1
|
Kazemi Shariat Panahi H, Dehhaghi M, Dehhaghi S, Guillemin GJ, Lam SS, Aghbashlo M, Tabatabaei M. Engineered bacteria for valorizing lignocellulosic biomass into bioethanol. BIORESOURCE TECHNOLOGY 2022; 344:126212. [PMID: 34715341 DOI: 10.1016/j.biortech.2021.126212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Appropriate bioprocessing of lignocellulosic materials into ethanol could address the world's insatiable appetite for energy while mitigating greenhouse gases. Bioethanol is an ideal gasoline extender and is widely used in many countries in blended form with gasoline at specific ratios to improve fuel characteristics and engine performance. Although the bioethanol production industry has long been operational, finding a suitable microbial agent for the efficient conversion of lignocelluloses is still an active field of study. Among available microbial candidates, engineered bacteria may be promising ethanol producers while may show other desired traits such as thermophilic nature and high ethanol tolerance. This review provides the current knowledge on the introduction, overexpression, and deletion of the genes that have been performed in bacterial hosts to achieve higher ethanol yield, production rate and titer, and tolerance. The constraints and possible solutions and economic feasibility of the processes utilizing such engineered strains are also discussed.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China; Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; Biofuel Research Team (BRTeam), Terengganu, Malaysia
| | - Mona Dehhaghi
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; Biofuel Research Team (BRTeam), Terengganu, Malaysia; PANDIS.org, Australia
| | - Somayeh Dehhaghi
- Department of Agricultural Extension and Education, Tarbiat Modares University, Tehran 14115-336, Iran
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; PANDIS.org, Australia
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China; Biofuel Research Team (BRTeam), Terengganu, Malaysia; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
2
|
Wu M, Jiang Y, Liu Y, Mou L, Zhang W, Xin F, Jiang M. Microbial application of thermophilic Thermoanaerobacterium species in lignocellulosic biorefinery. Appl Microbiol Biotechnol 2021; 105:5739-5749. [PMID: 34283269 DOI: 10.1007/s00253-021-11450-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
Recently, thermophilic Thermoanaerobacterium species have attracted increasing attentions in consolidated bioprocessing (CBP), which can directly utilize lignocellulosic materials for biofuels production. Compared to the mesophilic process, thermophilic process shows greater prospects in CBP due to its relatively highly efficiency of lignocellulose degradation. In addition, thermophilic conditions can avoid microbial contamination, reduce the cooling costs, and further facilitate the downstream product recovery. However, only few reviews specifically focused on the microbial applications of thermophilic Thermoanaerobacterium species in lignocellulosic biorefinery. Accordingly, this review will comprehensively summarize the recent advances of Thermoanaerobacterium species in lignocellulosic biorefinery, including their secreted xylanases and bioenergy production. Furthermore, the co-culture can significantly reduce the metabolic burden and achieve the more complex work, which will be discussed as the further perspectives. KEY POINTS: • Thermoanaerobacterium species, promising chassis for lignocellulosic biorefinery. • Potential capability of hemicellulose degradation for Thermoanaerobacterium species. • Efficient bioenergy production by Thermoanaerobacterium species through metabolic engineering.
Collapse
Affiliation(s)
- Mengdi Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Yansong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Lu Mou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| |
Collapse
|
3
|
Fu H, Luo S, Dai K, Qu C, Wang J. Engineering Thermoanaerobacterium aotearoense SCUT27/Δldh with pyruvate formate lyase-activating protein (PflA) knockout for enhanced ethanol tolerance and production. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Bing RG, Sulis DB, Wang JP, Adams MW, Kelly RM. Thermophilic microbial deconstruction and conversion of natural and transgenic lignocellulose. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:272-293. [PMID: 33684253 PMCID: PMC10519370 DOI: 10.1111/1758-2229.12943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The potential to convert renewable plant biomasses into fuels and chemicals by microbial processes presents an attractive, less environmentally intense alternative to conventional routes based on fossil fuels. This would best be done with microbes that natively deconstruct lignocellulose and concomitantly form industrially relevant products, but these two physiological and metabolic features are rarely and simultaneously observed in nature. Genetic modification of both plant feedstocks and microbes can be used to increase lignocellulose deconstruction capability and generate industrially relevant products. Separate efforts on plants and microbes are ongoing, but these studies lack a focus on optimal, complementary combinations of these disparate biological systems to obtain a convergent technology. Improving genetic tools for plants have given rise to the generation of low-lignin lines that are more readily solubilized by microorganisms. Most focus on the microbiological front has involved thermophilic bacteria from the genera Caldicellulosiruptor and Clostridium, given their capacity to degrade lignocellulose and to form bio-products through metabolic engineering strategies enabled by ever-improving molecular genetics tools. Bioengineering plant properties to better fit the deconstruction capabilities of candidate consolidated bioprocessing microorganisms has potential to achieve the efficient lignocellulose deconstruction needed for industrial relevance.
