1
|
Meschkewitz M, Lisabeth EM, Cab-Gomez AD, Leipprandt J, Neubig RR. Pirin does not bind to p65 or regulate NFκB-dependent gene expression but does modulate cellular quercetin levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626411. [PMID: 39677728 PMCID: PMC11642861 DOI: 10.1101/2024.12.03.626411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Pirin is a non-heme iron binding protein with a variety of proposed functions including serving as a co-activator of p65 NFκB and quercetinase activity. We report here, failure to confirm pirin's primary proposed mechanism, binding of Fe(III)-pirin and p65. Analytical size exclusion chromatography (SEC) and fluorescence polarization (FP) studies did not detect an interaction. We also found no effects of pirin on TNFα-activated p65-regulated gene transcription using mouse embryonic fibroblasts (MEFs) from a pirin knockout mouse and a pirin knockdown NIH3T3 fibroblast cell line. TNFα - activated p65 response gene mRNA was neither increased nor decreased in cells with loss of pirin compared to wildtype cells. Furthermore, pirin immunofluorescence in NIH3T3 fibroblasts showed primarily a cytoplasmic localization, not nuclear as in most previous studies. This was confirmed by cell fractionation analysis. Pirin did show colocalization with the endoplasmic reticulum (ER) marker protein disulfide-isomerase (PDI) as well as cyotoplasmic labeling. We confirmed pirin's quercetinase activity in biochemical assays and demonstrated competitive inhibition by the pirin inhibitor CCG-257081. Cellular quercetin levels in cells exposed to quercetin in vitro were increased by knockdown of pirin or by treatment with pirin inhibitors. Since pirin is localized to ER and flavanols are protective of ER stress, we investigated whether pirin knockdown altered ER stress signaling but did not find any effect of pirin knockdown on ER stress response genes. Our results challenge the dominant model of pirin's function (NFκB regulation) but confirm its quercetinase activity with implications for the mechanisms of pirin binding small molecules.
Collapse
Affiliation(s)
- Melissa Meschkewitz
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Erika M Lisabeth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - A. Denaly Cab-Gomez
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jeffrey Leipprandt
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- “Nicholas V. Perricone, M.D.”, Division of Dermatology, Department of Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
2
|
Pereira F, McCauley M, Lev K, Verhey-Henke L, Condren AR, Harte RJ, Galvez J, Sherman DH. Optimized production of concanamycins using a rational metabolic engineering strategy. Metab Eng 2024; 88:63-76. [PMID: 39581342 DOI: 10.1016/j.ymben.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Plecomacrolides, such as concanamycins and bafilomycins, are potent and specific inhibitors of vacuolar-type ATPase. Concanamycins are 18-membered macrolides with promising therapeutic potential against multiple diseases, including viral infection, osteoporosis, and cancer. Due to the complexity of their total synthesis, the production of concanamycins is only achieved through microbial fermentation. However, the low titers of concanamycin A and its analogs in the native producing strains are a significant bottleneck for scale-up, robust structure-activity relationship studies, and drug development. To address this challenge, we designed a library of engineered Streptomyces strains for the overproduction of concanamycin A-C by combining the overexpression of target regulatory genes with the optimization of fermentation media. Integration of two endogenous regulators from the concanamycin biosynthetic gene cluster (cms) and one heterologous regulatory gene from the bafilomycin biosynthetic gene cluster significantly increased production of concanamycin A and its less abundant analog concanamycin B in Streptomyces eitanensis. The highest titers reported to date were observed in the engineered S. eitanensis DHS10676, which produced over 900 mg/L of concanamycin A and 300 mg/L of concanamycin B. Heterologous overexpression of the identified target regulatory genes across a panel of Streptomyces spp. harboring a putative concanamycin biosynthetic gene cluster confirmed its identity, and significantly improved concanamycin A production in all tested strains. Strain engineering, optimization of fermentation, and extraction purification protocols enabled swift access to these structurally complex plecomacrolides for semi-synthetic medicinal chemistry-based approaches. Together, this work established a platform for robust overproduction of concanamycin analogs across species.
Collapse
Affiliation(s)
- Filipa Pereira
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Morgan McCauley
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Katherine Lev
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Alanna R Condren
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ralph J Harte
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jesus Galvez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Gough AM, Parker AC, O'Bryan PJ, Whitehead TR, Roy S, Garcia BL, Hoffman PS, Jeffrey Smith C, Rocha ER. New functions of pirin proteins and a 2-ketoglutarate: Ferredoxin oxidoreductase ortholog in Bacteroides fragilis metabolism and their impact on antimicrobial susceptibility to metronidazole and amixicile. Microbiologyopen 2024; 13:e1429. [PMID: 39109824 PMCID: PMC11304471 DOI: 10.1002/mbo3.1429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
The understanding of how central metabolism and fermentation pathways regulate antimicrobial susceptibility in the anaerobic pathogen Bacteroides fragilis is still incomplete. Our study reveals that B. fragilis encodes two iron-dependent, redox-sensitive regulatory pirin protein genes, pir1 and pir2. The mRNA expression of these genes increases when exposed to oxygen and during growth in iron-limiting conditions. These proteins, Pir1 and Pir2, influence the production of short-chain fatty acids and modify the susceptibility to metronidazole and amixicile, a new inhibitor of pyruvate: ferredoxin oxidoreductase in anaerobes. We have demonstrated that Pir1 and Pir2 interact directly with this oxidoreductase, as confirmed by two-hybrid system assays. Furthermore, structural analysis using AlphaFold2 predicts that Pir1 and Pir2 interact stably with several central metabolism enzymes, including the 2-ketoglutarate:ferredoxin oxidoreductases Kor1AB and Kor2CDAEBG. We used a series of metabolic mutants and electron transport chain inhibitors to demonstrate the extensive impact of bacterial metabolism on metronidazole and amixicile susceptibility. We also show that amixicile is an effective antimicrobial against B. fragilis in an experimental model of intra-abdominal infection. Our investigation led to the discovery that the kor2AEBG genes are essential for growth and have dual functions, including the formation of 2-ketoglutarate via the reverse TCA cycle. However, the metabolic activity that bypasses the function of Kor2AEBG following the addition of phospholipids or fatty acids remains undefined. Overall, our study provides new insights into the central metabolism of B. fragilis and its regulation by pirin proteins, which could be exploited for the development of new narrow-spectrum antimicrobials in the future.
