activity of 35.54 U/mg cells. The recombinant BTL2 solution exhibited excellent resistance to neutral pH, high temperature, and organic solvents after a certain treatment. Finally, the effects of enzymatic transesterification for preparing biodiesel were studied, using rapeseed oil as raw material, as well as BTL2 solution as catalysts, which resulted in 86.04% yield of FAMEs under 50°C for 36 h. The liquid BTL2 was directly used to prepare FAMEs at a higher temperature efficiently, making the thermophilic BTL2 had the potential application value in biodiesel reproduction subsequently.
Collapse
Affiliation(s)
- Jun Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China.,College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huanjun Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Huijuan Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Wen Luo
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Jingliang Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China.,School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Pengmei Lv
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| |
Collapse
|
5
|
Cui DY, Wei YN, Lin LC, Chen SJ, Feng PP, Xiao DG, Lin X, Zhang CY. Increasing Yield of 2,3,5,6-Tetramethylpyrazine in Baijiu Through Saccharomyces cerevisiae Metabolic Engineering. Front Microbiol 2020; 11:596306. [PMID: 33324376 PMCID: PMC7726194 DOI: 10.3389/fmicb.2020.596306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
Baijiu is a traditional distilled beverage in China with a rich variety of aroma substances. 2,3,5,6-tetramethylpyrazine (TTMP) is an important component in Baijiu and has the function of promoting cardiovascular and cerebrovascular health. During the brewing of Baijiu, the microorganisms in jiuqu produce acetoin and then synthesize TTMP, but the yield of TTMP is very low. In this work, 2,3-butanediol dehydrogenase (BDH) coding gene BDH1 and another BDH2 gene were deleted or overexpressed to evaluate the effect on the content of acetoin and TTMP in Saccharomyces cerevisiae. The results showed that the acetoin synthesis of strain α5-D1B2 was significantly enhanced by disrupting BDH1 and overexpressing BDH2, leading to a 2.6-fold increase of TTMP production up to 10.55 mg/L. To further improve the production level of TTMP, the α-acetolactate synthase (ALS) of the pyruvate decomposition pathway was overexpressed to enhance the synthesis of diacetyl. However, replacing the promoter of the ILV2 gene with a strong promoter (PGK1p) to increase the expression level of the ILV2 gene did not result in further increased diacetyl, acetoin and TTMP production. Based on these evidences, we constructed the diploid strains AY-SB1 (ΔBDH1:loxP/ΔBDH1:loxP) and AY-SD1B2 (ΔBDH1:loxP-PGK1p-BDH2-PGK1t/ΔBDH1:loxP-PGK1p-BDH2-PGK1t) to ensure the fermentation performance of the strain is more stable in Baijiu brewing. The concentration of TTMP in AY-SB1 and AY-SD1B2 was 7.58 and 9.47 mg/L, respectively, which represented a 2.3- and 2.87-fold increase compared to the parental strain. This work provides an example for increasing TTMP production in S. cerevisiae by genetic engineering, and highlight a novel method to improve the quality and beneficial health attributes of Baijiu.
Collapse
Affiliation(s)
- Dan-Yao Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
| | - Ya-Nan Wei
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
| | - Liang-Cai Lin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
| | - Shi-Jia Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
| | - Peng-Peng Feng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
| | - Dong-Guang Xiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
| | - Xue Lin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Cui-Ying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Yibin, China
| |
Collapse
|
6
|
Gorter de Vries AR, Pronk JT, Daran JMG. Lager-brewing yeasts in the era of modern genetics. FEMS Yeast Res 2020; 19:5573808. [PMID: 31553794 PMCID: PMC6790113 DOI: 10.1093/femsyr/foz063] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
The yeast Saccharomyces pastorianus is responsible for the annual worldwide production of almost 200 billion liters of lager-type beer. S. pastorianus is a hybrid of Saccharomyces cerevisiae and Saccharomyces eubayanus that has been studied for well over a century. Scientific interest in S. pastorianus intensified upon the discovery, in 2011, of its S. eubayanus ancestor. Moreover, advances in whole-genome sequencing and genome editing now enable deeper exploration of the complex hybrid and aneuploid genome architectures of S. pastorianus strains. These developments not only provide novel insights into the emergence and domestication of S. pastorianus but also generate new opportunities for its industrial application. This review paper combines historical, technical and socioeconomic perspectives to analyze the evolutionary origin and genetics of S. pastorianus. In addition, it provides an overview of available methods for industrial strain improvement and an outlook on future industrial application of lager-brewing yeasts. Particular attention is given to the ongoing debate on whether current S. pastorianus originates from a single or multiple hybridization events and to the potential role of genome editing in developing industrial brewing yeast strains.
Collapse
Affiliation(s)
- Arthur R Gorter de Vries
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
7
|
Colomer MS, Chailyan A, Fennessy RT, Olsson KF, Johnsen L, Solodovnikova N, Forster J. Assessing Population Diversity of Brettanomyces Yeast Species and Identification of Strains for Brewing Applications. Front Microbiol 2020; 11:637. [PMID: 32373090 PMCID: PMC7177047 DOI: 10.3389/fmicb.2020.00637] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/20/2020] [Indexed: 01/09/2023] Open
Abstract
Brettanomyces yeasts have gained popularity in many sectors of the biotechnological industry, specifically in the field of beer production, but also in wine and ethanol production. Their unique properties enable Brettanomyces to outcompete conventional brewer’s yeast in industrially relevant traits such as production of ethanol and pleasant flavors. Recent advances in next-generation sequencing (NGS) and high-throughput screening techniques have facilitated large population studies allowing the selection of appropriate yeast strains with improved traits. In order to get a better understanding of Brettanomyces species and its potential for beer production, we sequenced the whole genome of 84 strains, which we make available to the scientific community and carried out several in vitro assays for brewing-relevant properties. The collection includes isolates from different substrates and geographical origin. Additionally, we have included two of the oldest Carlsberg Research Laboratory isolates. In this study, we reveal the phylogenetic pattern of Brettanomyces species by comparing the predicted proteomes of each strain. Furthermore, we show that the Brettanomyces collection is well described using similarity in genomic organization, and that there is a direct correlation between genomic background and phenotypic characteristics. Particularly, genomic patterns affecting flavor production, maltose assimilation, beta-glucosidase activity, and phenolic off-flavor (POF) production are reported. This knowledge yields new insights into Brettanomyces population survival strategies, artificial selection pressure, and loss of carbon assimilation traits. On a species-specific level, we have identified for the first time a POF negative Brettanomyces anomalus strain, without the main spoilage character of Brettanomyces species. This strain (CRL-90) has lost DaPAD1, making it incapable of converting ferulic acid to 4-ethylguaiacol (4-EG) and 4-ethylphenol (4-EP). This loss of function makes CRL-90 a good candidate for the production of characteristic Brettanomyces flavors in beverages, without the contaminant increase in POF. Overall, this study displays the potential of exploring Brettanomyces yeast species biodiversity to find strains with relevant properties applicable to the brewing industry.