Collapse
Affiliation(s)
- Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Daniel B. Sulis
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695
| | - Jack P. Wang
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695
| | - Michael W.W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
5
|
Metabolic Fluxes of Nitrogen and Pyrophosphate in Chemostat Cultures of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. Appl Environ Microbiol 2020; 86:AEM.01795-20. [PMID: 32978139 PMCID: PMC7657619 DOI: 10.1128/aem.01795-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/17/2020] [Indexed: 01/29/2023] Open
Abstract
Clostridium thermocellum and Thermoanaerobacterium saccharolyticum were grown in cellobiose-limited chemostat cultures at a fixed dilution rate. C. thermocellum produced acetate, ethanol, formate, and lactate. Surprisingly, and in contrast to batch cultures, in cellobiose-limited chemostat cultures of T. saccharolyticum, ethanol was the main fermentation product. Enzyme assays confirmed that in C. thermocellum, glycolysis proceeds via pyrophosphate (PPi)-dependent phosphofructokinase (PFK), pyruvate-phosphate dikinase (PPDK), as well as a malate shunt for the conversion of phosphoenolpyruvate (PEP) to pyruvate. Pyruvate kinase activity was not detectable. In T. saccharolyticum, ATP but not PPi served as cofactor for the PFK reaction. High activities of both pyruvate kinase and PPDK were present, whereas the activities of a malate shunt enzymes were low in T. saccharolyticum In C. thermocellum, glycolysis via PPi-PFK and PPDK obeys the equation glucose + 5 NDP + 3 PPi → 2 pyruvate + 5 NTP + Pi (where NDP is nucleoside diphosphate and NTP is nucleoside triphosphate). Metabolic flux analysis of chemostat data with the wild type and a deletion mutant of the proton-pumping pyrophosphatase showed that a PPi-generating mechanism must be present that operates according to ATP + Pi → ADP + PPi Both organisms also produced significant amounts of amino acids in cellobiose-limited cultures. It was anticipated that this phenomenon would be suppressed by growth under nitrogen limitation. Surprisingly, nitrogen-limited chemostat cultivation of wild-type C. thermocellum revealed a bottleneck in pyruvate oxidation, as large amounts of pyruvate and amino acids, mainly valine, were excreted; up to 50% of the nitrogen consumed was excreted again as amino acids.IMPORTANCE This study discusses the fate of pyrophosphate in the metabolism of two thermophilic anaerobes that lack a soluble irreversible pyrophosphatase as present in Escherichia coli but instead use a reversible membrane-bound proton-pumping enzyme. In such organisms, the charging of tRNA with amino acids may become more reversible. This may contribute to the observed excretion of amino acids during sugar fermentation by Clostridium thermocellum and Thermoanaerobacterium saccharolyticum Calculation of the energetic advantage of reversible pyrophosphate-dependent glycolysis, as occurs in Clostridium thermocellum, could not be properly evaluated, as currently available genome-scale models neglect the anabolic generation of pyrophosphate in, for example, polymerization of amino acids to protein. This anabolic pyrophosphate replaces ATP and thus saves energy. Its amount is, however, too small to cover the pyrophosphate requirement of sugar catabolism in glycolysis. Consequently, pyrophosphate for catabolism is generated according to ATP + Pi → ADP + PPi.
Collapse
|
6
|
Methods for Metabolic Engineering of Thermoanaerobacterium saccharolyticum. Methods Mol Biol 2020; 2096:21-43. [PMID: 32720144 DOI: 10.1007/978-1-0716-0195-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
In this work, we describe genetic tools and techniques for engineering Thermoanaerobacterium saccharolyticum. In particular, the T. saccharolyticum transformation protocol and the methods for selecting for transformants are described. Methods for determining strain phenotypes are also presented.
Collapse
|
7
|
Banerjee S, Mishra G, Roy A. Metabolic Engineering of Bacteria for Renewable Bioethanol Production from Cellulosic Biomass. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0134-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Jiang Y, Wu R, Zhou J, He A, Xu J, Xin F, Zhang W, Ma J, Jiang M, Dong W. Recent advances of biofuels and biochemicals production from sustainable resources using co-cultivation systems. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:155. [PMID: 31285755 PMCID: PMC6588928 DOI: 10.1186/s13068-019-1495-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 06/11/2019] [Indexed: 05/09/2023]
Abstract
Microbial communities are ubiquitous in nature and exhibit several attractive features, such as sophisticated metabolic capabilities and strong environment robustness. Inspired by the advantages of natural microbial consortia, diverse artificial co-cultivation systems have been metabolically constructed for biofuels, chemicals and natural products production. In these co-cultivation systems, especially genetic engineering ones can reduce the metabolic burden caused by the complex of metabolic pathway through labor division, and improve the target product production significantly. This review summarized the most up-to-dated co-cultivation systems used for biofuels, chemicals and nature products production. In addition, major challenges associated with co-cultivation systems are also presented and discussed for meeting further industrial demands.