Collapse
Affiliation(s)
- Andrea M. Gough
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Anita C. Parker
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina UniversityGreenvilleNorth CarolinaUSA
| | | | | | - Sourav Roy
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Brandon L. Garcia
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Paul S. Hoffman
- Department of Medicine, Division of Infectious Diseases and International HealthUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - C. Jeffrey Smith
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Edson R. Rocha
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina UniversityGreenvilleNorth CarolinaUSA
| |
Collapse
|
4
|
Shen X, Zhang J, Zhou Z, Yu R. PLIN5 Suppresses Lipotoxicity and Ferroptosis in Cardiomyocyte via Modulating PIR/NF-κB Axis. Int Heart J 2024; 65:537-547. [PMID: 38749744 DOI: 10.1536/ihj.24-002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Cardiomyocyte lipotoxicity and ferroptosis are the key to the development of diabetic cardiomyopathy (DCM). Perilipin 5 (PLIN5) is perceived as a significant target of DCM. This study aimed to focus on the role and mechanism of PLIN5 on lipotoxicity and ferroptosis in DCM.Following transfection, mouse cardiomyocytes HL-1 were induced by 0.1 mM palmitic acid (PA) to set up lipotoxic cardiomyocyte models. The cell viability and lipid accumulation were evaluated by cell counting kit-8 assay and Oil red O staining, respectively. Ferrous ion (Fe2+), glutathione (GSH), malondialdehyde (MDA), and reactive oxygen species (ROS) levels were determined to verify the effects of PLIN5 or Pirin (PIR) on ferroptosis. Quantitative real-time reverse transcription polymerase chain reaction or Western blot was performed for quantitative analysis.PLIN5 overexpression promoted the viability, GSH level, and expression of GPX4/PIR/intracellular P65, yet suppressed lipid accumulation, level of Fe2+/MDA/ROS, and expression of interleukin (IL)-1β/IL-18/intranuclear P65 in PA-stimulated HL-1 cells. PIR silencing counteracted the roles of PLIN5 overexpression in PA-stimulated HL-1 cells.PLIN5 suppresses lipotoxicity and ferroptosis in cardiomyocyte via modulating PIR/NF-κB axis, hinting its potential as a therapeutic target in DCM.
Collapse
Affiliation(s)
- Xiaoyu Shen
- Department of Endocrinology, Shanghai TCM-Integrated Hospital
| | - Jiamei Zhang
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital
| | - Zhou Zhou
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital
| | - Ruiqun Yu
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital
| |
Collapse
|
5
|
Arribas V, Monteoliva L, Hernáez ML, Gil C, Molero G. Unravelling the Role of Candida albicans Prn1 in the Oxidative Stress Response through a Proteomics Approach. Antioxidants (Basel) 2024; 13:527. [PMID: 38790632 PMCID: PMC11118716 DOI: 10.3390/antiox13050527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Candida albicans Prn1 is a protein with an unknown function similar to mammalian Pirin. It also has orthologues in other pathogenic fungi, but not in Saccharomyces cerevisiae. Prn1 highly increases its abundance in response to H2O2 treatment; thus, to study its involvement in the oxidative stress response, a C. albicans prn1∆ mutant and the corresponding wild-type strain SN250 have been studied. Under H2O2 treatment, Prn1 absence led to a higher level of reactive oxygen species (ROS) and a lower survival rate, with a higher percentage of death by apoptosis, confirming its relevant role in oxidative detoxication. The quantitative differential proteomics studies of both strains in the presence and absence of H2O2 indicated a lower increase in proteins with oxidoreductase activity after the treatment in the prn1∆ strain, as well as an increase in proteasome-activating proteins, corroborated by in vivo measurements of proteasome activity, with respect to the wild type. In addition, remarkable differences in the abundance of some transcription factors were observed between mutant and wild-type strains, e.g., Mnl1 or Nrg1, an Mnl1 antagonist. orf19.4850, a protein orthologue to S. cerevisiae Cub1, has shown its involvement in the response to H2O2 and in proteasome function when Prn1 is highly expressed in the wild type.
Collapse
Affiliation(s)
- Victor Arribas
- University of Salamanca (USAL), 37008 Salamanca, Spain;
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (L.M.); (G.M.)
- Ramon y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Lucia Monteoliva
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (L.M.); (G.M.)
- Ramon y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - María Luisa Hernáez
- Proteomics Unit, Biological Techniques Center, Complutense University of Madrid (UCM), 28040 Madrid, Spain;
| | - Concha Gil
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (L.M.); (G.M.)
- Ramon y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Proteomics Unit, Biological Techniques Center, Complutense University of Madrid (UCM), 28040 Madrid, Spain;
| | - Gloria Molero
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (L.M.); (G.M.)
- Ramon y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
6
|
Cabrera MÁ, Márquez SL, Pérez-Donoso JM. New insights into xenobiotic tolerance of Antarctic bacteria: transcriptomic analysis of Pseudomonas sp. TNT3 during 2,4,6-trinitrotoluene biotransformation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17256-17274. [PMID: 38337121 DOI: 10.1007/s11356-024-32298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
The xenobiotic 2,4,6-trinitrotoluene (TNT) is a highly persistent environmental contaminant, whose biotransformation by microorganisms has attracted renewed attention. In previous research, we reported the discovery of Pseudomonas sp. TNT3, the first described Antarctic bacterium with the ability to biotransform TNT. Furthermore, through genomic analysis, we identified distinctive features in this isolate associated with the biotransformation of TNT and other xenobiotics. However, the metabolic pathways and genes active during TNT exposure in this bacterium remained unexplored. In the present transcriptomic study, we used RNA-sequencing to investigate gene expression changes in Pseudomonas sp. TNT3 exposed to 100 mg/L of TNT. The results showed differential expression of 194 genes (54 upregulated and 140 downregulated), mostly encoding hypothetical proteins. The most highly upregulated gene (> 1000-fold) encoded an azoreductase enzyme not previously described. Other significantly upregulated genes were associated with (nitro)aromatics detoxification, oxidative, thiol-specific, and nitrosative stress responses, and (nitro)aromatic xenobiotic tolerance via efflux pumps. Most of the downregulated genes were involved in the electron transport chain, pyrroloquinoline quinone (PQQ)-related alcohol oxidation, and motility. These findings highlight a complex cellular response to TNT exposure, with the azoreductase enzyme likely playing a crucial role in TNT biotransformation. Our study provides new insights into the molecular mechanisms of TNT biotransformation and aids in developing effective TNT bioremediation strategies. To the best of our knowledge, this report is the first transcriptomic response analysis of an Antarctic bacterium during TNT biotransformation.