Collapse
Affiliation(s)
- Marc Serra Colomer
- Carlsberg Research Laboratory, Group Research, Copenhagen, Denmark.,National Institute for Food, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Chailyan
- Carlsberg Research Laboratory, Group Research, Copenhagen, Denmark
| | - Ross T Fennessy
- Carlsberg Research Laboratory, Group Research, Copenhagen, Denmark
| | - Kim Friis Olsson
- Carlsberg Research Laboratory, Group Research, Copenhagen, Denmark
| | | | | | - Jochen Forster
- Carlsberg Research Laboratory, Group Research, Copenhagen, Denmark
| |
Collapse
|
8
|
Xu X, Song Y, Guo L, Cheng W, Niu C, Wang J, Liu C, Zheng F, Zhou Y, Li X, Mu Y, Li Q. Higher NADH Availability of Lager Yeast Increases the Flavor Stability of Beer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:584-590. [PMID: 31623437 DOI: 10.1021/acs.jafc.9b05812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flavor stability is a significant concern to brewers as the staling compounds impart unpleasant flavor to beer. Thus, yeasts with antistaling ability have been engineered to produce beer with improved flavor stability. Here, we proposed that increasing the NADH availability of yeast could improve the flavor stability of beer. By engineering endogenous pathways, we obtained an array of yeast strains with a higher reducing activity. Then, we carried out beer fermentation with these strains and found that the antistaling capacities of the beer samples were improved. For a better understanding of the underlying mechanism, we compared the flavor profiles of these strains. The production of staling components was significantly decreased, whereas the content of antistaling components, such as SO2, was increased, in line with the increased antistaling ability. The other aroma components were marginally changed, indicating that this concept was useful for improving the antistaling stability without changing the flavor of beer.
Collapse
Affiliation(s)
| | - Yumei Song
- Beijing Yanjing Brewery Group Co., Ltd. , Beijing 101300 , China
| | - Liyun Guo
- Beijing Yanjing Brewery Group Co., Ltd. , Beijing 101300 , China
| | | | | | | | | | | | | | | | - Yingjian Mu
- Beijing Yanjing Brewery Group Co., Ltd. , Beijing 101300 , China
| | | |
Collapse
|
9
|
Abstract
Non-Saccharomyces yeasts have aroused interest in brewing science as an innovative and seminal way of creating new beer flavors. A screening system for potential brewing strains of non-Saccharomyces yeasts was set up to investigate the yeast’s utilization of wort sugars and to examine the effect of hop acids as well as ethanol on the growth of different yeast strains. Additionally, phenolic off-flavor (POF) and sensory odor tests of fermented wort samples were performed. The promising strains were further investigated for their propagation ability and for following fermentation trials. The produced beers were analyzed for secondary metabolites, ethanol content and judged by trained panelists. Subsequently to the screening, it was discovered that among the 110 screened yeast strains, approx. 10 strains of the species Saccharomycopsis fibuligera, Schizosaccharomyces pombe and Zygosaccharomyces rouxii generate promising fruity flavors during fermentation and were able to metabolize maltose and maltotriose as a prerequisite for the production of alcoholic beers. Consequently, the screening method described in this study makes it possible to investigate a tremendous number of different non-Saccharomyces yeasts and to test their brewing ability in a relatively short period of time.
Collapse
|
10
|
Overexpression of RAD51 Enables PCR-Based Gene Targeting in Lager Yeast. Microorganisms 2019; 7:microorganisms7070192. [PMID: 31284488 PMCID: PMC6680445 DOI: 10.3390/microorganisms7070192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/17/2022] Open
Abstract
Lager beer fermentations rely on specific polyploid hybrids between Saccharomyces cerevisiae and Saccharomyces eubayanus falling into the two groups of S. carlsbergensis/Saaz-type and S. pastorianus/Frohberg-type. These strains provide a terroir to lager beer as they have long traditional associations and local selection histories with specific breweries. Lager yeasts share, based on their common origin, several phenotypes. One of them is low transformability, hampering the gene function analyses required for proof-of-concept strain improvements. PCR-based gene targeting is a standard tool for manipulating S. cerevisiae and other ascomycetes. However, low transformability paired with the low efficiency of homologous recombination practically disable targeted gene function analyses in lager yeast strains. For genetic manipulations in lager yeasts, we employed a yeast transformation protocol based on lithium-acetate/PEG incubation combined with electroporation. We first introduced freely replicating CEN/ARS plasmids carrying ScRAD51 driven by a strong heterologous promoter into lager yeast. RAD51 overexpression in the Weihenstephan 34/70 lager yeast was necessary and sufficient in our hands for gene targeting using short-flanking homology regions of 50 bp added to a selection marker by PCR. We successfully targeted two independent loci, ScADE2/YOR128C and ScHSP104/YLL026W, and confirmed correct integration by diagnostic PCR. With these modifications, genetic alterations of lager yeasts can be achieved efficiently and the RAD51-containing episomal plasmid can be removed after successful strain construction.