Collapse
Affiliation(s)
- Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800 People’s Republic of China
| | - Ruofan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800 People’s Republic of China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, 223300 People’s Republic of China
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, 223300 People’s Republic of China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| |
Collapse
|
9
|
Ma W, Liu Y, Lv X, Li J, Du G, Liu L. Combinatorial pathway enzyme engineering and host engineering overcomes pyruvate overflow and enhances overproduction of N-acetylglucosamine in Bacillus subtilis. Microb Cell Fact 2019; 18:1. [PMID: 30609921 PMCID: PMC6318901 DOI: 10.1186/s12934-018-1049-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/24/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Glucosamine-6-phosphate N-acetyltransferase (GNA1) is the key enzyme that causes overproduction of N-acetylglucosamine in Bacillus subtilis. Previously, we increased GlcNAc production by promoting the expression of GNA1 from Caenorhabditis elegans (CeGNA1) in an engineered B. subtilis strain BSGN12. In this strain overflow metabolism to by-products acetoin and acetate had been blocked by mutations, however pyruvate accumulated as an overflow metabolite. Although overexpression of CeGNA1 drove carbon flux from pyruvate to the GlcNAc synthesis pathway and decreased pyruvate accumulation, the residual pyruvate reduced the intracellular pH, resulting in inhibited CeGNA1 activity and limited GlcNAc production. RESULTS In this study, we attempted to further overcome pyruvate overflow by enzyme engineering and host engineering for enhanced GlcNAc production. To this end, the key enzyme CeGNA1 was evolved through error-prone PCR under pyruvate stress to enhance its catalytic activity. Then, the urease from Bacillus paralicheniformis was expressed intracellularly to neutralize the intracellular pH, making it more robust in growth and more efficient in GlcNAc production. It was found that the activity of mutant CeGNA1 increased by 11.5% at pH 6.5-7.5, with the catalytic efficiency increasing by 27.5% to 1.25 s-1 µM-1. Modulated expression of urease increased the intracellular pH from 6.0 to 6.8. The final engineered strain BSGN13 overcame pyruvate overflow, produced 25.6 g/L GlcNAc with a yield of 0.43 g GlcNAc/g glucose in a shake flask fermentation and produced 82.5 g/L GlcNAc with a yield of 0.39 g GlcNAc/g glucose by fed-batch fermentation, which was 1.7- and 1.2-times, respectively, of the yield achieved previously. CONCLUSIONS This study highlights a strategy that combines pathway enzyme engineering and host engineering to resolve overflow metabolism in B. subtilis for the overproduction of GlcNAc. By means of modulated expression of urease reduced pyruvate burden, conferred bacterial survival fitness, and enhanced GlcNAc production, all of which improved our understanding of co-regulation of cell growth and metabolism to construct more efficient B. subtilis cell factories.
Collapse
Affiliation(s)
- Wenlong Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
10
|
Jiang Y, Xin F, Lu J, Dong W, Zhang W, Zhang M, Wu H, Ma J, Jiang M. State of the art review of biofuels production from lignocellulose by thermophilic bacteria. BIORESOURCE TECHNOLOGY 2017. [PMID: 28634129 DOI: 10.1016/j.biortech.2017.05.142] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Biofuels, including ethanol and butanol, are mainly produced by mesophilic solventogenic yeasts and Clostridium species. However, these microorganisms cannot directly utilize lignocellulosic materials, which are abundant, renewable and non-compete with human demand. More recently, thermophilic bacteria show great potential for biofuels production, which could efficiently degrade lignocellulose through the cost effective consolidated bioprocessing. Especially, it could avoid contamination in the whole process owing to its relatively high fermentation temperature. However, wild types thermophiles generally produce low levels of biofuels, hindering their large scale production. This review comprehensively summarizes the state of the art development of biofuels production by reported thermophilic microorganisms, and also concludes strategies to improve biofuels production including the metabolic pathways construction, co-culturing systems and biofuels tolerance. In addition, strategies to further improve butanol production are proposed.
Collapse
Affiliation(s)
- Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jiasheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Min Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Hao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| |
Collapse
|
11
|
Rahayu F, Kawai Y, Iwasaki Y, Yoshida K, Kita A, Tajima T, Kato J, Murakami K, Hoshino T, Nakashimada Y. Thermophilic ethanol fermentation from lignocellulose hydrolysate by genetically engineered Moorella thermoacetica. BIORESOURCE TECHNOLOGY 2017; 245:1393-1399. [PMID: 28583404 DOI: 10.1016/j.biortech.2017.05.146] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
A transformant of Moorella thermoacetica was constructed for thermophilic ethanol production from lignocellulosic biomass by deleting two phosphotransacetylase genes, pdul1 and pdul2, and introducing the native aldehyde dehydrogenase gene (aldh) controlled by the promoter from glyceraldehyde-3-phosphate dehydrogenase. The transformant showed tolerance to 540mM and fermented sugars including fructose, glucose, galactose and xylose to mainly ethanol. In a mixed-sugar medium of glucose and xylose, all of the sugars were consumed to produce ethanol at the yield of 1.9mol/mol-sugar. The transformant successfully fermented sugars in hydrolysate prepared through the acid hydrolysis of lignocellulose to ethanol, suggesting that this transformant can be used to ferment the sugars in lignocellulosic biomass for ethanol production.
Collapse
Affiliation(s)
- Farida Rahayu
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; Indonesian Sweetener and Fiber Crops Research Institute, Jalan Raya Karangploso Km 9, Malang, East Java 65152, Indonesia
| | - Yuto Kawai
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Yuki Iwasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Koichiro Yoshida
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Akihisa Kita
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Takahisa Tajima
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Junichi Kato
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Katsuji Murakami
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Tamotsu Hoshino
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Yutaka Nakashimada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.
| |
Collapse
|
12
|
Hon S, Olson DG, Holwerda EK, Lanahan AA, Murphy SJL, Maloney MI, Zheng T, Papanek B, Guss AM, Lynd LR. The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum. Metab Eng 2017; 42:175-184. [PMID: 28663138 DOI: 10.1016/j.ymben.2017.06.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/27/2017] [Accepted: 06/23/2017] [Indexed: 12/31/2022]
Abstract
Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields and titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. This suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum.