Collapse
Affiliation(s)
- Ma Ángeles Cabrera
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de La Vida, Universidad Andrés Bello, Av. República 330, Santiago, Chile
| | - Sebastián L Márquez
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de La Vida, Universidad Andrés Bello, Av. República 330, Santiago, Chile
- Fundación Científica y Cultural Biociencia, José Domingo Cañas 2280, Ñuñoa, Santiago, Chile
| | - José M Pérez-Donoso
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de La Vida, Universidad Andrés Bello, Av. República 330, Santiago, Chile.
| |
Collapse
|
7
|
Song X, Kong SJ, Seo S, Prabhakar RG, Shamoo Y. Methyl halide transferase-based gas reporters for quantification of filamentous bacteria in microdroplet emulsions. Appl Environ Microbiol 2023; 89:e0076423. [PMID: 37699129 PMCID: PMC10537575 DOI: 10.1128/aem.00764-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/19/2023] [Indexed: 09/14/2023] Open
Abstract
The application of microfluidic techniques in experimental and environmental studies is a rapidly emerging field. Water-in-oil microdroplets can serve readily as controllable micro-vessels for studies that require spatial structure. In many applications, it is useful to monitor cell growth without breaking or disrupting the microdroplets. To this end, optical reporters based on color, fluorescence, or luminescence have been developed. However, optical reporters suffer from limitations when used in microdroplets such as inaccurate readings due to strong background interference or limited sensitivity during early growth stages. In addition, optical detection is typically not amenable to filamentous or biofilm-producing organisms that have significant nonlinear changes in opacity and light scattering during growth. To overcome such limitations, we show that volatile methyl halide gases produced by reporter cells expressing a methyl halide transferase (MHT) can serve as an alternative nonoptical detection approach suitable for microdroplets. In this study, an MHT-labeled Streptomyces venezuelae reporter strain was constructed and characterized. Protocols were established for the encapsulation and incubation of S. venezuelae in microdroplets. We observed the complete life cycle for S. venezuelae including the vegetative expansion of mycelia, mycelial fragmentation, and late-stage sporulation. Methyl bromide (MeBr) production was detected by gas chromatography-mass spectrometry (GC-MS) from S. venezuelae gas reporters incubated in either liquid suspension or microdroplets and used to quantitatively estimate bacterial density. Overall, using MeBr production as a means of quantifying bacterial growth provided a 100- to 1,000-fold increase in sensitivity over optical or fluorescence measurements of a comparable reporter strain expressing fluorescent proteins. IMPORTANCE Quantitative measurement of bacterial growth in microdroplets in situ is desirable but challenging. Current optical reporter systems suffer from limitations when applied to filamentous or biofilm-producing organisms. In this study, we demonstrate that volatile methyl halide gas production can serve as a quantitative nonoptical growth assay for filamentous bacteria encapsulated in microdroplets. We constructed an S. venezuelae gas reporter strain and observed a complete life cycle for encapsulated S. venezuelae in microdroplets, establishing microdroplets as an alternative growth environment for Streptomyces spp. that can provide spatial structure. We detected MeBr production from both liquid suspension and microdroplets with a 100- to 1,000-fold increase in signal-to-noise ratio compared to optical assays. Importantly, we could reliably detect bacteria with densities down to 106 CFU/mL. The combination of quantitative gas reporting and microdroplet systems provides a valuable approach to studying fastidious organisms that require spatial structure such as those found typically in soils.
Collapse
Affiliation(s)
- Xinhao Song
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Sarah J. Kong
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Seokju Seo
- Department of BioSciences, Rice University, Houston, Texas, USA
| | | | - Yousif Shamoo
- Department of BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
8
|
Cao L, Zhu Z, Qin H, Xia Z, Xie J, Li X, Rang J, Hu S, Sun Y, Xia L. Effects of a Pirin-like protein on strain growth and spinosad biosynthesis in Saccharopolyspora spinosa. Appl Microbiol Biotechnol 2023; 107:5439-5451. [PMID: 37428187 DOI: 10.1007/s00253-023-12636-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023]
Abstract
Pirin family proteins perform a variety of biological functions and widely exist in all living organisms. A few studies have shown that Pirin family proteins may be involved in the biosynthesis of antibiotics in actinomycetes. However, the function of Pirin-like proteins in S. spinosa is still unclear. In this study, the inactivation of the sspirin gene led to serious growth defects and the accumulation of H2O2. Surprisingly, the overexpression and knockout of sspirin slightly accelerated the consumption and utilization of glucose, weakened the TCA cycle, delayed sporulation, and enhanced sporulation in the later stage. In addition, the overexpression of sspirin can enhance the β-oxidation pathway and increase the yield of spinosad by 0.88 times, while the inactivation of sspirin hardly produced spinosad. After adding MnCl2, the spinosad yield of the sspirin overexpression strain was further increased to 2.5 times that of the wild-type strain. This study preliminarily revealed the effects of Pirin-like proteins on the growth development and metabolism of S. spinosa and further expanded knowledge of Pirin-like proteins in actinomycetes. KEY POINTS: • Overexpression of the sspirin gene possibly triggers carbon catabolite repression (CCR) • Overexpression of the sspirin gene can promote the synthesis of spinosad • Knockout of the sspirin gene leads to serious growth and spinosad production defects.
Collapse
Affiliation(s)
- Li Cao
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Zirong Zhu
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Hao Qin
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jiao Xie
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiaomin Li
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jie Rang
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yunjun Sun
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Liqiu Xia
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
9
|
Yin K, Cruz-Morales P, Whitford CM, Keasling JD. Heterologous production of polycyclopropanated fatty acids and their methyl esters in Streptomyces. STAR Protoc 2023; 4:102190. [PMID: 36952335 PMCID: PMC10064271 DOI: 10.1016/j.xpro.2023.102190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 03/01/2023] [Indexed: 03/24/2023] Open
Abstract
Polycyclopropanated (POP) compounds show promise as fuels as their energy density can be greater than jet and rocket fuels in current use, but realizing their full potential requires significant development. This protocol guides the production of polycyclopropanated fatty acids in Streptomyces; POP production in another host remains to be demonstrated. This method can serve as a baseline for further development of POP as well as other polyketide products. For complete details on the use and execution of this protocol, please refer to Cruz-Morales et al. (2022).1.
