1
|
Gu S, Zhu F, Zhang L, Wen J. Mid-Long Chain Dicarboxylic Acid Production via Systems Metabolic Engineering: Progress and Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5555-5573. [PMID: 38442481 DOI: 10.1021/acs.jafc.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Mid-to-long-chain dicarboxylic acids (DCAi, i ≥ 6) are organic compounds in which two carboxylic acid functional groups are present at the terminal position of the carbon chain. These acids find important applications as structural components and intermediates across various industrial sectors, including organic compound synthesis, food production, pharmaceutical development, and agricultural manufacturing. However, conventional petroleum-based DCA production methods cause environmental pollution, making sustainable development challenging. Hence, the demand for eco-friendly processes and renewable raw materials for DCA production is rising. Owing to advances in systems metabolic engineering, new tools from systems biology, synthetic biology, and evolutionary engineering can now be used for the sustainable production of energy-dense biofuels. Here, we explore systems metabolic engineering strategies for DCA synthesis in various chassis via the conversion of different raw materials into mid-to-long-chain DCAs. Subsequently, we discuss the future challenges in this field and propose synthetic biology approaches for the efficient production and successful commercialization of these acids.
Collapse
Affiliation(s)
- Shanna Gu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Fuzhou Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
| | - Lin Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
| |
Collapse
|
2
|
Lu C, Wijffels RH, Martins dos Santos VAP, Weusthuis RA. Pseudomonas putida as a platform for medium-chain length α,ω-diol production: Opportunities and challenges. Microb Biotechnol 2024; 17:e14423. [PMID: 38528784 PMCID: PMC10963910 DOI: 10.1111/1751-7915.14423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 03/27/2024] Open
Abstract
Medium-chain-length α,ω-diols (mcl-diols) play an important role in polymer production, traditionally depending on energy-intensive chemical processes. Microbial cell factories offer an alternative, but conventional strains like Escherichia coli and Saccharomyces cerevisiae face challenges in mcl-diol production due to the toxicity of intermediates such as alcohols and acids. Metabolic engineering and synthetic biology enable the engineering of non-model strains for such purposes with P. putida emerging as a promising microbial platform. This study reviews the advancement in diol production using P. putida and proposes a four-module approach for the sustainable production of diols. Despite progress, challenges persist, and this study discusses current obstacles and future opportunities for leveraging P. putida as a microbial cell factory for mcl-diol production. Furthermore, this study highlights the potential of using P. putida as an efficient chassis for diol synthesis.
Collapse
Affiliation(s)
- Chunzhe Lu
- Bioprocess EngineeringWageningen University & ResearchWageningenThe Netherlands
- Groningen Biomolecular Sciences & Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Rene H. Wijffels
- Bioprocess EngineeringWageningen University & ResearchWageningenThe Netherlands
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | | | - Ruud A. Weusthuis
- Bioprocess EngineeringWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
3
|
Agena E, Gois IM, Bowers CM, Mahadevan R, Scarborough MJ, Lawson CE. Evaluating the feasibility of medium-chain oleochemical synthesis using microbial chain elongation. J Ind Microbiol Biotechnol 2024; 51:kuae027. [PMID: 39090985 PMCID: PMC11388927 DOI: 10.1093/jimb/kuae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024]
Abstract
Chain elongating bacteria are a unique guild of strictly anaerobic bacteria that have garnered interest for sustainable chemical manufacturing from carbon-rich wet and gaseous waste streams. They produce C6-C8 medium-chain fatty acids, which are valuable platform chemicals that can be used directly, or derivatized to service a wide range of chemical industries. However, the application of chain elongating bacteria for synthesizing products beyond C6-C8 medium-chain fatty acids has not been evaluated. In this study, we assess the feasibility of expanding the product spectrum of chain elongating bacteria to C9-C12 fatty acids, along with the synthesis of C6 fatty alcohols, dicarboxylic acids, diols, and methyl ketones. We propose several metabolic engineering strategies to accomplish these conversions in chain elongating bacteria and utilize constraint-based metabolic modelling to predict pathway stoichiometries, assess thermodynamic feasibility, and estimate ATP and product yields. We also evaluate how producing alternative products impacts the growth rate of chain elongating bacteria via resource allocation modelling, revealing a trade-off between product chain length and class versus cell growth rate. Together, these results highlight the potential for using chain elongating bacteria as a platform for diverse oleochemical biomanufacturing and offer a starting point for guiding future metabolic engineering efforts aimed at expanding their product range. ONE-SENTENCE SUMMARY In this work, the authors use constraint-based metabolic modelling and enzyme cost minimization to assess the feasibility of using metabolic engineering to expand the product spectrum of anaerobic chain elongating bacteria.