Collapse
Affiliation(s)
- Shuen Hon
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Daniel G Olson
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Evert K Holwerda
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Anthony A Lanahan
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Sean J L Murphy
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Marybeth I Maloney
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Tianyong Zheng
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA; Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Beth Papanek
- Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Adam M Guss
- Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA; Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| |
Collapse
|
13
|
Optimization and Validation of a GC–FID Method for Quantitative Determination of 1,3-Propanediol in Bacterial Culture Aqueous Supernatants Containing Glycerol. Chromatographia 2017. [DOI: 10.1007/s10337-017-3310-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Hon S, Lanahan AA, Tian L, Giannone RJ, Hettich RL, Olson DG, Lynd LR. Development of a plasmid-based expression system in Clostridium thermocellum and its use to screen heterologous expression of bifunctional alcohol dehydrogenases ( adhEs). Metab Eng Commun 2016; 3:120-129. [PMID: 29142822 PMCID: PMC5678826 DOI: 10.1016/j.meteno.2016.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 03/15/2016] [Accepted: 04/21/2016] [Indexed: 12/27/2022] Open
Abstract
Clostridium thermocellum is a promising candidate for ethanol production from cellulosic biomass, but requires metabolic engineering to improve ethanol yield. A key gene in the ethanol production pathway is the bifunctional aldehyde and alcohol dehydrogenase, adhE. To explore the effects of overexpressing wild-type, mutant, and exogenous adhEs, we developed a new expression plasmid, pDGO144, that exhibited improved transformation efficiency and better gene expression than its predecessor, pDGO-66. This new expression plasmid will allow for many other metabolic engineering and basic research efforts in C. thermocellum. As proof of concept, we used this plasmid to express 12 different adhE genes (both wild type and mutant) from several organisms. Ethanol production varied between clones immediately after transformation, but tended to converge to a single value after several rounds of serial transfer. The previously described mutant C. thermocellum D494G adhE gave the best ethanol production, which is consistent with previously published results.
Collapse
Affiliation(s)
- Shuen Hon
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- BioEnergy Science Center, Oak Ridge, TN, USA
| | - Anthony A. Lanahan
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- BioEnergy Science Center, Oak Ridge, TN, USA
| | - Liang Tian
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- BioEnergy Science Center, Oak Ridge, TN, USA
| | - Richard J. Giannone
- BioEnergy Science Center, Oak Ridge, TN, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Robert L. Hettich
- BioEnergy Science Center, Oak Ridge, TN, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Daniel G. Olson
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- BioEnergy Science Center, Oak Ridge, TN, USA
| | - Lee R. Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- BioEnergy Science Center, Oak Ridge, TN, USA
| |
Collapse
|
15
|
Advances in Consolidated Bioprocessing Using Clostridium thermocellumand Thermoanaerobacter saccharolyticum. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch10] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
16
|
Beri D, Olson DG, Holwerda EK, Lynd LR. Nicotinamide cofactor ratios in engineered strains of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. FEMS Microbiol Lett 2016; 363:fnw091. [PMID: 27190292 DOI: 10.1093/femsle/fnw091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 12/30/2022] Open
Abstract
Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are bacteria under investigation for production of biofuels from plant biomass. Thermoanaerobacterium saccharolyticum has been engineered to produce ethanol at high yield (>90% of theoretical) and titer (>70 g/l). Efforts to engineer C. thermocellum have not, to date, been as successful, and efforts are underway to transfer the ethanol production pathway from T. saccharolyticum to C. thermocellum One potential challenge in transferring metabolic pathways is the possibility of incompatible levels of nicotinamide cofactors. These cofactors (NAD(+), NADH, NADP(+) and NADPH) and their oxidation state are important in the context of microbial redox metabolism. In this study we directly measured the concentrations and reduced oxidized ratios of these cofactors in a number of strains of C. thermocellum and T. saccharolyticum by using acid/base extraction and enzymatic assays. We found that cofactor ratios are maintained in a fairly narrow range, regardless of the metabolic network modifications considered. We have found that the ratios are similar in both organisms, which is a relevant observation in the context of transferring the T. saccharolyticum ethanol production pathway to C. thermocellum.
Collapse
Affiliation(s)
- Dhananjay Beri
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Daniel G Olson
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Evert K Holwerda
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
17
|
Herring CD, Kenealy WR, Joe Shaw A, Covalla SF, Olson DG, Zhang J, Ryan Sillers W, Tsakraklides V, Bardsley JS, Rogers SR, Thorne PG, Johnson JP, Foster A, Shikhare ID, Klingeman DM, Brown SD, Davison BH, Lynd LR, Hogsett DA. Strain and bioprocess improvement of a thermophilic anaerobe for the production of ethanol from wood. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:125. [PMID: 27313661 PMCID: PMC4910263 DOI: 10.1186/s13068-016-0536-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/31/2016] [Indexed: 05/16/2023]
Abstract
BACKGROUND The thermophilic, anaerobic bacterium Thermoanaerobacterium saccharolyticum digests hemicellulose and utilizes the major sugars present in biomass. It was previously engineered to produce ethanol at yields equivalent to yeast. While saccharolytic anaerobes have been long studied as potential biomass-fermenting organisms, development efforts for commercial ethanol production have not been reported. RESULTS Here, we describe the highest ethanol titers achieved from T. saccharolyticum during a 4-year project to develop it for industrial production of ethanol from pre-treated hardwood at 51-55 °C. We describe organism and bioprocess development efforts undertaken to improve ethanol production. The final strain M2886 was generated by removing genes for exopolysaccharide synthesis, the regulator perR, and re-introduction of phosphotransacetylase and acetate kinase into the methyglyoxal synthase gene. It was also subject to multiple rounds of adaptation and selection, resulting in mutations later identified by resequencing. The highest ethanol titer achieved was 70 g/L in batch culture with a mixture of cellobiose and maltodextrin. In a "mock hydrolysate" Simultaneous Saccharification and Fermentation (SSF) with Sigmacell-20, glucose, xylose, and acetic acid, an ethanol titer of 61 g/L was achieved, at 92 % of theoretical yield. Fungal cellulases were rapidly inactivated under these conditions and had to be supplemented with cellulosomes from C. thermocellum. Ethanol titers of 31 g/L were reached in a 100 L SSF of pre-treated hardwood and 26 g/L in a fermentation of a hardwood hemicellulose extract. CONCLUSIONS This study demonstrates that thermophilic anaerobes are capable of producing ethanol at high yield and at titers greater than 60 g/L from purified substrates, but additional work is needed to produce the same ethanol titers from pre-treated hardwood.