Collapse
|
11
|
Xu X, Niu C, Liu C, Li Q. Unraveling the Mechanisms for Low-Level Acetaldehyde Production during Alcoholic Fermentation in Saccharomyces pastorianus Lager Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2020-2027. [PMID: 30666873 DOI: 10.1021/acs.jafc.8b06868] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Acetaldehyde is produced by yeast during alcoholic fermentation, and its modification greatly affects beer flavor and quality. In the current study, we analyzed two yeast strains with a low level of acetaldehyde to reveal the potential mechanism underpinning the desirable low acetaldehyde production by these strains. We demonstrated that high alcohol dehydrogenase (ADH) activity and high NADH availability were the dominant factors for the low level of acetaldehyde in the fermentation liquor at the end of fermentation. High ADH activity resulted in reduced accumulation of acetaldehyde during the cell growth phase by increasing the flux to ethanol, whereas high NADH availability (in the cytosol or mitochondria) enhanced acetaldehyde reduction at the later phase of main fermentation. Furthermore, NADH availability is a more useful target trait than ADH activity for constructing yeast strains with a low level of acetaldehyde for industrial applications in terms of flavor contribution and unaltered fermentation period.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214000 , People's Republic of China
- School of Biotechnology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214000 , People's Republic of China
- School of Biotechnology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214000 , People's Republic of China
- School of Biotechnology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214000 , People's Republic of China
- School of Biotechnology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| |
Collapse
|
12
|
Xu X, Bao M, Niu C, Wang J, Liu C, Zheng F, Li Y, Li Q. Engineering the cytosolic NADH availability in lager yeast to improve the aroma profile of beer. Biotechnol Lett 2019; 41:363-369. [PMID: 30707389 DOI: 10.1007/s10529-019-02653-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/25/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To improve the aroma profile of beer by using metabolic engineering to increase the availability of cytosolic NADH in lager yeast. RESULTS To alter NADH levels in lager yeast, the native FDH1 (YOR388C) encoding NAD+-dependent formate dehydrogenase was overexpressed in the yeast strain M14, yielding strain M-FDH1. This led to a simultaneous increase of NADH availability and NADH/NAD+ ratio in the M-FDH1 strain during fermentation. At the end of the main fermentation period, ethanol production by strain M-FDH1 was decreased by 13.2%, while glycerol production was enhanced by 129.4%, compared to the parental strain respectively. The production of esters and fusel alcohols by strains M14 and M-FDH1 was similar. By contrast, strain M-FDH1 generally produced less organic acids and off-flavor components than strain M14, improving the beer aroma. CONCLUSIONS Increased NADH availability led to rerouting of the carbon flux toward NADH-consuming pathways and accelerated the NADH-dependent reducing reactions in yeast, greatly impacting the formation of aroma compounds and improving the beer aroma.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China
- School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Min Bao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China
- School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China
- School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China
- School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China
- School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China
- School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Yongxian Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China
- School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China.
- School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
13
|
Xu X, Wang J, Bao M, Niu C, Liu C, Zheng F, Li Y, Li Q. Reverse metabolic engineering in lager yeast: impact of the NADH/NAD + ratio on acetaldehyde production during the brewing process. Appl Microbiol Biotechnol 2018; 103:869-880. [PMID: 30535678 DOI: 10.1007/s00253-018-9517-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/15/2018] [Accepted: 11/11/2018] [Indexed: 01/15/2023]
Abstract
Acetaldehyde is synthesized by yeast during the main fermentation period of beer production, which causes an unpleasant off-flavor. Therefore, there has been extensive effort toward reducing acetaldehyde to obtain a beer product with better flavor and anti-staling ability. In this study, we discovered that acetaldehyde production in beer brewing is closely related with the intracellular NADH equivalent regulated by the citric acid cycle. However, there was no significant relationship between acetaldehyde production and amino acid metabolism. A reverse engineering strategy to increase the intracellular NADH/NAD+ ratio reduced the final acetaldehyde production level, and vice versa. This work offers new insight into acetaldehyde metabolism and further provides efficient strategies for reducing acetaldehyde production by the regulating the intracellular NADH/NAD+ ratio through cofactor engineering.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Min Bao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yongxian Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China. .,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China. .,School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
14
|
Li P, Gao Y, Wang C, Zhang CY, Guo X, Xiao D. Effect of ILV6 Deletion and Expression of aldB from Lactobacillus plantarum in Saccharomyces uvarum on Diacetyl Production and Wine Flavor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8556-8565. [PMID: 30027745 DOI: 10.1021/acs.jafc.8b02356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Diacetyl generates an aromatic off-flavor in wine at a high level. The present study expressed α-acetolactate decarboxylase (ALDB) from Lactobacillus plantarum and/or inactivated acetohydroxyacid synthase (Ilv6) in Saccharomyces uvarum, and the effects on diacetyl production and wine flavor in mutants were investigated through sequential fermentation and cofermentation in mixed cultures of S. uvarum and L. plantarum. The diacetyl content of WYDΔ6 (disrupted one ILV6 allele), WYSΔ6 ( ILV6 complete deletion), WYADΔ6 (disrupted one ILV6 allele with aldB expression), and WYASΔ6 ( ILV6 complete deletion with aldB expression) decreased by 25.71%, 41.30%, 47.77%, and 50.00%, respectively, after sequential fermentation and decreased by 15.15%, 26.72%, 35.26%, and 43.80%, respectively, after cofermentation, compared with that of the parental strain. In addition, Ilv6 inactivation not only decreased the acetic acid content but also balanced the flavor profile in wine effectively. This work provided a valuable insight into the metabolic pathway of diacetyl and wine flavor in S. uvarum.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Yingying Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Cailing Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Cui-Ying Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Xuewu Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Dongguang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| |
Collapse
|
15
|
|
16
|
Ochando T, Mouret JR, Humbert-Goffard A, Sablayrolles JM, Farines V. Vicinal diketones and their precursors in wine alcoholic fermentation: Quantification and dynamics of production. Food Res Int 2018; 103:192-199. [DOI: 10.1016/j.foodres.2017.10.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/26/2017] [Accepted: 10/19/2017] [Indexed: 11/30/2022]
|
17
|
de Vries ARG, de Groot PA, van den Broek M, Daran JMG. CRISPR-Cas9 mediated gene deletions in lager yeast Saccharomyces pastorianus. Microb Cell Fact 2017; 16:222. [PMID: 29207996 PMCID: PMC5718131 DOI: 10.1186/s12934-017-0835-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/23/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The ease of use of CRISPR-Cas9 reprogramming, its high efficacy, and its multiplexing capabilities have brought this technology at the forefront of genome editing techniques. Saccharomyces pastorianus is an aneuploid interspecific hybrid of Saccharomyces cerevisiae and Saccharomyces eubayanus that has been domesticated for centuries and is used for the industrial fermentation of lager beer. For yet uncharacterised reasons, this hybrid yeast is far more resilient to genetic alteration than its ancestor S. cerevisiae. RESULTS This study reports a new CRISPR-Cas9 method for accurate gene deletion in S. pastorianus. This method combined the Streptococcus pyogenes cas9 gene expressed from either a chromosomal locus or from a mobile genetic element in combination with a plasmid-borne gRNA expression cassette. While the well-established gRNA expression system using the RNA polymerase III dependent SNR52 promoter failed, expression of a gRNA flanked with Hammerhead and Hepatitis Delta Virus ribozymes using the RNA polymerase II dependent TDH3 promoter successfully led to accurate deletion of all four alleles of the SeILV6 gene in strain CBS1483. Furthermore the expression of two ribozyme-flanked gRNAs separated by a 10-bp linker in a polycistronic array successfully led to the simultaneous deletion of SeATF1 and SeATF2, genes located on two separate chromosomes. The expression of this array resulted in the precise deletion of all five and four alleles mediated by homologous recombination in the strains CBS1483 and Weihenstephan 34/70 respectively, demonstrating the multiplexing abilities of this gRNA expression design. CONCLUSIONS These results firmly established that CRISPR-Cas9 significantly facilitates and accelerates genome editing in S. pastorianus.
