1
|
Hill JD, Papoutsakis ET. Species-specific ribosomal RNA-FISH identifies interspecies cellular-material exchange, active-cell population dynamics and cellular localization of translation machinery in clostridial cultures and co-cultures. mSystems 2024; 9:e0057224. [PMID: 39254339 PMCID: PMC11495018 DOI: 10.1128/msystems.00572-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The development of synthetic microbial consortia in recent years has revealed that complex interspecies interactions, notably the exchange of cytoplasmic material, exist even among organisms that originate from different ecological niches. Although morphogenetic characteristics, viable RNA and protein dyes, and fluorescent reporter proteins have played an essential role in exploring such interactions, we hypothesized that ribosomal RNA-fluorescence in situ hybridization (rRNA-FISH) could be adapted and applied to further investigate interactions in synthetic or semisynthetic consortia. Despite its maturity, several challenges exist in using rRNA-FISH as a tool to quantify individual species population dynamics and interspecies interactions using high-throughput instrumentation such as flow cytometry. In this work, we resolve such challenges and apply rRNA-FISH to double and triple co-cultures of Clostridium acetobutylicum, Clostridium ljungdahlii, and Clostridium kluyveri. In pursuing our goal to capture each organism's population dynamics, we demonstrate dynamic rRNA, and thus ribosome, exchange between the three species leading to the formation of hybrid cells. We also characterize the localization patterns of the translation machinery in the three species, identifying distinct, dynamic localization patterns among them. Our data also support the use of rRNA-FISH to assess the culture's health and expansion potential, and, here again, our data find surprising differences among the three species examined. Taken together, our study argues for rRNA-FISH as a valuable and accessible tool for quantitative exploration of interspecies interactions, especially in organisms which cannot be genetically engineered or in consortia where selective pressures to maintain recombinant species cannot be used. IMPORTANCE Though dyes and fluorescent reporter proteins have played an essential role in identifying microbial species in co-cultures, we hypothesized that ribosomal RNA-fluorescence in situ hybridization (rRNA-FISH) could be adapted and applied to quantitatively probe complex interactions between organisms in synthetic consortia. Despite its maturity, several challenges existed before rRNA-FISH could be used to study Clostridium co-cultures of interest. First, species-specific probes for Clostridium acetobutylicum and Clostridium ljungdahlii had not been developed. Second, "state-of-the-art" labeling protocols were tedious and often resulted in sample loss. Third, it was unclear if FISH was compatible with existing fluorescent reporter proteins. We resolved these key challenges and applied the technique to co-cultures of C. acetobutylicum, C. ljungdahlii, and Clostridium kluyveri. We demonstrate that rRNA-FISH is capable of identifying rRNA/ribosome exchange between the three organisms and characterized rRNA localization patterns in each. In combination with flow cytometry, rRNA-FISH can capture sub-population dynamics in co-cultures.
Collapse
Affiliation(s)
- John D. Hill
- Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Eleftherios T. Papoutsakis
- Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
2
|
Seo H, Capece SH, Hill JD, Otten JK, Papoutsakis ET. Butyrate as a growth factor of Clostridium acetobutylicum. Metab Eng 2024; 86:194-207. [PMID: 39413987 DOI: 10.1016/j.ymben.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/01/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
The butyrate biosynthetic pathway not only contributes to electron management and energy generation in butyrate forming bacteria, but also confers evolutionary advantages to the host by inhibiting the growth of surrounding butyrate-sensitive microbes. While high butyrate levels induce toxic stress, effects of non-toxic levels on cell growth, health, metabolism, and sporulation remain unclear. Here, we show that butyrate stimulates cellular processes of Clostridium acetobutylicum, a model butyrate forming Firmicute. First, we deleted the 3-hydroxybutyryl-CoA dehydrogenase gene (hbd) from the C. acetobutylicum chromosome to eliminate the butyrate synthetic pathway and thus butyrate formation. A xylose inducible Cas9 cassette was chromosomally integrated and utilized for the one-step markerless gene deletions. Non-toxic butyrate levels significantly affected growth, health, and sporulation of C. acetobutylicum. After deleting spo0A, the gene encoding the master regulator of sporulation, Spo0A, and conducting butyrate addition experiments, we conclude that butyrate affects cellular metabolism through both Spo0A-dependent and independent mechanisms. We also deleted the hbd gene from the chromosome of the asporogenous C. acetobutylicum M5 strain lacking the pSOL1 plasmid to examine the potential involvement of pSOL1 genes on the observed butyrate effects. Addition of crotonate, the precursor of butyrate biosynthesis, to the hbd deficient M5 strain was used to probe the role of butyrate biosynthesis pathway in electron and metabolic fluxes. Finally, we found that butyrate addition can enhance the growth of the non-butyrate forming Clostridium saccharolyticum. Our data suggest that butyrate functions as a stimulator of cellular processes, like a growth factor, in C. acetobutylicum and potentially evolutionarily related Clostridium organisms.