Collapse
Affiliation(s)
- Ethan Agena
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5T 3E5, Canada
| | - Ian M Gois
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5T 3E5, Canada
| | - Connor M Bowers
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5T 3E5, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5T 3E5, Canada
- Institute of Biomedical Engineering, 164 College St., Toronto, ON M5S 3E2, Canada
| | - Matthew J Scarborough
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT 05405-0156, USA
| | - Christopher E Lawson
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5T 3E5, Canada
| |
Collapse
|
4
|
Lu C, Ramalho TP, Bisschops MMM, Wijffels RH, Martins Dos Santos VAP, Weusthuis RA. Crossing bacterial boundaries: The carbon catabolite repression system Crc-Hfq of Pseudomonas putida KT2440 as a tool to control translation in E. coli. N Biotechnol 2023; 77:20-29. [PMID: 37348756 DOI: 10.1016/j.nbt.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
As a global regulatory mechanism, carbon catabolite repression allows bacteria and eukaryal microbes to preferentially utilize certain substrates from a mixture of carbon sources. The mechanism varies among different species. In Pseudomonas spp., it is mainly mediated by the Crc-Hfq complex which binds to the 5' region of the target mRNAs, thereby inhibiting their translation. This molecular mechanism enables P. putida to rapidly adjust and fine-tune gene expression in changing environments. Hfq is an RNA-binding protein that is ubiquitous and highly conserved in bacterial species. Considering the characteristics of Hfq, and the widespread use and rapid response of Crc-Hfq in P. putida, this complex has the potential to become a general toolbox for post-transcriptional multiplex regulation. In this study, we demonstrate for the first time that transplanting the pseudomonal catabolite repression protein, Crc, into E. coli causes multiplex gene repression. Under the control of Crc, the production of a diester and its precursors was significantly reduced. The effects of Crc introduction on cell growth in both minimal and rich media were evaluated. Two potential factors - off-target effects and Hfq-sequestration - could explain negative effects on cell growth. Simultaneous reduction of off-targeting and increased sequestration of Hfq by the introduction of the small RNA CrcZ, indicated that Hfq sequestration plays a more prominent role in the negative side-effects. This suggests that the negative growth effect can be mitigated by well-controlled expression of Hfq. This study reveals the feasibility of controlling gene expression using heterologous regulation systems.
Collapse
Affiliation(s)
- Chunzhe Lu
- Bioprocess Engineering, Wageningen University and Research, 6700AA Wageningen, The Netherlands.