Collapse
Affiliation(s)
- Kevin Yin
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Pablo Cruz-Morales
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christopher M Whitford
- The Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, Kemitorvet, Building 220, Kongens Lyngby 2800, Denmark
| | - Jay D Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen 518055, P.R. China; The Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, Kemitorvet, Building 220, Kongens Lyngby 2800, Denmark.
| |
Collapse
|
10
|
Gehlert FO, Sauerwein T, Weidenbach K, Repnik U, Hallack D, Förstner KU, Schmitz RA. Dual-RNAseq Analysis Unravels Virus-Host Interactions of MetSV and Methanosarcina mazei. Viruses 2022; 14:2585. [PMID: 36423194 PMCID: PMC9694453 DOI: 10.3390/v14112585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Methanosarcina spherical virus (MetSV), infecting Methanosarcina species, encodes 22 genes, but their role in the infection process in combination with host genes has remained unknown. To study the infection process in detail, infected and uninfected M. mazei cultures were compared using dual-RNAseq, qRT-PCRs, and transmission electron microscopy (TEM). The transcriptome analysis strongly indicates a combined role of virus and host genes in replication, virus assembly, and lysis. Thereby, 285 host and virus genes were significantly regulated. Within these 285 regulated genes, a network of the viral polymerase, MetSVORF6, MetSVORF5, MetSVORF2, and the host genes encoding NrdD, NrdG, a CDC48 family protein, and a SSB protein with a role in viral replication was postulated. Ultrastructural analysis at 180 min p.i. revealed many infected cells with virus particles randomly scattered throughout the cytoplasm or attached at the cell surface, and membrane fragments indicating cell lysis. Dual-RNAseq and qRT-PCR analyses suggested a multifactorial lysis reaction in potential connection to the regulation of a cysteine proteinase, a pirin-like protein and a HicB-solo protein. Our study's results led to the first preliminary infection model of MetSV infecting M. mazei, summarizing the key infection steps as follows: replication, assembly, and host cell lysis.
Collapse
Affiliation(s)
- Finn O. Gehlert
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| | - Till Sauerwein
- ZB MED, Information Centre for Life Sciences, 50931 Cologne, Germany
| | - Katrin Weidenbach
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| | - Urska Repnik
- Central Microscopy, Christian Albrechts University, 24118 Kiel, Germany
| | - Daniela Hallack
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| | | | - Ruth A. Schmitz
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| |
Collapse
|
11
|
Guo B, Chou F, Huang L, Yin F, Fang J, Wang JB, Jia Z. Recent insights into oxidative metabolism of quercetin: catabolic profiles, degradation pathways, catalyzing metalloenzymes and molecular mechanisms. Crit Rev Food Sci Nutr 2022; 64:1312-1339. [PMID: 36037033 DOI: 10.1080/10408398.2022.2115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Quercetin is the most abundant polyphenolic flavonoid (flavonol subclass) in vegetal foods and medicinal plants. This dietary chemopreventive agent has drawn significant interest for its multiple beneficial health effects ("polypharmacology") largely associated with the well-documented antioxidant properties. However, controversies exist in the literature due to its dual anti-/pro-oxidant character, poor stability/bioavailability but multifaceted bioactivities, leaving much confusion as to its exact roles in vivo. Increasing evidence indicates that a prior oxidation of quercetin to generate an array of chemical diverse products with redox-active/electrophilic moieties is emerging as a new linkage to its versatile actions. The present review aims to provide a comprehensive overview of the oxidative conversion of quercetin by systematically analyzing the current quercetin-related knowledge, with a particular focus on the complete spectrum of metabolite products, the enzymes involved in the catabolism and the underlying molecular mechanisms. Herein we review and compare the oxidation pathways, protein structures and catalytic patterns of the related metalloenzymes (phenol oxidases, heme enzymes and specially quercetinases), aiming for a deeper mechanistic understanding of the unusual biotransformation behaviors of quercetin and its seemingly controversial biological functions.
Collapse
Affiliation(s)
- Bin Guo
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Fang Chou
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Libin Huang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Feifan Yin
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Jing Fang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Jian-Bo Wang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
12
|
Huang R, Liu H, Zhao W, Wang S, Wang S, Cai J, Yang C. AdpA, a developmental regulator, promotes ε-poly-l-lysine biosynthesis in Streptomyces albulus. Microb Cell Fact 2022; 21:60. [PMID: 35397580 PMCID: PMC8994273 DOI: 10.1186/s12934-022-01785-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
Background AdpA is a global regulator of morphological differentiation and secondary metabolism in Streptomyces, but the regulatory roles of the Streptomyces AdpA family on the biosynthesis of the natural product ε-poly-l-lysine (ε-PL) remain unidentified, and few studies have focused on increasing the production of ε-PL by manipulating transcription factors in Streptomyces. Results In this study, we revealed the regulatory roles of different AdpA homologs in ε-PL biosynthesis and morphological differentiation and effectively promoted ε-PL production and sporulation in Streptomycesalbulus NK660 by heterologously expressing adpA from S.neyagawaensis NRRLB-3092 (adpASn). First, we identified a novel AdpA homolog named AdpASa in S.albulus NK660 and characterized its function as an activator of ε-PL biosynthesis and morphological differentiation. Subsequently, four heterologous AdpA homologs were selected to investigate their phylogenetic relationships and regulatory roles in S.albulus, and AdpASn was demonstrated to have the strongest ability to promote both ε-PL production and sporulation among these five AdpA proteins. The ε-PL yield of S.albulus heterologously expressing adpASn was approximately 3.6-fold higher than that of the control strain. Finally, we clarified the mechanism of AdpASn in enhancing ε-PL biosynthesis and its effect on ε-PL polymerization degree using real-time quantitative PCR, microscale thermophoresis and MALDI-TOF–MS. AdpASn was purified, and its seven direct targets, zwf, tal, pyk2, pta, ack, pepc and a transketolase gene (DC74_2409), were identified, suggesting that AdpASn may cause the redistribution of metabolic flux in central metabolism pathways, which subsequently provides more carbon skeletons and ATP for ε-PL biosynthesis in S.albulus. Conclusions Here, we characterized the positive regulatory roles of Streptomyces AdpA homologs in ε-PL biosynthesis and their effects on morphological differentiation and reported for the first time that AdpASn promotes ε-PL biosynthesis by affecting the transcription of its target genes in central metabolism pathways. These findings supply valuable insights into the regulatory roles of the Streptomyces AdpA family on ε-PL biosynthesis and morphological differentiation and suggest that AdpASn may be an effective global regulator for enhanced production of ε-PL and other valuable secondary metabolites in Streptomyces. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01785-6.