Collapse
Affiliation(s)
- Arthur R. Gorter de Vries
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Philip A. de Groot
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jean-Marc G. Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
18
|
An enzyme-linked immunosorbent assay for the detection of diacetyl (2,3-butanedione). Anal Biochem 2017; 535:12-18. [DOI: 10.1016/j.ab.2017.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/23/2017] [Accepted: 07/20/2017] [Indexed: 11/23/2022]
|
19
|
Brickwedde A, van den Broek M, Geertman JMA, Magalhães F, Kuijpers NGA, Gibson B, Pronk JT, Daran JMG. Evolutionary Engineering in Chemostat Cultures for Improved Maltotriose Fermentation Kinetics in Saccharomyces pastorianus Lager Brewing Yeast. Front Microbiol 2017; 8:1690. [PMID: 28943864 PMCID: PMC5596070 DOI: 10.3389/fmicb.2017.01690] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/21/2017] [Indexed: 01/01/2023] Open
Abstract
The lager brewing yeast Saccharomyces pastorianus, an interspecies hybrid of S. eubayanus and S. cerevisiae, ferments maltotriose, maltose, sucrose, glucose and fructose in wort to ethanol and carbon dioxide. Complete and timely conversion ("attenuation") of maltotriose by industrial S. pastorianus strains is a key requirement for process intensification. This study explores a new evolutionary engineering strategy for improving maltotriose fermentation kinetics. Prolonged carbon-limited, anaerobic chemostat cultivation of the reference strain S. pastorianus CBS1483 on a maltotriose-enriched sugar mixture was used to select for spontaneous mutants with improved affinity for maltotriose. Evolved populations exhibited an up to 5-fold lower residual maltotriose concentration and a higher ethanol concentration than the parental strain. Uptake studies with 14C-labeled sugars revealed an up to 4.75-fold higher transport capacity for maltotriose in evolved strains. In laboratory batch cultures on wort, evolved strains showed improved attenuation and higher ethanol concentrations. These improvements were also observed in pilot fermentations at 1,000-L scale with high-gravity wort. Although the evolved strain exhibited multiple chromosomal copy number changes, analysis of beer made from pilot fermentations showed no negative effects on flavor compound profiles. These results demonstrate the potential of evolutionary engineering for strain improvement of hybrid, alloploid brewing strains.
Collapse
Affiliation(s)
- Anja Brickwedde
- Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
| | | | | | | | - Niels G A Kuijpers
- HEINEKEN Supply Chain, Global Innovation and ResearchZoeterwoude, Netherlands
| | - Brian Gibson
- VTT Technical Research Centre of Finland Ltd.Espoo, Finland
| | - Jack T Pronk
- Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
| |
Collapse
|
20
|
Li P, Guo X, Shi T, Hu Z, Chen Y, Du L, Xiao D. Reducing diacetyl production of wine by overexpressing BDH1 and BDH2 in Saccharomyces uvarum. J Ind Microbiol Biotechnol 2017; 44:1541-1550. [PMID: 28856461 DOI: 10.1007/s10295-017-1976-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/09/2017] [Indexed: 11/28/2022]
Abstract
As a byproduct of yeast valine metabolism during fermentation, diacetyl can produce a buttery aroma in wine. However, high diacetyl concentrations generate an aromatic off-flavor and poor quality in wine. 2,3-Butanediol dehydrogenase encoded by BDH1 can catalyze the two reactions of acetoin from diacetyl and 2,3-butanediol from acetoin. BDH2 is a gene adjacent to BDH1, and these genes are regulated reciprocally. In this study, BDH1 and BDH2 were overexpressed in Saccharomyces uvarum to reduce the diacetyl production of wine either individually or in combination. Compared with those in the host strain WY1, the diacetyl concentrations in the recombinant strains WY1-1 with overexpressed BDH1, WY1-2 with overexpressed BDH2 alone, and WY1-12 with co-overexpressed BDH1 and BDH2 were decreased by 39.87, 33.42, and 46.71%, respectively. BDH2 was only responsible for converting diacetyl into acetoin, but not for the metabolic pathway of acetoin to 2,3-butanediol in S. uvarum. This study provided valuable insights into diacetyl reduction in wine.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13ST. TEDA, Tianjin, 300457, China.,Tianjin Food Safety and Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300457, China
| | - Xuewu Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13ST. TEDA, Tianjin, 300457, China. .,Tianjin Food Safety and Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300457, China. .,College of Bioengineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin, 300457, China.
| | - Tingting Shi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13ST. TEDA, Tianjin, 300457, China.,Department of Life Science, Qilu Normal University, Jinan, 250013, China
| | - Zhihui Hu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13ST. TEDA, Tianjin, 300457, China.,Tianjin Food Safety and Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300457, China
| | - Yefu Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13ST. TEDA, Tianjin, 300457, China.,Tianjin Food Safety and Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300457, China
| | - Liping Du
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13ST. TEDA, Tianjin, 300457, China.,Tianjin Food Safety and Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300457, China
| | - Dongguang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13ST. TEDA, Tianjin, 300457, China. .,Tianjin Food Safety and Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300457, China. .,College of Bioengineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin, 300457, China.