| | - Tiago P Ramalho
- Bioprocess Engineering, Wageningen University and Research, 6700AA Wageningen, The Netherlands
| | - Markus M M Bisschops
- Bioprocess Engineering, Wageningen University and Research, 6700AA Wageningen, The Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering, Wageningen University and Research, 6700AA Wageningen, The Netherlands; Faculty of Biosciences and Aquaculture, Nord University, N-8049 Bodø, Norway
| | - Vitor A P Martins Dos Santos
- Bioprocess Engineering, Wageningen University and Research, 6700AA Wageningen, The Netherlands; Lifeglimmer GmbH, Berlin, Germany
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, 6700AA Wageningen, The Netherlands
| |
Collapse
|
5
|
Wang M, Ding M, Yuan Y. Bioengineering for the Microbial Degradation of Petroleum Hydrocarbon Contaminants. Bioengineering (Basel) 2023; 10:bioengineering10030347. [PMID: 36978738 PMCID: PMC10045523 DOI: 10.3390/bioengineering10030347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023] Open
Abstract
Petroleum hydrocarbons are relatively recalcitrant compounds, and as contaminants, they are one of the most serious environmental problems. n-Alkanes are important constituents of petroleum hydrocarbons. Advances in synthetic biology and metabolic engineering strategies have made n-alkane biodegradation more designable and maneuverable for solving environmental pollution problems. In the microbial degradation of n-alkanes, more and more degradation pathways, related genes, microbes, and alkane hydroxylases have been discovered, which provide a theoretical basis for the further construction of degrading strains and microbial communities. In this review, the current advances in the microbial degradation of n-alkanes under aerobic condition are summarized in four aspects, including the biodegradation pathways and related genes, alkane hydroxylases, engineered microbial chassis, and microbial community. Especially, the microbial communities of “Alkane-degrader and Alkane-degrader” and “Alkane-degrader and Helper” provide new ideas for the degradation of petroleum hydrocarbons. Surfactant producers and nitrogen providers as a “Helper” are discussed in depth. This review will be helpful to further achieve bioremediation of oil-polluted environments rapidly.
Collapse
Affiliation(s)
- Minzhen Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Mingzhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Correspondence:
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Lu C, Akwafo EO, Wijffels RH, Martins Dos Santos VAP, Weusthuis RA. Metabolic engineering of Pseudomonas putida KT2440 for medium-chain-length fatty alcohol and ester production from fatty acids. Metab Eng 2023; 75:110-118. [PMID: 36494025 DOI: 10.1016/j.ymben.2022.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/03/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Medium-chain-length fatty alcohols have broad applications in the surfactant, lubricant, and cosmetic industries. Their acetate esters are widely used as flavoring and fragrance substances. Pseudomonas putida KT2440 is a promising chassis for fatty alcohol and ester production at the industrial scale due to its robustness, versatility, and high oxidative capacity. However, P. putida has also numerous native alcohol dehydrogenases, which lead to the degradation of these alcohols and thereby hinder its use as an effective biocatalyst. Therefore, to harness its capacity as a producer, we constructed two engineered strains (WTΔpedFΔadhP, GN346ΔadhP) incapable of growing on mcl-fatty alcohols by deleting either a cytochrome c oxidase PedF and a short-chain alcohol dehydrogenase AdhP in P. putida or AdhP in P. putida GN346. Carboxylic acid reductase, phosphopantetheinyl transferase, and alcohol acetyltransferase were expressed in the engineered P. putida strains to produce hexyl acetate. Overexpression of transporters further increased 1-hexanol and hexyl acetate production. The optimal strain G23E-MPAscTP produced 93.8 mg/L 1-hexanol and 160.5 mg/L hexyl acetate, with a yield of 63.1%. The engineered strain is applicable for C6-C10 fatty alcohols and their acetate ester production. This study lays a foundation for P. putida being used as a microbial cell factory for sustainable synthesis of a broad range of products based on medium-chain-length fatty alcohols.