Collapse
Affiliation(s)
- Christopher D. Herring
- />Mascoma Corporation, 67 Etna Rd, Lebanon, NH 03766 USA
- />Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
| | - William R. Kenealy
- />Mascoma Corporation, 67 Etna Rd, Lebanon, NH 03766 USA
- />Verdezyne, Carlsbad, CA USA
| | - A. Joe Shaw
- />Mascoma Corporation, 67 Etna Rd, Lebanon, NH 03766 USA
- />Novogy Inc, Cambridge, MA 02138 USA
| | | | - Daniel G. Olson
- />Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- />Bioenergy Science Center, Oak Ridge, TN USA
| | - Jiayi Zhang
- />Mascoma Corporation, 67 Etna Rd, Lebanon, NH 03766 USA
- />Genzyme, Cambridge, MA USA
| | - W. Ryan Sillers
- />Mascoma Corporation, 67 Etna Rd, Lebanon, NH 03766 USA
- />Myriant Corporation, Quincy, MA USA
| | - Vasiliki Tsakraklides
- />Mascoma Corporation, 67 Etna Rd, Lebanon, NH 03766 USA
- />Novogy Inc, Cambridge, MA 02138 USA
| | | | | | | | - Jessica P. Johnson
- />Mascoma Corporation, 67 Etna Rd, Lebanon, NH 03766 USA
- />Washington, DC, USA
| | - Abigail Foster
- />Mascoma Corporation, 67 Etna Rd, Lebanon, NH 03766 USA
| | - Indraneel D. Shikhare
- />Mascoma Corporation, 67 Etna Rd, Lebanon, NH 03766 USA
- />Nalco Champion, Houston, TX USA
| | - Dawn M. Klingeman
- />Bioenergy Science Center, Oak Ridge, TN USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Steven D. Brown
- />Bioenergy Science Center, Oak Ridge, TN USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Brian H. Davison
- />Bioenergy Science Center, Oak Ridge, TN USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Lee R. Lynd
- />Mascoma Corporation, 67 Etna Rd, Lebanon, NH 03766 USA
- />Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- />Bioenergy Science Center, Oak Ridge, TN USA
| | - David A. Hogsett
- />Mascoma Corporation, 67 Etna Rd, Lebanon, NH 03766 USA
- />Novozymes Inc, Davis, CA USA
| |
Collapse
|
18
|
Zhu M, Lu Y, Wang J, Li S, Wang X. Carbon Catabolite Repression and the Related Genes of ccpA, ptsH and hprK in Thermoanaerobacterium aotearoense. PLoS One 2015; 10:e0142121. [PMID: 26540271 PMCID: PMC4634974 DOI: 10.1371/journal.pone.0142121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/16/2015] [Indexed: 01/09/2023] Open
Abstract
The strictly anaerobic, Gram-positive bacterium, Thermoanaerobacterium aotearoense SCUT27, is capable of producing ethanol, hydrogen and lactic acid by directly fermenting glucan, xylan and various lignocellulosically derived sugars. By using non-metabolizable and metabolizable sugars as substrates, we found that cellobiose, galactose, arabinose and starch utilization was strongly inhibited by the existence of 2-deoxyglucose (2-DG). However, the xylose and mannose consumptions were not markedly affected by 2-DG at the concentration of one-tenth of the metabolizable sugar. Accordingly, T. aotearoense SCUT27 could consume xylose and mannose in the presence of glucose. The carbon catabolite repression (CCR) related genes, ccpA, ptsH and hprK were confirmed to exist in T. aotearoense SCUT27 through gene cloning and protein characterization. The highly purified Histidine-containing Protein (HPr) could be specifically phosphorylated at Serine 46 by HPr kinase/phosphatase (HPrK/P) with no need to add fructose-1,6-bisphosphate (FBP) or glucose-6-phosphate (Glc-6-P) in the reaction mixture. The specific protein-interaction of catabolite control protein A (CcpA) and phosphorylated HPr was proved via affinity chromatography in the absence of formaldehyde. The equilibrium binding constant (KD) of CcpA and HPrSerP was determined as 2.22 ± 0.36 nM by surface plasmon resonance (SPR) analysis, indicating the high affinity between these two proteins.