| |
Collapse
|
21
|
|
22
|
Shi TT, Li P, Chen SJ, Chen YF, Guo XW, Xiao DG. Reduced production of diacetyl by overexpressing BDH2 gene and ILV5 gene in yeast of the lager brewers with one ILV2 allelic gene deleted. ACTA ACUST UNITED AC 2017; 44:397-405. [DOI: 10.1007/s10295-017-1903-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
Abstract
Abstract
Diacetyl causes an unwanted buttery off-flavor in lager beer. The production of diacetyl is reduced by modifying the metabolic pathway of yeast in the beer fermentation process. In this study, BDH2 and ILV5 genes, coding diacetyl reductase and acetohydroxy acid reductoisomerase, respectively, were expressed using a PGK1 promoter in Saccharomyces cerevisiae, which deleted one ILV2 allelic gene. Diacetyl contents and fermentation performances were examined and compared. Results showed that the diacetyl content in beer was remarkably reduced by 16.52% in QI2-KP (one ILV2 allelic gene deleted), 55.65% in QI2-B2Y (overexpressed BDH2 gene and one ILV2 allelic gene deleted), and 69.13% in QI2-I5Y (overexpressed ILV5 gene and one ILV2 allelic gene deleted) compared with the host strain S2. The fermentation ability of mutant strains was similar to that of S2. Results of the present study can lead to further advances in this technology and its broad application in scientific investigations and industrial beer production.
Collapse
Affiliation(s)
- Ting-Ting Shi
- 0000 0000 9735 6249 grid.413109.e Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
- grid.488158.8 0000 0004 1765 9725 Department of Life Science Qilu Normal University 250013 Jinan People’s Republic of China
| | - Ping Li
- 0000 0000 9735 6249 grid.413109.e Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
| | - Shi-Jia Chen
- 0000 0000 9735 6249 grid.413109.e Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
| | - Ye-Fu Chen
- 0000 0000 9735 6249 grid.413109.e Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
| | - Xue-Wu Guo
- 0000 0000 9735 6249 grid.413109.e Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
| | - Dong-Guang Xiao
- 0000 0000 9735 6249 grid.413109.e Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
| |
Collapse
|
23
|
Krogerus K, Arvas M, De Chiara M, Magalhães F, Mattinen L, Oja M, Vidgren V, Yue JX, Liti G, Gibson B. Ploidy influences the functional attributes of de novo lager yeast hybrids. Appl Microbiol Biotechnol 2016; 100:7203-22. [PMID: 27183995 PMCID: PMC4947488 DOI: 10.1007/s00253-016-7588-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/03/2016] [Accepted: 04/24/2016] [Indexed: 12/25/2022]
Abstract
The genomes of hybrid organisms, such as lager yeast (Saccharomyces cerevisiae × Saccharomyces eubayanus), contain orthologous genes, the functionality and effect of which may differ depending on their origin and copy number. How the parental subgenomes in lager yeast contribute to important phenotypic traits such as fermentation performance, aroma production, and stress tolerance remains poorly understood. Here, three de novo lager yeast hybrids with different ploidy levels (allodiploid, allotriploid, and allotetraploid) were generated through hybridization techniques without genetic modification. The hybrids were characterized in fermentations of both high gravity wort (15 °P) and very high gravity wort (25 °P), which were monitored for aroma compound and sugar concentrations. The hybrid strains with higher DNA content performed better during fermentation and produced higher concentrations of flavor-active esters in both worts. The hybrid strains also outperformed both the parent strains. Genome sequencing revealed that several genes related to the formation of flavor-active esters (ATF1, ATF2¸ EHT1, EEB1, and BAT1) were present in higher copy numbers in the higher ploidy hybrid strains. A direct relationship between gene copy number and transcript level was also observed. The measured ester concentrations and transcript levels also suggest that the functionality of the S. cerevisiae- and S. eubayanus-derived gene products differs. The results contribute to our understanding of the complex molecular mechanisms that determine phenotypes in lager yeast hybrids and are expected to facilitate targeted strain development through interspecific hybridization.
Collapse
Affiliation(s)
- Kristoffer Krogerus
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044, Espoo, Finland.
- Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, FI-00076, Espoo, Finland.
| | - Mikko Arvas
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044, Espoo, Finland
| | - Matteo De Chiara
- Institute for Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University of Nice Sophia Antipolis, 06107, Nice, France
| | - Frederico Magalhães
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044, Espoo, Finland
- Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, FI-00076, Espoo, Finland
| | - Laura Mattinen
- ValiRx Finland Oy, Kiviharjuntie 8, FI-90220, Oulu, Finland
| | - Merja Oja
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044, Espoo, Finland
| | - Virve Vidgren
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044, Espoo, Finland
| | - Jia-Xing Yue
- Institute for Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University of Nice Sophia Antipolis, 06107, Nice, France
| | - Gianni Liti
- Institute for Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University of Nice Sophia Antipolis, 06107, Nice, France
| | - Brian Gibson
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044, Espoo, Finland
| |
Collapse
|
24
|
Shi TT, Guo XW, Li P, Zhou Z, Xiao DG. Diacetyl content reduction in industrial brewer’s yeast through ILV2 disruption and BDH1 expression. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2598-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Petruzzi L, Rosaria Corbo M, Sinigaglia M, Bevilacqua A. Brewer’s yeast in controlled and uncontrolled fermentations, with a focus on novel, nonconventional, and superior strains. FOOD REVIEWS INTERNATIONAL 2015. [DOI: 10.1080/87559129.2015.1075211] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Chromosomal Copy Number Variation in Saccharomyces pastorianus Is Evidence for Extensive Genome Dynamics in Industrial Lager Brewing Strains. Appl Environ Microbiol 2015; 81:6253-67. [PMID: 26150454 PMCID: PMC4542246 DOI: 10.1128/aem.01263-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/27/2015] [Indexed: 11/20/2022] Open
Abstract
Lager brewing strains of Saccharomyces pastorianus are natural interspecific hybrids originating from the spontaneous hybridization of Saccharomyces cerevisiae and Saccharomyces eubayanus. Over the past 500 years, S. pastorianus has been domesticated to become one of the most important industrial microorganisms. Production of lager-type beers requires a set of essential phenotypes, including the ability to ferment maltose and maltotriose at low temperature, the production of flavors and aromas, and the ability to flocculate. Understanding of the molecular basis of complex brewing-related phenotypic traits is a prerequisite for rational strain improvement. While genome sequences have been reported, the variability and dynamics of S. pastorianus genomes have not been investigated in detail. Here, using deep sequencing and chromosome copy number analysis, we showed that S. pastorianus strain CBS1483 exhibited extensive aneuploidy. This was confirmed by quantitative PCR and by flow cytometry. As a direct consequence of this aneuploidy, a massive number of sequence variants was identified, leading to at least 1,800 additional protein variants in S. pastorianus CBS1483. Analysis of eight additional S. pastorianus strains revealed that the previously defined group I strains showed comparable karyotypes, while group II strains showed large interstrain karyotypic variability. Comparison of three strains with nearly identical genome sequences revealed substantial chromosome copy number variation, which may contribute to strain-specific phenotypic traits. The observed variability of lager yeast genomes demonstrates that systematic linking of genotype to phenotype requires a three-dimensional genome analysis encompassing physical chromosomal structures, the copy number of individual chromosomes or chromosomal regions, and the allelic variation of copies of individual genes.