Collapse
Affiliation(s)
- Chunzhe Lu
- Bioprocess Engineering, Wageningen University and Research, Wageningen, the Netherlands
| | - Edward Ofori Akwafo
- Bioprocess Engineering, Wageningen University and Research, Wageningen, the Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering, Wageningen University and Research, Wageningen, the Netherlands; Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Vitor A P Martins Dos Santos
- Bioprocess Engineering, Wageningen University and Research, Wageningen, the Netherlands; Lifeglimmer GmbH, Berlin, Germany
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
7
|
Wang S, Li G, Liao Z, Liu T, Ma T. A novel alkane monooxygenase ( alkB) clade revealed by massive genomic survey and its dissemination association with IS elements. PeerJ 2022; 10:e14147. [PMID: 36193440 PMCID: PMC9526415 DOI: 10.7717/peerj.14147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/07/2022] [Indexed: 01/25/2023] Open
Abstract
Background Alkanes are important components of fossil energy, such as crude oil. The alkane monooxygenase encoded by alkB gene performs the initial step of alkane degradation under aerobic conditions. The alkB gene is well studied due to its ubiquity as well as the availability of experimentally functional evidence. The alkBFGHJKL and alkST clusters are special kind of alkB-type alkane hydroxylase system, which encode all proteins necessary for converting alkanes into corresponding fatty acids. Methods To explore whether the alkBFGHJKL and alkST clusters were widely distributed, we performed a large-scale analysis of isolate and metagenome assembled genome data (>390,000 genomes) to identify these clusters, together with distributions of corresponding taxonomy and niches. The set of alk-genes (including but not limited to alkBGHJ) located near each other on a DNA sequence was defined as an alk-gene cluster in this study. The alkB genes with alkGHJ located nearby on a DNA sequence were picked up for the investigation of putative alk-clusters. Results A total of 120 alk-gene clusters were found in 117 genomes. All the 117 genomes are from strains located only in α- and γ-proteobacteria. The alkB genes located in alk-gene sets were clustered into a deeply branched mono-clade. Further analysis showed similarity organization types of alk-genes were observed within closely related species. Although a large number of IS elements were observed nearby, they did not lead to the wide spread of the alk-gene cluster. The uneven distribution of these elements indicated that there might be other factors affecting the transmission of alk-gene clusters. Conclusions We conducted systematic bioinformatics research on alk-genes located near each other on a DNA sequence. This benchmark dataset of alk-genes can provide base line for exploring its evolutional and ecological importance in future studies.
Collapse
Affiliation(s)
- Shaojing Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Guoqiang Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Zitong Liao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Tongtong Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Ting Ma
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
8
|
Lu C, Leitner N, Wijffels RH, Martins Dos Santos VAP, Weusthuis RA. Microbial production of medium-chain-length α, ω-diols via two-stage process under mild conditions. BIORESOURCE TECHNOLOGY 2022; 352:127111. [PMID: 35381336 DOI: 10.1016/j.biortech.2022.127111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Medium-chain-length α, ω-diols (mcl-diols) are versatile compounds widely used as building blocks of coating materials and polymers. Mcl-diols are currently synthesized through energy intensive chemical process. Recently, esterified diols have been produced from n-alkanes in E. coli by co-expression of the alkane monooxygenase module (AlkBGTL) and the esterification module (Atf1), thereby establishing the technical feasibility of the process. However, esterified diols need to be hydrolyzed for further applications. In this study, we developed bio-catalysts for mcl-diol production from n-alkanes under mild conditions. The engineered P. putida KT2440 with overexpression of Est12 can efficiently hydrolyze esterified diols (C6-C10). Later, the engineered strain was co-cultured with an E. coli strain (AlkBGTL-Atf1) to produce mcl-diols. In a two-stage approach, 5 mM 1,6-hexanediol was produced, 61.5 times of one-stage test, from n-hexane by biocatalysts for the first time. In conclusion, the present work indicates that bio-catalysis offers a green biobased alternative for synthesis of mcl-diols.