Collapse
Affiliation(s)
- Muzi Zhu
- Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Yanping Lu
- Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jufang Wang
- Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Shuang Li
- Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
- * E-mail:
| | - Xiaoning Wang
- State Key Laboratory of Kidney, the Institute of Life Sciences, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
19
|
Currie DH, Raman B, Gowen CM, Tschaplinski TJ, Land ML, Brown SD, Covalla SF, Klingeman DM, Yang ZK, Engle NL, Johnson CM, Rodriguez M, Shaw AJ, Kenealy WR, Lynd LR, Fong SS, Mielenz JR, Davison BH, Hogsett DA, Herring CD. Genome-scale resources for Thermoanaerobacterium saccharolyticum. BMC SYSTEMS BIOLOGY 2015; 9:30. [PMID: 26111937 PMCID: PMC4518999 DOI: 10.1186/s12918-015-0159-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/09/2015] [Indexed: 01/12/2023]
Abstract
Background Thermoanaerobacterium saccharolyticum is a hemicellulose-degrading thermophilic anaerobe that was previously engineered to produce ethanol at high yield. A major project was undertaken to develop this organism into an industrial biocatalyst, but the lack of genome information and resources were recognized early on as a key limitation. Results Here we present a set of genome-scale resources to enable the systems level investigation and development of this potentially important industrial organism. Resources include a complete genome sequence for strain JW/SL-YS485, a genome-scale reconstruction of metabolism, tiled microarray data showing transcription units, mRNA expression data from 71 different growth conditions or timepoints and GC/MS-based metabolite analysis data from 42 different conditions or timepoints. Growth conditions include hemicellulose hydrolysate, the inhibitors HMF, furfural, diamide, and ethanol, as well as high levels of cellulose, xylose, cellobiose or maltodextrin. The genome consists of a 2.7 Mbp chromosome and a 110 Kbp megaplasmid. An active prophage was also detected, and the expression levels of CRISPR genes were observed to increase in association with those of the phage. Hemicellulose hydrolysate elicited a response of carbohydrate transport and catabolism genes, as well as poorly characterized genes suggesting a redox challenge. In some conditions, a time series of combined transcription and metabolite measurements were made to allow careful study of microbial physiology under process conditions. As a demonstration of the potential utility of the metabolic reconstruction, the OptKnock algorithm was used to predict a set of gene knockouts that maximize growth-coupled ethanol production. The predictions validated intuitive strain designs and matched previous experimental results. Conclusion These data will be a useful asset for efforts to develop T. saccharolyticum for efficient industrial production of biofuels. The resources presented herein may also be useful on a comparative basis for development of other lignocellulose degrading microbes, such as Clostridium thermocellum. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0159-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Devin H Currie
- Mascoma Corporation, 67 Etna Rd, 03766, Lebanon, NH, USA.
| | - Babu Raman
- BioEnergy Science Center, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA. .,Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN, 46268, USA.
| | - Christopher M Gowen
- Chemical and Life Science Engineering, Virginia Commonwealth University, P.O. Box 843028, Richmond, Virginia, 23284, USA. .,Centre for Applied Bioscience and Bioengineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada.
| | - Timothy J Tschaplinski
- BioEnergy Science Center, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA.
| | - Miriam L Land
- BioEnergy Science Center, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA.
| | - Steven D Brown
- BioEnergy Science Center, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA.
| | - Sean F Covalla
- Mascoma Corporation, 67 Etna Rd, 03766, Lebanon, NH, USA.
| | - Dawn M Klingeman
- BioEnergy Science Center, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA.
| | - Zamin K Yang
- BioEnergy Science Center, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA.
| | - Nancy L Engle
- BioEnergy Science Center, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA.
| | - Courtney M Johnson
- BioEnergy Science Center, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA.
| | - Miguel Rodriguez
- BioEnergy Science Center, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA.
| | - A Joe Shaw
- Mascoma Corporation, 67 Etna Rd, 03766, Lebanon, NH, USA. .,Novogy Inc, Cambridge, MA, 02138, USA.
| | | | - Lee R Lynd
- Mascoma Corporation, 67 Etna Rd, 03766, Lebanon, NH, USA. .,Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA.
| | - Stephen S Fong
- Chemical and Life Science Engineering, Virginia Commonwealth University, P.O. Box 843028, Richmond, Virginia, 23284, USA.
| | - Jonathan R Mielenz
- BioEnergy Science Center, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA.
| | - Brian H Davison
- BioEnergy Science Center, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA.
| | | | - Christopher D Herring
- Mascoma Corporation, 67 Etna Rd, 03766, Lebanon, NH, USA. .,Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA.
| |
Collapse
|
20
|
Cofactor Specificity of the Bifunctional Alcohol and Aldehyde Dehydrogenase (AdhE) in Wild-Type and Mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. J Bacteriol 2015; 197:2610-9. [PMID: 26013492 DOI: 10.1128/jb.00232-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/21/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are thermophilic bacteria that have been engineered to produce ethanol from the cellulose and hemicellulose fractions of biomass, respectively. Although engineered strains of T. saccharolyticum produce ethanol with a yield of 90% of the theoretical maximum, engineered strains of C. thermocellum produce ethanol at lower yields (∼50% of the theoretical maximum). In the course of engineering these strains, a number of mutations have been discovered in their adhE genes, which encode both alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. To understand the effects of these mutations, the adhE genes from six strains of C. thermocellum and T. saccharolyticum were cloned and expressed in Escherichia coli, the enzymes produced were purified by affinity chromatography, and enzyme activity was measured. In wild-type strains of both organisms, NADH was the preferred cofactor for both ALDH and ADH activities. In high-ethanol-producing (ethanologen) strains of T. saccharolyticum, both ALDH and ADH activities showed increased NADPH-linked activity. Interestingly, the AdhE protein of the ethanologenic strain of C. thermocellum has acquired high NADPH-linked ADH activity while maintaining NADH-linked ALDH and ADH activities at wild-type levels. When single amino acid mutations in AdhE that caused increased NADPH-linked ADH activity were introduced into C. thermocellum and T. saccharolyticum, ethanol production increased in both organisms. Structural analysis of the wild-type and mutant AdhE proteins was performed to provide explanations for the cofactor specificity change on a molecular level. IMPORTANCE This work describes the characterization of the AdhE enzyme from different strains of C. thermocellum and T. saccharolyticum. C. thermocellum and T. saccharolyticum are thermophilic anaerobes that have been engineered to make high yields of ethanol and can solubilize components of plant biomass and ferment the sugars to ethanol. In the course of engineering these strains, several mutations arose in the bifunctional ADH/ALDH protein AdhE, changing both enzyme activity and cofactor specificity. We show that changing AdhE cofactor specificity from mostly NADH linked to mostly NADPH linked resulted in higher ethanol production by C. thermocellum and T. saccharolyticum.