Collapse
|
13
|
Rang J, Cao L, Shuai L, Liu Y, Zhu Z, Xia Z, Jin D, Sun Y, Yu Z, Hu S, Xie Q, Xia L. Promoting Butenyl-spinosyn Production Based on Omics Research and Metabolic Network Construction in Saccharopolyspora pogona. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3557-3567. [PMID: 35245059 DOI: 10.1021/acs.jafc.2c00285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the metabolism of Saccharopolyspora pogona on a global scale is essential for manipulating its metabolic capabilities to improve butenyl-spinosyn biosynthesis. Here, we combined multiomics analysis to parse S. pogona genomic information, construct a metabolic network, and mine important functional genes that affect the butenyl-spinosyn biosynthesis. This research not only elucidated the relationship between butenyl-spinosyn biosynthesis and the primary metabolic pathway but also showed that the low expression level and continuous downregulation of the bus cluster and the competitive utilization of acetyl-CoA were the main reasons for reduced butenyl-spinosyn production. Our framework identified 148 genes related to butenyl-spinosyn biosynthesis that were significantly differentially expressed, confirming that butenyl-spinosyn polyketide synthase (PKS) and succinic semialdehyde dehydrogenase (GabD) play an important role in regulating butenyl-spinosyn biosynthesis. Combined modification of these genes increased overall butenyl-spinosyn production by 6.38-fold to 154.1 ± 10.98 mg/L. Our results provide an important strategy for further promoting the butenyl-spinosyn titer.
Collapse
Affiliation(s)
- Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Li Cao
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Ling Shuai
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Yang Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Zirong Zhu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Duo Jin
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Yunjun Sun
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Ziquan Yu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| |
Collapse
|
14
|
Extending the Proteomic Characterization of Candida albicans Exposed to Stress and Apoptotic Inducers through Data-Independent Acquisition Mass Spectrometry. mSystems 2021; 6:e0094621. [PMID: 34609160 PMCID: PMC8547427 DOI: 10.1128/msystems.00946-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Candida albicans is a commensal fungus that causes systemic infections in immunosuppressed patients. In order to deal with the changing environment during commensalism or infection, C. albicans must reprogram its proteome. Characterizing the stress-induced changes in the proteome that C. albicans uses to survive should be very useful in the development of new antifungal drugs. We studied the C. albicans global proteome after exposure to hydrogen peroxide (H2O2) and acetic acid (AA), using a data-independent acquisition mass spectrometry (DIA-MS) strategy. More than 2,000 C. albicans proteins were quantified using an ion library previously constructed using data-dependent acquisition mass spectrometry (DDA-MS). C. albicans responded to treatment with H2O2 with an increase in the abundance of many proteins involved in the oxidative stress response, protein folding, and proteasome-dependent catabolism, which led to increased proteasome activity. The data revealed a previously unknown key role for Prn1, a protein similar to pirins, in the oxidative stress response. Treatment with AA resulted in a general decrease in the abundance of proteins involved in amino acid biosynthesis, protein folding, and rRNA processing. Almost all proteasome proteins declined, as did proteasome activity. Apoptosis was observed after treatment with H2O2 but not AA. A targeted proteomic study of 32 proteins related to apoptosis in yeast supported the results obtained by DIA-MS and allowed the creation of an efficient method to quantify relevant proteins after treatment with stressors (H2O2, AA, and amphotericin B). This approach also uncovered a main role for Oye32, an oxidoreductase, suggesting this protein as a possible apoptotic marker common to many stressors. IMPORTANCE Fungal infections are a worldwide health problem, especially in immunocompromised patients and patients with chronic disorders. Invasive candidiasis, caused mainly by C. albicans, is among the most common fungal diseases. Despite the existence of treatments to combat candidiasis, the spectrum of drugs available is limited. For the discovery of new drug targets, it is essential to know the pathogen response to different stress conditions. Our study provides a global vision of proteomic remodeling in C. albicans after exposure to different agents, such as hydrogen peroxide, acetic acid, and amphotericin B, that can cause apoptotic cell death. These results revealed the significance of many proteins related to oxidative stress response and proteasome activity, among others. Of note, the discovery of Prn1 as a key protein in the defense against oxidative stress as well the increase in the abundance of Oye32 protein when apoptotic process occurred point them out as possible drug targets.
Collapse
|
15
|
Patra MM, Ghosh P, Sengupta S, Das Gupta SK. DNA binding and gene regulatory functions of MSMEG_2295, a repressor encoded by the dinB2 operon of Mycobacterium smegmatis. MICROBIOLOGY-SGM 2021; 167. [PMID: 34665112 DOI: 10.1099/mic.0.001097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MSMEG_2295 is a TetR family protein encoded by the first gene of a Mycobacterium smegmatis (Msm) operon that expresses the gene for DinB2 (MSMEG_2294), a translesion DNA repair enzyme. We have carried out investigations to understand its function by performing DNA binding studies and gene knockout experiments. We found that the protein binds to a conserved inverted repeat sequence located upstream of the dinB2 operon and several other genes. Using a knockout of MSMEG_2295, we show that MSMEG_2295 controls the expression of at least five genes, the products of which could potentially influence carbohydrate and fatty acid metabolism as well as antibiotic and oxidative stress resistance. We have demonstrated that MSMEG_2295 is a repressor by performing complementation analysis. Knocking out of MSMEG_2295 had a significant impact on pyruvate metabolism. Pyruvate dehydrogenase activity was virtually undetectable in ΔMSMEG_2295, although in the complemented strain, it was high. We also show that knocking out of MSMEG_2295 causes resistance to H2O2, reversed in the complemented strain. We have further found that the mycobacterial growth inhibitor plumbagin, a compound of plant origin, acts as an inducer of MSMEG_2295 regulated genes. We, therefore, establish that MSMEG_2295 functions by exerting its role as a repressor of multiple Msm genes and that by doing so, it plays a vital role in controlling pyruvate metabolism and response to oxidative stress.