Collapse
Affiliation(s)
- Chunzhe Lu
- Bioprocess Engineering, Wageningen University and Research, Wageningen, the Netherlands
| | - Nina Leitner
- Bioprocess Engineering, Wageningen University and Research, Wageningen, the Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering, Wageningen University and Research, Wageningen, the Netherlands; Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Vitor A P Martins Dos Santos
- Bioprocess Engineering, Wageningen University and Research, Wageningen, the Netherlands; Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, the Netherlands; Lifeglimmer GmbH, Berlin, Germany
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
9
|
Lu C, Batianis C, Akwafo EO, Wijffels RH, Martins Dos Santos VAP, Weusthuis RA. When metabolic prowess is too much of a good thing: how carbon catabolite repression and metabolic versatility impede production of esterified α,ω-diols in Pseudomonas putida KT2440. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:218. [PMID: 34801079 PMCID: PMC8606055 DOI: 10.1186/s13068-021-02066-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/06/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Medium-chain-length α,ω-diols (mcl-diols) are important building blocks in polymer production. Recently, microbial mcl-diol production from alkanes was achieved in E. coli (albeit at low rates) using the alkane monooxygenase system AlkBGTL and esterification module Atf1. Owing to its remarkable versatility and conversion capabilities and hence potential for enabling an economically viable process, we assessed whether the industrially robust P. putida can be a suitable production organism of mcl-diols. RESULTS AlkBGTL and Atf1 were successfully expressed as was shown by oxidation of alkanes to alkanols, and esterification to alkyl acetates. However, the conversion rate was lower than that by E. coli, and not fully to diols. The conversion was improved by using citrate instead of glucose as energy source, indicating that carbon catabolite repression plays a role. By overexpressing the activator of AlkBGTL-Atf1, AlkS and deleting Crc or CyoB, key genes in carbon catabolite repression of P. putida increased diacetoxyhexane production by 76% and 65%, respectively. Removing Crc/Hfq attachment sites of mRNAs resulted in the highest diacetoxyhexane production. When the intermediate hexyl acetate was used as substrate, hexanol was detected. This indicated that P. putida expressed esterases, hampering accumulation of the corresponding esters and diesters. Sixteen putative esterase genes present in P. putida were screened and tested. Among them, Est12/K was proven to be the dominant one. Deletion of Est12/K halted hydrolysis of hexyl acetate and diacetoxyhexane. As a result of relieving catabolite repression and preventing the hydrolysis of ester, the optimal strain produced 3.7 mM hexyl acetate from hexane and 6.9 mM 6-hydroxy hexyl acetate and diacetoxyhexane from hexyl acetate, increased by 12.7- and 4.2-fold, respectively, as compared to the starting strain. CONCLUSIONS This study shows that the metabolic versatility of P. putida, and the associated carbon catabolite repression, can hinder production of diols and related esters. Growth on mcl-alcohol and diol esters could be prevented by deleting the dominant esterase. Carbon catabolite repression could be relieved by removing the Crc/Hfq attachment sites. This strategy can be used for efficient expression of other genes regulated by Crc/Hfq in Pseudomonas and related species to steer bioconversion processes.
Collapse
Affiliation(s)
- Chunzhe Lu
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
| | - Christos Batianis
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Edward Ofori Akwafo
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Vitor A P Martins Dos Santos
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, The Netherlands
- Lifeglimmer GmbH, Berlin, Germany
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
10
|
Li Y, Cheng Z, Zhao C, Gao C, Song W, Liu L, Chen X. Reprogramming Escherichia coli Metabolism for Bioplastics Synthesis from Waste Cooking Oil. ACS Synth Biol 2021; 10:1966-1979. [PMID: 34337931 DOI: 10.1021/acssynbio.1c00155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The recycle and reutilization of food wastes is a promising alternative for supporting and facilitating circular economy. However, engineering industrially relevant model organisms to use food wastes as their sole carbon source has remained an outstanding challenge so far. Here, we reprogrammed Escherichia coli metabolism using modular pathway engineering followed by laboratory adaptive evolution to establish a strain that can efficiently utilize waste cooking oil (WCO) as the sole carbon source to produce monomers of bioplastics, namely, medium-chain α,ω-dicarboxylic acids (MCDCAs). First, the biosynthetic pathway of MCDCAs was designed and rewired by modifying the β-oxidation pathway and introducing an ω-oxidation pathway. Then, metabolic engineering and laboratory adaptive evolution were applied for improving the pathway efficiency of fatty acids utilization. Finally, the engineered strain E. coli AA0306 was able to produce 15.26 g/L MCDCAs with WCO as the sole carbon source. This study provides an economically attractive strategy for biomanufacturing bioplastics from food wastes, which has a great potentiality to be developed as a wide range of enabling biotechnologies for achieving green revolution.