Collapse
|
21
|
Olson DG, Sparling R, Lynd LR. Ethanol production by engineered thermophiles. Curr Opin Biotechnol 2015; 33:130-41. [PMID: 25745810 DOI: 10.1016/j.copbio.2015.02.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/17/2022]
Abstract
We compare a number of different strategies that have been pursued to engineer thermophilic microorganisms for increased ethanol production. Ethanol production from pyruvate can proceed via one of four pathways, which are named by the key pyruvate dissimilating enzyme: pyruvate decarboxylase (PDC), pyruvate dehydrogenase (PDH), pyruvate formate lyase (PFL), and pyruvate ferredoxin oxidoreductase (PFOR). For each of these pathways except PFL, we see examples where ethanol production has been engineered with a yield of >90% of the theoretical maximum. In each of these cases, this engineering was achieved mainly by modulating expression of native genes. We have not found an example where a thermophilic ethanol production pathway has been transferred to a non-ethanol-producing organism to produce ethanol at high yield. A key reason for the lack of transferability of ethanol production pathways is the current lack of understanding of the enzymes involved.
Collapse
Affiliation(s)
- Daniel G Olson
- Thayer School of Engineering at Dartmouth College, Hanover, NH 03755, United States; BioEnergy Science Center, Oak Ridge, TN 37830, United States
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada R3T 5V6
| | - Lee R Lynd
- Thayer School of Engineering at Dartmouth College, Hanover, NH 03755, United States; BioEnergy Science Center, Oak Ridge, TN 37830, United States.
| |
Collapse
|
22
|
Zhou J, Olson DG, Lanahan AA, Tian L, Murphy SJL, Lo J, Lynd LR. Physiological roles of pyruvate ferredoxin oxidoreductase and pyruvate formate-lyase in Thermoanaerobacterium saccharolyticum JW/SL-YS485. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:138. [PMID: 26379770 PMCID: PMC4570089 DOI: 10.1186/s13068-015-0304-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/03/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Thermoanaerobacter saccharolyticum is a thermophilic microorganism that has been engineered to produce ethanol at high titer (30-70 g/L) and greater than 90 % theoretical yield. However, few genes involved in pyruvate to ethanol production pathway have been unambiguously identified. In T. saccharolyticum, the products of six putative pfor gene clusters and one pfl gene may be responsible for the conversion of pyruvate to acetyl-CoA. To gain insights into the physiological roles of PFOR and PFL, we studied the effect of deletions of several genes thought to encode these activities. RESULTS It was found that pyruvate ferredoxin oxidoreductase enzyme (PFOR) is encoded by the pforA gene and plays a key role in pyruvate dissimilation. We further demonstrated that pyruvate formate-lyase activity (PFL) is encoded by the pfl gene. Although the pfl gene is normally expressed at low levels, it is crucial for biosynthesis in T. saccharolyticum. In pforA deletion strains, pfl expression increased and was able to partially compensate for the loss of PFOR activity. Deletion of both pforA and pfl resulted in a strain that required acetate and formate for growth and produced lactate as the primary fermentation product, achieving 88 % theoretical lactate yield. CONCLUSION PFOR encoded by Tsac_0046 and PFL encoded by Tsac_0628 are only two routes for converting pyruvate to acetyl-CoA in T. saccharolyticum. The physiological role of PFOR is pyruvate dissimilation, whereas that of PFL is supplying C1 units for biosynthesis.