Collapse
|
27
|
Birch AN, Petersen MA, Hansen ÅS. Aroma of Wheat Bread Crumb. Cereal Chem 2015. [DOI: 10.1094/cchem-06-13-0002-rw.test] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Birch AN, Petersen MA, Hansen ÅS. Aroma of Wheat Bread Crumb. Cereal Chem 2015. [DOI: 10.1094/cchem-06-13-0002-rw.testissue] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Gibson B, Liti G. Saccharomyces pastorianus: genomic insights inspiring innovation for industry. Yeast 2014; 32:17-27. [DOI: 10.1002/yea.3033] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/17/2014] [Accepted: 07/18/2014] [Indexed: 12/24/2022] Open
Affiliation(s)
- Brian Gibson
- VTT Technical Research Centre of Finland; Tietotie 2, PO Box 1000 FI-02044 VTT Espoo Finland
| | - Gianni Liti
- Institute for Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR 7284-INSERM U1081; Université de Nice Sophia Antipolis; 06107 Nice Cedex 2 France
| |
Collapse
|
30
|
Secretion expression of SOD1 and its overlapping function with GSH in brewing yeast strain for better flavor and anti-aging ability. ACTA ACUST UNITED AC 2014; 41:1415-24. [DOI: 10.1007/s10295-014-1481-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/29/2014] [Indexed: 12/22/2022]
Abstract
Abstract
Superoxide dismutase (SOD) is a significant antioxidant, but unlike glutathione (GSH), SOD cannot be secreted into beer by yeast cells during fermentation, this directly leads to the limited application of SOD in beer anti-aging. In this investigation, we constructed the SOD1 secretion cassette in which strong promoter PGK1p and the sequence of secreting signal factor from Saccharomyces cerevisiae were both harbored to the upstream of coding sequence of SOD1 gene, as a result, the obtained strains carrying this cassette successfully realized the secretion of SOD1. In order to overcome the limitation of previous genetic modification on yeast strains, one new comprehensive strategy was adopted targeting the suitable homologous sites by gene deletion and SOD1 + GSH1 co-overexpression, and the new strain ST31 (Δadh2::SOD1 + Δilv2::GSH1) was constructed. The results of the pilot-scale fermentation showed that the diacetyl content of ST31 was lower by 42 % than that of the host, and the acetaldehyde content decreased by 29 %, the GSH content in the fermenting liquor of ST31 increased by 29 % compared with the host. Both SOD activity test and the positive and negative staining assay after native PAGE indicated that the secreted active SOD in the fermenting liquor of ST31 was mainly a dimer with the size of 32,500 Da. The anti-aging indexes such as the thiobarbituric acid and the resistance staling value further proved that the flavor stability of the beer brewed with strain ST31 was not only better than that of the original strain, but also better than that of the previous engineering strains. The multi-modification and comprehensive improvement of the beer yeast strain would greatly enhance beer quality than ever, and the self-cloning strain would be attractive to the public due to its bio-safety.
Collapse
|
31
|
Steensels J, Snoek T, Meersman E, Nicolino MP, Voordeckers K, Verstrepen KJ. Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev 2014; 38:947-95. [PMID: 24724938 PMCID: PMC4293462 DOI: 10.1111/1574-6976.12073] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 01/31/2014] [Accepted: 04/02/2014] [Indexed: 12/23/2022] Open
Abstract
Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as 'global transcription machinery engineering' (gTME), to induce genetic variation, providing a new source of yeast genetic diversity.
Collapse
Affiliation(s)
- Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Tim Snoek
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Esther Meersman
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Martina Picca Nicolino
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Karin Voordeckers
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| |
Collapse
|
32
|
Abstract
Alcoholic fermentations have accompanied human civilizations throughout our history. Lager yeasts have a several-century-long tradition of providing fresh beer with clean taste. The yeast strains used for lager beer fermentation have long been recognized as hybrids between two Saccharomyces species. We summarize the initial findings on this hybrid nature, the genomics/transcriptomics of lager yeasts, and established targets of strain improvements. Next-generation sequencing has provided fast access to yeast genomes. Its use in population genomics has uncovered many more hybridization events within Saccharomyces species, so that lager yeast hybrids are no longer the exception from the rule. These findings have led us to propose network evolution within Saccharomyces species. This "web of life" recognizes the ability of closely related species to exchange DNA and thus drain from a combined gene pool rather than be limited to a gene pool restricted by speciation. Within the domesticated lager yeasts, two groups, the Saaz and Frohberg groups, can be distinguished based on fermentation characteristics. Recent evidence suggests that these groups share an evolutionary history. We thus propose to refer to the Saaz group as Saccharomyces carlsbergensis and to the Frohberg group as Saccharomyces pastorianus based on their distinct genomes. New insight into the hybrid nature of lager yeast will provide novel directions for future strain improvement.