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Zhenzhen Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Chunlei Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, China
| | - Wei Song
- School of Pharmaceutical Science, State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, China
| |
Collapse
|
11
|
Affiliation(s)
- Judith Münch
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Pascal Püllmann
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, 32 West seventh Avenue, Tianjin 300308, China
| | - Martin J. Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
- Institute of Chemistry, MartinLuther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120, Halle, Saale, Germany
| |
Collapse
|
12
|
Park HA, Choi KY. α, ω-Oxyfunctionalization of C12 alkanes via whole-cell biocatalysis of CYP153A from Marinobacter aquaeolei and a new CYP from Nocardia farcinica IFM10152. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Kruis AJ, Bohnenkamp AC, Patinios C, van Nuland YM, Levisson M, Mars AE, van den Berg C, Kengen SW, Weusthuis RA. Microbial production of short and medium chain esters: Enzymes, pathways, and applications. Biotechnol Adv 2019; 37:107407. [DOI: 10.1016/j.biotechadv.2019.06.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/24/2019] [Accepted: 06/09/2019] [Indexed: 12/12/2022]
|
14
|
Kim J, Yoo HW, Kim M, Kim EJ, Sung C, Lee PG, Park BG, Kim BG. Rewiring FadR regulon for the selective production of ω-hydroxy palmitic acid from glucose in Escherichia coli. Metab Eng 2018; 47:414-422. [PMID: 29719215 DOI: 10.1016/j.ymben.2018.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/19/2018] [Accepted: 04/28/2018] [Indexed: 12/28/2022]
Abstract
ω-Hydroxy palmitic acid (ω-HPA) is a valuable compound for an ingredient of artificially synthesized ceramides and an additive for lubricants and adhesives. Production of such a fatty acid derivative is limited by chemical catalysis, but plausible by biocatalysis. However, its low productivity issue, including formations of unsaturated fatty acid (UFA) byproducts in host cells, remains as a hurdle toward industrial biological processes. In this study, to achieve selective and high-level production of ω-HPA from glucose in Escherichia coli, FadR, a native transcriptional regulator of fatty acid metabolism, and its regulon were engineered. First, FadR was co-expressed with a thioesterase with a specificity toward palmitic acid production to enhance palmitic acid production yield, but a considerable quantity of UFAs was also produced. In order to avoid the UFA production caused by fadR overexpression, FadR regulon was rewired by i) mutating FadR consensus binding sites of fabA or fabB, ii) integrating fabZ into fabI operon, and iii) enhancing the strength of fabI promoter. This approach led to dramatic increases in both proportion (48.3-83.0%) and titer (377.8 mg/L to 675.8 mg/L) of palmitic acid, mainly due to the decrease in UFA synthesis. Introducing a fatty acid ω-hydroxylase, CYP153A35, into the engineered strain resulted in a highly selective production of ω-HPA (83.5 mg/L) accounting for 87.5% of total ω-hydroxy fatty acids. Furthermore, strategies, such as i) enhancement in CYP153A35 activity, ii) expression of a fatty acid transporter, iii) supplementation of triton X-100, and iv) separation of the ω-HPA synthetic pathway into two strains for a co-culture system, were applied and resulted in 401.0 mg/L of ω-HPA production. For such selective productions of palmitic acid and ω-HPA, the rewiring of FadR regulation in E. coli is a promising strategy to develop an industrial process with economical downstream processing.
Collapse
Affiliation(s)
- Joonwon Kim
- School of Chemical and Biological Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee-Wang Yoo
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Minsuk Kim
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Jung Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea; Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Changmin Sung
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Pyung-Gang Lee
- School of Chemical and Biological Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Beom Gi Park
- School of Chemical and Biological Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 08826, Republic of Korea; Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|