Collapse
Affiliation(s)
- Madhu Manti Patra
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata-700054, India
| | - Poulami Ghosh
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata-700054, India
| | - Shreya Sengupta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata-700054, India
| | - Sujoy K Das Gupta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata-700054, India
| |
Collapse
|
16
|
Tang J, Zhu Z, He H, Liu Z, Xia Z, Chen J, Hu J, Cao L, Rang J, Shuai L, Liu Y, Sun Y, Ding X, Hu S, Xia L. Bacterioferritin: a key iron storage modulator that affects strain growth and butenyl-spinosyn biosynthesis in Saccharopolyspora pogona. Microb Cell Fact 2021; 20:157. [PMID: 34391414 PMCID: PMC8364703 DOI: 10.1186/s12934-021-01651-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/06/2021] [Indexed: 12/02/2022] Open
Abstract
Background Butenyl-spinosyn, produced by Saccharopolyspora pogona, is a promising biopesticide due to excellent insecticidal activity and broad pesticidal spectrum. Bacterioferritin (Bfr, encoded by bfr) regulates the storage and utilization of iron, which is essential for the growth and metabolism of microorganisms. However, the effect of Bfr on the growth and butenyl-spinosyn biosynthesis in S. pogona has not been explored. Results Here, we found that the storage of intracellular iron influenced butenyl-spinosyn biosynthesis and the stress resistance of S. pogona, which was regulated by Bfr. The overexpression of bfr increased the production of butenyl-spinosyn by 3.14-fold and enhanced the tolerance of S. pogona to iron toxicity and oxidative damage, while the knockout of bfr had the opposite effects. Based on the quantitative proteomics analysis and experimental verification, the inner mechanism of these phenomena was explored. Overexpression of bfr enhanced the iron storage capacity of the strain, which activated polyketide synthase genes and enhanced the supply of acyl-CoA precursors to improve butenyl-spinosyn biosynthesis. In addition, it induced the oxidative stress response to improve the stress resistance of S. pogona. Conclusion Our work reveals the role of Bfr in increasing the yield of butenyl-spinosyn and enhancing the stress resistance of S. pogona, and provides insights into its enhancement on secondary metabolism, which provides a reference for optimizing the production of secondary metabolites in actinomycetes. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01651-x.
Collapse
Affiliation(s)
- Jianli Tang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Zirong Zhu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Haocheng He
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Zhudong Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jianming Chen
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jinjuan Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Li Cao
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Ling Shuai
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yang Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yunjun Sun
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
17
|
Interplay between Non-Coding RNA Transcription, Stringent/Relaxed Phenotype and Antibiotic Production in Streptomyces ambofaciens. Antibiotics (Basel) 2021; 10:antibiotics10080947. [PMID: 34438997 PMCID: PMC8388888 DOI: 10.3390/antibiotics10080947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022] Open
Abstract
While in recent years the key role of non-coding RNAs (ncRNAs) in the regulation of gene expression has become increasingly evident, their interaction with the global regulatory circuits is still obscure. Here we analyzed the structure and organization of the transcriptome of Streptomyces ambofaciens, the producer of spiramycin. We identified ncRNAs including 45 small-RNAs (sRNAs) and 119 antisense-RNAs (asRNAs I) that appear transcribed from dedicated promoters. Some sRNAs and asRNAs are unprecedented in Streptomyces and were predicted to target mRNAs encoding proteins involved in transcription, translation, ribosomal structure and biogenesis, and regulation of morphological and biochemical differentiation. We then compared ncRNA expression in three strains: (i) the wild-type strain; (ii) an isogenic pirA-defective mutant with central carbon metabolism imbalance, “relaxed” phenotype, and repression of antibiotic production; and (iii) a pirA-derivative strain harboring a “stringent” RNA polymerase that suppresses pirA-associated phenotypes. Data indicated that the expression of most ncRNAs was correlated to the stringent/relaxed phenotype suggesting novel effector mechanisms of the stringent response.
Collapse
|
18
|
Sharma V, Kaur R, Salwan R. Streptomyces: host for refactoring of diverse bioactive secondary metabolites. 3 Biotech 2021; 11:340. [PMID: 34221811 DOI: 10.1007/s13205-021-02872-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Microbial secondary metabolites are intensively explored due to their demands in pharmaceutical, agricultural and food industries. Streptomyces are one of the largest sources of secondary metabolites having diverse applications. In particular, the abundance of secondary metabolites encoding biosynthetic gene clusters and presence of wobble position in Streptomyces strains make it potential candidate as a native or heterologous host for secondary metabolite production including several cryptic gene clusters expression. Here, we have discussed the developments in Streptomyces strains genome mining, its exploration as a suitable host and application of synthetic biology for refactoring genetic systems for developing chassis for enhanced as well as novel secondary metabolites with reduced genome and cleaned background.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Randhir Kaur
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Richa Salwan
- College of Horticulture and Forestry, Dr YS Parmar University of Horticulture and Forestry, Neri, Hamirpur, Himachal Pradesh 177001 India
| |
Collapse
|
19
|
The Design-Build-Test-Learn cycle for metabolic engineering of Streptomycetes. Essays Biochem 2021; 65:261-275. [PMID: 33956071 DOI: 10.1042/ebc20200132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
Streptomycetes are producers of a wide range of specialized metabolites of great medicinal and industrial importance, such as antibiotics, antifungals, or pesticides. Having been the drivers of the golden age of antibiotics in the 1950s and 1960s, technological advancements over the last two decades have revealed that very little of their biosynthetic potential has been exploited so far. Given the great need for new antibiotics due to the emerging antimicrobial resistance crisis, as well as the urgent need for sustainable biobased production of complex molecules, there is a great renewed interest in exploring and engineering the biosynthetic potential of streptomycetes. Here, we describe the Design-Build-Test-Learn (DBTL) cycle for metabolic engineering experiments in streptomycetes and how it can be used for the discovery and production of novel specialized metabolites.