Collapse
|
33
|
Gibson B, Krogerus K, Ekberg J, Monroux A, Mattinen L, Rautio J, Vidgren V. Variation in α-acetolactate production within the hybrid lager yeast group Saccharomyces pastorianus and affirmation of the central role of the ILV6 gene. Yeast 2014; 32:301-16. [PMID: 24965182 DOI: 10.1002/yea.3026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 12/28/2022] Open
Abstract
A screen of 14 S. pastorianus lager-brewing strains showed as much as a nine-fold difference in wort total diacetyl concentration at equivalent stages of fermentation of 15°Plato brewer's wort. Two strains (A153 and W34), with relatively low and high diacetyl production, respectively, but which did not otherwise differ in fermentation performance, growth or flavour production, were selected for further investigation. Transcriptional analysis of key genes involved in valine biosynthesis showed differences between the two strains that were consistent with the differences in wort diacetyl concentration. In particular, the ILV6 gene, encoding a regulatory subunit of acetohydroxy acid synthase, showed early transcription (only 6 h after inoculation) and up to five-fold greater expression in W34 compared to A153. This earlier transcription was observed for both orthologues of ILV6 in the S. pastorianus hybrid (S. cerevisiae × S. eubayanus), although the S. cerevisiae form of ILV6 in W34 also showed a consistently higher transcript level throughout fermentation relative to the same gene in A153. Overexpression of either form of ILV6 (by placing it under the control of the PGK1 promoter) resulted in an identical two-fold increase in wort total diacetyl concentration relative to a control. The results confirm the role of the Ilv6 subunit in controlling α-acetolactate/diacetyl concentration and indicate no functional divergence between the two forms of Ilv6. The greater contribution of the S. cerevisiae ILV6 to acetolactate production in natural brewing yeast hybrids appears rather to be due to higher levels of transcription relative to the S. eubayanus form.
Collapse
Affiliation(s)
- Brian Gibson
- VTT Technical Research Centre of Finland, Espoo, Finland
| | | | | | | | | | | | | |
Collapse
|
34
|
Gao X, Xu N, Li S, Liu L. Metabolic engineering of Candida glabrata for diacetyl production. PLoS One 2014; 9:e89854. [PMID: 24614328 PMCID: PMC3948628 DOI: 10.1371/journal.pone.0089854] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/26/2014] [Indexed: 01/04/2023] Open
Abstract
In this study, Candida glabrata, an efficient pyruvate-producing strain, was metabolically engineered for the production of the food ingredient diacetyl. A diacetyl biosynthetic pathway was reconstructed based on genetic modifications and medium optimization. The former included (i) channeling carbon flux into the diacetyl biosynthetic pathway by amplification of acetolactate synthase, (ii) elimination of the branched pathway of α-acetolactate by deleting the ILV5 gene, and (iii) restriction of diacetyl degradation by deleting the BDH gene. The resultant strain showed an almost 1∶1 co-production of α-acetolactate and diacetyl (0.95 g L(-1)). Furthermore, addition of Fe3+ to the medium enhanced the conversion of α-acetolactate to diacetyl and resulted in a two-fold increase in diacetyl production (2.1 g L(-1)). In addition, increased carbon flux was further channeled into diacetyl biosynthetic pathway and a titer of 4.7 g L(-1) of diacetyl was achieved by altering the vitamin level in the flask culture. Thus, this study illustrates that C. glabrata could be tailored as an attractive platform for enhanced biosynthesis of beneficial products from pyruvate by metabolic engineering strategies.
Collapse
Affiliation(s)
- Xiang Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Laboratory of Food Microbial-Manufacturing Engineering, Jiangnan University, Wuxi, Jiangsu, China
| | - Nan Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Laboratory of Food Microbial-Manufacturing Engineering, Jiangnan University, Wuxi, Jiangsu, China
| | - Shubo Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Laboratory of Food Microbial-Manufacturing Engineering, Jiangnan University, Wuxi, Jiangsu, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Laboratory of Food Microbial-Manufacturing Engineering, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
35
|
Affiliation(s)
- Anja Niehues Birch
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg C, Denmark
- Corresponding author. Phone: +45-35333655. E-mail:
| | - Mikael Agerlin Petersen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg C, Denmark
| | - Åse Solvej Hansen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg C, Denmark
| |
Collapse
|
36
|
Fischer S, Procopio S, Becker T. Self-cloning brewing yeast: a new dimension in beverage production. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-2092-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Krogerus K, Gibson BR. 125thAnniversary Review: Diacetyl and its control during brewery fermentation. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/jib.84] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Brian R. Gibson
- VTT Technical Research Centre of Finland; Tietotie 2, PO Box 1000; FI-02044; VTT, Espoo; Finland
| |
Collapse
|
38
|
Bolat I, Romagnoli G, Zhu F, Pronk JT, Daran JM. Functional analysis and transcriptional regulation of two orthologs of ARO10, encoding broad-substrate-specificity 2-oxo-acid decarboxylases, in the brewing yeast Saccharomyces pastorianus CBS1483. FEMS Yeast Res 2013; 13:505-17. [PMID: 23692465 DOI: 10.1111/1567-1364.12051] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 01/26/2023] Open
Abstract
The hybrid genomes of Saccharomyces pastorianus consist of subgenomes similar to those of S. cerevisiae and S. eubayanus, and impact of the genome structure on flavour production and its regulation is poorly understood. This study focuses on ARO10, a 2-oxo-acid decarboxylase involved in production of higher alcohols. In S. pastorianus CBS1483, four ARO10 copies were identified, three resembled S. cerevisiae ARO10 and one S. eubayanus ARO10. Substrate specificities of lager strain (Lg)ScAro10 and LgSeubAro10 were compared by individually expressing them in a pdc1Δ-pdc5Δ-pdc6Δ-aro10Δ-thi3Δ S. cerevisiae strain. Both isoenzymes catalysed decarboxylation of the 2-oxo-acids derived from branched-chain, sulphur-containing amino acids and preferably phenylpyruvate. Expression of both alleles was induced by phenylalanine, however in contrast to the S. cerevisiae strain, the two genes were not induced by leucine. Additionally, LgSeubARO10 showed higher basal expression levels during growth with ammonia. ARO80, which encodes ARO10 transcriptional activator, is located on CHRIV and counts three Sc-like and one Seub-like copies. Deletion of LgSeubARO80 did not affect LgSeubARO10 phenylalanine induction, revealing 'trans' regulation across the subgenomes. ARO10 transcript levels showed a poor correlation with decarboxylase activities. These results provide insights into flavour formation in S. pastorianus and illustrate the complexity of functional characterization in aneuploid strains.