Collapse
Affiliation(s)
- Jilai Zhou
- />Thayer School of Engineering, Hanover, NH 03755 USA
- />BioEnergy Science Center, Oak Ridge, TN 37830 USA
| | - Daniel G Olson
- />Thayer School of Engineering, Hanover, NH 03755 USA
- />BioEnergy Science Center, Oak Ridge, TN 37830 USA
| | - Anthony A Lanahan
- />Thayer School of Engineering, Hanover, NH 03755 USA
- />BioEnergy Science Center, Oak Ridge, TN 37830 USA
| | - Liang Tian
- />Thayer School of Engineering, Hanover, NH 03755 USA
- />BioEnergy Science Center, Oak Ridge, TN 37830 USA
| | - Sean Jean-Loup Murphy
- />Thayer School of Engineering, Hanover, NH 03755 USA
- />BioEnergy Science Center, Oak Ridge, TN 37830 USA
| | - Jonathan Lo
- />Department of Biological Sciences at Dartmouth College, Hanover, NH 03755 USA
- />BioEnergy Science Center, Oak Ridge, TN 37830 USA
| | - Lee R Lynd
- />Thayer School of Engineering, Hanover, NH 03755 USA
- />Department of Biological Sciences at Dartmouth College, Hanover, NH 03755 USA
- />BioEnergy Science Center, Oak Ridge, TN 37830 USA
| |
Collapse
|
23
|
Recent Advances in Second Generation Ethanol Production by Thermophilic Bacteria. ENERGIES 2014. [DOI: 10.3390/en8010001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
24
|
High-level expression and characterization of recombinant acid urease for enzymatic degradation of urea in rice wine. Appl Microbiol Biotechnol 2014; 99:301-8. [PMID: 25027572 DOI: 10.1007/s00253-014-5916-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/22/2014] [Accepted: 06/24/2014] [Indexed: 12/21/2022]
Abstract
Ethylcarbamate, a carcinogenic compound, is formed from urea and ethanol in rice wine, and enzymatic elimination of urea is always attractive. In the present work, we amplified the acid urease gene cluster ureABCEFGD from Lactobacillus reuteri CICC6124 and constructed robust Lactococcus lactis cell factories for the production of acid urease. The titer of the recombinant acid urease was increased from 1,550 to 11,560 U/L by optimization of the cultivation process. Meanwhile, the enzyme showed satisfied properties toward urea elimination in the rice wine model system. By incubating the enzyme (50 U/L) at 20 °C for 60 h, about 95.8% of urea in rice wine was removed. Interestingly, this acid urease also exhibited activity toward ethylcarbamate. The results demonstrated that this recombinant acid urease has great potential in the elimination of urea in rice wine.
Collapse
|
25
|
Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MWW, Kelly RM. Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 2014; 38:393-448. [DOI: 10.1111/1574-6976.12044] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 08/20/2013] [Accepted: 08/28/2013] [Indexed: 11/28/2022] Open
|
26
|
Bhandiwad A, Shaw AJ, Guss A, Guseva A, Bahl H, Lynd LR. Metabolic engineering of Thermoanaerobacterium saccharolyticum for n-butanol production. Metab Eng 2014; 21:17-25. [DOI: 10.1016/j.ymben.2013.10.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 10/01/2013] [Accepted: 10/30/2013] [Indexed: 11/25/2022]
|
27
|
Next generation biofuel engineering in prokaryotes. Curr Opin Chem Biol 2013; 17:462-71. [PMID: 23623045 DOI: 10.1016/j.cbpa.2013.03.037] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/23/2013] [Accepted: 03/28/2013] [Indexed: 12/15/2022]
Abstract
Next-generation biofuels must be compatible with current transportation infrastructure and be derived from environmentally sustainable resources that do not compete with food crops. Many bacterial species have unique properties advantageous to the production of such next-generation fuels. However, no single species possesses all characteristics necessary to make high quantities of fuels from plant waste or CO2. Species containing a subset of the desired characteristics are used as starting points for engineering organisms with all desired attributes. Metabolic engineering of model organisms has yielded high titer production of advanced fuels, including alcohols, isoprenoids, and fatty acid derivatives. Technical developments now allow engineering of native fuel producers, as well as lignocellulolytic and autotrophic bacteria, for the production of biofuels. Continued research on multiple fronts is required to engineer organisms for truly sustainable and economical biofuel production.
Collapse
|
28
|
Currie DH, Herring CD, Guss AM, Olson DG, Hogsett DA, Lynd LR. Functional heterologous expression of an engineered full length CipA from Clostridium thermocellum in Thermoanaerobacterium saccharolyticum. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:32. [PMID: 23448319 PMCID: PMC3598777 DOI: 10.1186/1754-6834-6-32] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/08/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND Cellulose is highly recalcitrant and thus requires a specialized suite of enzymes to solubilize it into fermentable sugars. In C. thermocellum, these extracellular enzymes are present as a highly active multi-component system known as the cellulosome. This study explores the expression of a critical C. thermocellum cellulosomal component in T. saccharolyticum as a step toward creating a thermophilic bacterium capable of consolidated bioprocessing by employing heterologously expressed cellulosomes. RESULTS We developed an inducible promoter system based on the native T. saccharolyticum xynA promoter, which was shown to be induced by xylan and xylose. The promoter was used to express the cellulosomal component cipA*, an engineered form of the wild-type cipA from C. thermocellum. Expression and localization to the supernatant were both verified for CipA*. When a ΔcipA mutant C. thermocellum strain was cultured with a CipA*-expressing T. saccharolyticum strain, hydrolysis and fermentation of 10 grams per liter SigmaCell 101, a highly crystalline cellulose, were observed. This trans-species complementation of a cipA deletion demonstrated the ability for CipA* to assemble a functional cellulosome. CONCLUSION This study is the first example of an engineered thermophile heterologously expressing a structural component of a cellulosome. To achieve this goal we developed and tested an inducible promoter for controlled expression in T. saccharolyticum as well as a synthetic cipA. In addition, we demonstrate a high degree of hydrolysis (up to 93%) on microcrystalline cellulose.
Collapse
Affiliation(s)
- Devin H Currie
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Mascoma Corporation, Lebanon, NH 03766, USA
| | | | - Adam M Guss
- Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Daniel G Olson
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | | | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Mascoma Corporation, Lebanon, NH 03766, USA
| |
Collapse
|