Collapse
|
20
|
Siculella L, Giannotti L, Di Chiara Stanca B, Calcagnile M, Rochira A, Stanca E, Alifano P, Damiano F. Evidence for a Negative Correlation between Human Reactive Enamine-Imine Intermediate Deaminase A (RIDA) Activity and Cell Proliferation Rate: Role of Lysine Succinylation of RIDA. Int J Mol Sci 2021; 22:ijms22083804. [PMID: 33916919 PMCID: PMC8067581 DOI: 10.3390/ijms22083804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 01/17/2023] Open
Abstract
Reactive intermediate deaminase (Rid) proteins are enzymes conserved in all domains of life. UK114, a mammalian member of RidA subfamily, has been firstly identified as a component of liver perchloric acid-soluble proteins (L-PSP). Although still poorly defined, several functions have been attributed to the mammalian protein UK114/RIDA, including the reactive intermediate deamination activity. The expression of UK114/RIDA has been observed in some tumors, arousing interest in this protein as an evaluable tumor marker. However, other studies reported a negative correlation between UK114/RIDA expression, tumor differentiation degree and cell proliferation. This work addressed the question of UK114/RIDA expression in human non-tumor HEK293 cell lines and in some human tumor cell lines. Here we reported that human RIDA (hRIDA) was expressed in all the analyzed cell line and subjected to lysine (K-)succinylation. In HEK293, hRIDA K-succinylation was negatively correlated to the cell proliferation rate and was under the control of SIRT5. Moreover, K-succinylation clearly altered hRIDA quantification by immunoblotting, explaining, at least in part, some discrepancies about RIDA expression reported in previous studies. We found that hRIDA was able to deaminate reactive enamine-imine intermediates and that K-succinylation drastically reduced deaminase activity. As predicted by in silico analysis, the observed reduction of deaminase activity has been related to the drastic alterations of hRIDA structure inferred by K-succinylation. The role of hRIDA and the importance of its K-succinylation in cell metabolism, especially in cancer biology, have been discussed.
Collapse
Affiliation(s)
- Luisa Siculella
- Laboratory of Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (A.R.); (E.S.)
- Correspondence: (L.S.); (F.D.); Tel.: +39-0832-298-696 (L.S.); +39-0832-298-698 (F.D.)
| | - Laura Giannotti
- Laboratory of Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (A.R.); (E.S.)
| | - Benedetta Di Chiara Stanca
- Laboratory of Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (A.R.); (E.S.)
| | - Matteo Calcagnile
- Laboratory of Microbiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.C.); (P.A.)
| | - Alessio Rochira
- Laboratory of Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (A.R.); (E.S.)
| | - Eleonora Stanca
- Laboratory of Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (A.R.); (E.S.)
| | - Pietro Alifano
- Laboratory of Microbiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.C.); (P.A.)
| | - Fabrizio Damiano
- Laboratory of Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (A.R.); (E.S.)
- Correspondence: (L.S.); (F.D.); Tel.: +39-0832-298-696 (L.S.); +39-0832-298-698 (F.D.)
| |
Collapse
|
21
|
Role of Pirin, an Oxidative Stress Sensor Protein, in Epithelial Carcinogenesis. BIOLOGY 2021; 10:biology10020116. [PMID: 33557375 PMCID: PMC7915911 DOI: 10.3390/biology10020116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Pirin is an oxidative stress (OS) sensor belonging to the functionally diverse cupin superfamily of proteins. Pirin is a suggested quercetinase and transcriptional activator of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Its biological role in cancer development remains a novel area of study. This review presents accumulating evidence on the contribution of Pirin in epithelial cancers, involved signaling pathways, and as a suggested therapeutic target. Finally, we propose a model in which Pirin is upregulated by physical, chemical or biological factors involved in OS and cancer development.
Collapse
|
22
|
Kondo K, Mori M, Tomita M, Arakawa K. Pre-treatment with D942, a furancarboxylic acid derivative, increases desiccation tolerance in an anhydrobiotic tardigrade Hypsibius exemplaris. FEBS Open Bio 2020; 10:1774-1781. [PMID: 32623826 PMCID: PMC7459401 DOI: 10.1002/2211-5463.12926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/18/2020] [Accepted: 06/30/2020] [Indexed: 11/25/2022] Open
Abstract
The tardigrade Hypsibius exemplaris can undergo anhydrobiosis. Several chemicals that inhibit successful anhydrobiosis in H. exemplaris have been identified, and these chemicals inhibit the activity of signaling molecules. In the present study, we investigated whether upregulation of the activity of these signaling molecules could improve desiccation tolerance of H. exemplaris. Pre‐treatment with an indirect activator of AMP‐activated protein kinase [AMPK; which directly inhibits mammalian NAD(P)H dehydrogenase [quinone] 1 [NQO1] of mitochondrial complex I (D942)] significantly improved desiccation tolerance of H. exemplaris, whereas a direct activator of AMPK did not. To elucidate the underlying molecular mechanisms, we examined the proteome of tardigrades treated with D942. Two proteins, putative glutathione S‐transferase and pirin‐like protein, were upregulated by treatment. Both of these proteins are known to be associated with the response to oxidative stress. One of the downregulated proteins was serine/threonine‐proteinphosphatase 2A (PP2A) 65‐kDa regulatory subunit A alpha isoform, and it is interesting to note that PP2A activity was previously suggested to be required for successful anhydrobiosis in H. exemplaris. Taken together, our results suggest that D942 treatment may partially induce responses common to those of desiccation stress. The identification of a chemical that improves desiccation tolerance of H. exemplaris may facilitate further investigation into desiccation tolerance mechanisms.
Collapse
Affiliation(s)
- Koyuki Kondo
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| |
Collapse
|
23
|
He H, Yuan S, Hu J, Chen J, Rang J, Tang J, Liu Z, Xia Z, Ding X, Hu S, Xia L. Effect of the TetR family transcriptional regulator Sp1418 on the global metabolic network of Saccharopolyspora pogona. Microb Cell Fact 2020; 19:27. [PMID: 32046731 PMCID: PMC7011500 DOI: 10.1186/s12934-020-01299-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
Background Saccharopolyspora pogona is a prominent industrial strain due to its production of butenyl-spinosyn, a high-quality insecticide against a broad spectrum of insect pests. TetR family proteins are diverse in a tremendous number of microorganisms and some are been researched to have a key role in metabolic regulation. However, specific functions of TetR family proteins in S. pogona are yet to characterize. Results In the present study, the overexpression of the tetR-like gene sp1418 in S. pogona resulted in marked effects on vegetative growth, sporulation, butenyl-spinosyn biosynthesis, and oxidative stress. By using qRT-PCR analysis, mass spectrometry, enzyme activity detection, and sp1418 knockout verification, we showed that most of these effects could be attributed to the overexpression of Sp1418, which modulated enzymes related to the primary metabolism, oxidative stress and secondary metabolism, and thereby resulted in distinct growth characteristics and an unbalanced supply of precursor monomers for butenyl-spinosyn biosynthesis. Conclusion This study revealed the function of Sp1418 and enhanced the understanding of the metabolic network in S. pogona, and provided insights into the improvement of secondary metabolite production.