Collapse
Affiliation(s)
- Irina Bolat
- Industrial Microbiology Section, Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | | | | | | |
Collapse
|
39
|
Influence of valine and other amino acids on total diacetyl and 2,3-pentanedione levels during fermentation of brewer's wort. Appl Microbiol Biotechnol 2013; 97:6919-30. [PMID: 23677441 PMCID: PMC3708283 DOI: 10.1007/s00253-013-4955-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 11/18/2022]
Abstract
Undesirable butter-tasting vicinal diketones are produced as by-products of valine and isoleucine biosynthesis during wort fermentation. One promising method of decreasing diacetyl production is through control of wort valine content since valine is involved in feedback inhibition of enzymes controlling the formation of diacetyl precursors. Here, the influence of valine supplementation, wort amino acid profile and free amino nitrogen content on diacetyl formation during wort fermentation with the lager yeast Saccharomyces pastorianus was investigated. Valine supplementation (100 to 300 mg L−1) resulted in decreased maximum diacetyl concentrations (up to 37 % lower) and diacetyl concentrations at the end of fermentation (up to 33 % lower) in all trials. Composition of the amino acid spectrum of the wort also had an impact on diacetyl and 2,3-pentanedione production during fermentation. No direct correlation between the wort amino acid concentrations and diacetyl production was found, but rather a negative correlation between the uptake rate of valine (and also other branched-chain amino acids) and diacetyl production. Fermentation performance and yeast growth were unaffected by supplementations. Amino acid addition had a minor effect on higher alcohol and ester composition, suggesting that high levels of supplementation could affect the flavour profile of the beer. Modifying amino acid profile of wort, especially with respect to valine and the other branched-chain amino acids, may be an effective way of decreasing the amount of diacetyl formed during fermentation.
Collapse
|
40
|
Ekberg J, Rautio J, Mattinen L, Vidgren V, Londesborough J, Gibson BR. Adaptive evolution of the lager brewing yeastSaccharomyces pastorianusfor improved growth under hyperosmotic conditions and its influence on fermentation performance. FEMS Yeast Res 2013; 13:335-49. [DOI: 10.1111/1567-1364.12038] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/08/2013] [Accepted: 02/08/2013] [Indexed: 11/26/2022] Open
Affiliation(s)
| | | | | | - Virve Vidgren
- VTT Technical Research Centre of Finland; Espoo; Finland
| | | | | |
Collapse
|
41
|
Construction of recombinant industrial brewer’s yeast with lower diacetyl production and proteinase A activity. Eur Food Res Technol 2012. [DOI: 10.1007/s00217-012-1821-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Swinnen S, Thevelein JM, Nevoigt E. Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae. FEMS Yeast Res 2012; 12:215-27. [PMID: 22150948 DOI: 10.1111/j.1567-1364.2011.00777.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 12/13/2022] Open
Abstract
Saccharomyces cerevisiae has become a favorite production organism in industrial biotechnology presenting new challenges to yeast engineers in terms of introducing advantageous traits such as stress tolerances. Exploring subspecies diversity of S. cerevisiae has identified strains that bear industrially relevant phenotypic traits. Provided that the genetic basis of such phenotypic traits can be identified inverse engineering allows the targeted modification of production strains. Most phenotypic traits of interest in S. cerevisiae strains are quantitative, meaning that they are controlled by multiple genetic loci referred to as quantitative trait loci (QTL). A straightforward approach to identify the genetic basis of quantitative traits is QTL mapping which aims at the allocation of the genetic determinants to regions in the genome. The application of high-density oligonucleotide arrays and whole-genome re-sequencing to detect genetic variations between strains has facilitated the detection of large numbers of molecular markers thus allowing high-resolution QTL mapping over the entire genome. This review focuses on the basic principle and state of the art of QTL mapping in S. cerevisiae. Furthermore we discuss several approaches developed during the last decade that allow down-scaling of the regions identified by QTL mapping to the gene level. We also emphasize the particular challenges of QTL mapping in nonlaboratory strains of S. cerevisiae.
Collapse
Affiliation(s)
- Steve Swinnen
- School of Engineering and Science, Jacobs University gGmbH, Bremen, Germany
| | | | | |
Collapse
|
43
|
Oud B, van Maris AJA, Daran JM, Pronk JT. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast. FEMS Yeast Res 2012; 12:183-96. [PMID: 22152095 PMCID: PMC3615171 DOI: 10.1111/j.1567-1364.2011.00776.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 11/28/2022] Open
Abstract
Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages.
Collapse
Affiliation(s)
- Bart Oud
- Department of Biotechnology, Delft University of Technology and Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
| | | | | | | |
Collapse
|
44
|
Ethanol-induced yeast flocculation directed by the promoter of TPS1 encoding trehalose-6-phosphate synthase 1 for efficient ethanol production. Metab Eng 2011; 14:1-8. [PMID: 22178744 DOI: 10.1016/j.ymben.2011.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/13/2011] [Accepted: 12/02/2011] [Indexed: 01/03/2023]
Abstract
Yeast flocculation is an important trait in the brewing industry as well as in ethanol production, through which biomass can be recovered by cost-effective sedimentation. However, mass transfer limitation may affect yeast growth and ethanol fermentation if the flocculation occurs earlier before fermentation is completed. In this article, a novel type of cell-cell flocculation induced by trehalose-6-phosphate synthase 1 (TPS1) promoter was presented. The linear cassette HO-P(TPS1)-FLO1(SPSC01)-KanMX4-HO was constructed to transform the non-flocculating industrial yeast S. cerevisiae 4126 by chromosome integration to obtain a new flocculating yeast strain, ZLH01, whose flocculation was induced by ethanol produced during fermentation. The experimental results illustrated that flocculation of ZLH01 was triggered by 3% (v/v) ethanol and enhanced as ethanol concentration increased till complete flocculation was achieved at ethanol concentration of 8% (v/v). Real time PCR analysis confirmed that the expression of FLO1(SPSC01) was dependent on ethanol concentration. The growth and ethanol fermentation of ZLH01 were improved significantly, compared with the constitutive flocculating yeast BHL01 engineered with the same FLO gene but directed by the constitutive 3-phosphoglycerate kinase promoter PGK1, particularly under high temperature conditions. These characteristics make the engineered yeast more suitable for ethanol production from industrial substrates under high gravity and temperature conditions. In addition, this strategy offers advantage in inducing differential expression of other genes for metabolic engineering applications of S. cerevisiae.
Collapse
|