Collapse
Affiliation(s)
- Haocheng He
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shuangqin Yuan
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jinjuan Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jianming Chen
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jianli Tang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zhudong Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
| |
Collapse
|
24
|
Guo B, Zhang Y, Hicks G, Huang X, Li R, Roy N, Jia Z. Structure-Dependent Modulation of Substrate Binding and Biodegradation Activity of Pirin Proteins toward Plant Flavonols. ACS Chem Biol 2019; 14:2629-2640. [PMID: 31609578 DOI: 10.1021/acschembio.9b00575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pirin is a nonheme metalloprotein that occurs widely in human tissues and is highly conserved across all taxa. Pirin proteins typically function as nuclear transcription regulators, but two Pirin orthologs, YhhW (from Escherichia coli) and hPirin (from humans) were revealed to possess enzymatic activity of degrading quercetin. The exact role of Pirin homologues and their catalytic specificity remain poorly understood. In this work, by screening against a panel of plant flavonoids, we found that both Pirins catalyze the oxidative degradation of a wide spectrum of flavonol analogues and release carbon monoxide (CO) in the process. This shows that Pirin acts on a broad range of substrates and could represent a novel dietary source of CO in vivo. Although the kinetic profiles differ substantially between two Pirins, the identified substrate structures all share a 2,3-double bond and 3-hydroxyl and 4-oxo groups on their "flavonol backbone," which contribute to the specific enzyme-substrate interaction. While hPirin is iron-dependent, YhhW is identified as a novel nickel-containing dioxygenase member of the bicupin family. Besides the expanded Pirin activity, we present the crystal structures of the native Ni-YhhW and tag-free Fe-hPirin, revealing the distinctive differences occurring at the metal-binding site. In addition, YhhW features a flexible Ω-loop near the catalytic cavity, which may help stabilize the reaction intermediates via a Ni-flavonol complex. The structure-dependent modulation of substrate binding to the catalytic cavity adds to understanding the differential dispositions of natural flavonols by human and bacterial Pirins.
Collapse
Affiliation(s)
- Bin Guo
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory for Chemical Biology and Traditional Chinese Medicine Research of the Education Ministry of China, Hunan Normal University, Changsha 410081, China
| | - Yichen Zhang
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Gregory Hicks
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Xingrong Huang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory for Chemical Biology and Traditional Chinese Medicine Research of the Education Ministry of China, Hunan Normal University, Changsha 410081, China
| | - Rongfeng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Natalie Roy
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
25
|
Construction and application of a "superplasmid" for enhanced production of antibiotics. Appl Microbiol Biotechnol 2019; 104:1647-1660. [PMID: 31853567 DOI: 10.1007/s00253-019-10283-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
More than two-third of known antibiotics are produced by actinomycetes of the genus Streptomyces. Unfortunately, the production rate from Streptomyces natural antibiotic is extremely slow and thus cannot satisfy industrial demand. In this study, the production of antibiotics by Streptomyces is enhanced by a "superplasmid" which including global regulatory factors afsR, cyclic adenosine receptor protein (CRP), RNA polymerase beta subunits (rpoB) with point mutation and acetyl coenzyme A carboxylase gene (accA2BE), these elements are controlled by the PermE* promoter and then transfer into Streptomyces coelicolor M145, Streptomyces mutabilis TRM45540, Streptomyces hygroscopicus XM201, and Streptomyces hygroscopicus ATCC29253 by conjugation to generate exconjugants. NMR, HPLC, and LC-MS analyses revealed that the superplasmid led to the overproduction of actinorhodin (101.90%), undecylprodigiosin (181.60%) in S. coelicolor M145:: pLQ003, of rapamycin (110%), hygrocin A (163.4%) in S. hygroscopicus ATCC29253:: pLQ003, and of actinomycin D (11.78%) in S. mutabilis TRM45540:: pLQ003, and also to the downregulation of geldanamycin in S. hygroscopicus XM201, but we found that mutant strains in mutant strains of S. hygroscopicus XM201 with regulatory factors inserted showed several peaks that were not found in wild-type strains. The results of the present work indicated that the regulator net working in Streptomyces was not uniform, the superplasmid we constructed possibly caused this overproduction and downregulation in different Streptomyces.
Collapse
|
26
|
Fernández-Martínez LT, Hoskisson PA. Expanding, integrating, sensing and responding: the role of primary metabolism in specialised metabolite production. Curr Opin Microbiol 2019; 51:16-21. [DOI: 10.1016/j.mib.2019.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/22/2019] [Accepted: 03/12/2019] [Indexed: 01/30/2023]
|
27
|
Gao H, Murugesan B, Hoßbach J, Evans SK, Stark WM, Smith MCM. Integrating vectors for genetic studies in the rare Actinomycete Amycolatopsis marina. BMC Biotechnol 2019; 19:32. [PMID: 31164159 PMCID: PMC6549336 DOI: 10.1186/s12896-019-0521-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 04/30/2019] [Indexed: 11/15/2022] Open
Abstract
Background Few natural product pathways from rare Actinomycetes have been studied due to the difficulty in applying molecular approaches in these genetically intractable organisms. In this study, we sought to identify more integrating vectors, using phage int/attP loci, that would efficiently integrate site-specifically in the rare Actinomycete, Amycolatopsis marina DSM45569. Results Analysis of the genome of A. marina DSM45569 indicated the presence of attB-like sequences for TG1 and R4 integrases. The TG1 and R4 attBs were active in in vitro recombination assays with their cognate purified integrases and attP loci. Integrating vectors containing either the TG1 or R4 int/attP loci yielded exconjugants in conjugation assays from Escherichia coli to A. marina DSM45569. Site-specific recombination of the plasmids into the host TG1 or R4 attB sites was confirmed by sequencing. Conclusions The homologous TG1 and R4 attB sites within the genus Amycolatopsis have been identified. The results indicate that vectors based on TG1 and R4 integrases could be widely applicable in this genus.
Collapse
Affiliation(s)
- Hong Gao
- Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK. .,Present address: School of Science, Engineering & Design, Teesside University, Middlesbrough, TS1 3BX, UK.
| | - Buvani Murugesan
- Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK
| | - Janina Hoßbach
- Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK
| | - Stephanie K Evans
- Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK
| | - W Marshall Stark
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Margaret C M Smith
- Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK
| |
Collapse
|
28
|
Recent achievements in the generation of stable genome alterations/mutations in species of the genus Streptomyces. Appl Microbiol Biotechnol 2019; 103:5463-5482. [DOI: 10.1007/s00253-019-09901-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022]
|