Collapse
Affiliation(s)
- Hyeongmin Seo
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Sofia H Capece
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - John D Hill
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Jonathan K Otten
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | | |
Collapse
|
3
|
Charubin K, Hill JD, Papoutsakis ET. DNA transfer between two different species mediated by heterologous cell fusion in Clostridium coculture. mBio 2024; 15:e0313323. [PMID: 38214507 PMCID: PMC10865971 DOI: 10.1128/mbio.03133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024] Open
Abstract
Prokaryotic evolution is driven by random mutations and horizontal gene transfer (HGT). HGT occurs via transformation, transduction, or conjugation. We have previously shown that in syntrophic cocultures of Clostridium acetobutylicum and Clostridium ljungdahlii, heterologous cell fusion leads to a large-scale exchange of proteins and RNA between the two organisms. Here, we present evidence that heterologous cell fusion facilitates the exchange of DNA between the two organisms. Using selective subculturing, we isolated C. acetobutylicum cells which acquired and integrated into their genome portions of plasmid DNA from a plasmid-carrying C. ljungdahlii strain. Limiting-dilution plating and DNA methylation data based on PacBio Single-Molecule Real Time (SMRT) sequencing support the existence of hybrid C. acetobutylicum/C. ljungdahlii cells. These findings expand our understanding of multi-species microbiomes, their survival strategies, and evolution.IMPORTANCEInvestigations of natural multispecies microbiomes and synthetic microbial cocultures are attracting renewed interest for their potential application in biotechnology, ecology, and medical fields. Previously, we have shown the syntrophic coculture of C. acetobutylicum and C. ljungdahlii undergoes heterologous cell-to-cell fusion, which facilitates the exchange of cytoplasmic protein and RNA between the two organisms. We now show that heterologous cell fusion between the two Clostridium organisms can facilitate the exchange of DNA. By applying selective pressures to this coculture system, we isolated clones of wild-type C. acetobutylicum which acquired the erythromycin resistance (erm) gene from the C. ljungdahlii strain carrying a plasmid with the erm gene. Single-molecule real-time sequencing revealed that the erm gene was integrated into the genome in a mosaic fashion. Our data also support the persistence of hybrid C. acetobutylicum/C. ljungdahlii cells displaying hybrid DNA-methylation patterns.
Collapse
Affiliation(s)
- Kamil Charubin
- Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - John D. Hill
- Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Eleftherios Terry Papoutsakis
- Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
4
|
Scott WT, Benito-Vaquerizo S, Zimmermann J, Bajić D, Heinken A, Suarez-Diez M, Schaap PJ. A structured evaluation of genome-scale constraint-based modeling tools for microbial consortia. PLoS Comput Biol 2023; 19:e1011363. [PMID: 37578975 PMCID: PMC10449394 DOI: 10.1371/journal.pcbi.1011363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/24/2023] [Accepted: 07/17/2023] [Indexed: 08/16/2023] Open
Abstract
Harnessing the power of microbial consortia is integral to a diverse range of sectors, from healthcare to biotechnology to environmental remediation. To fully realize this potential, it is critical to understand the mechanisms behind the interactions that structure microbial consortia and determine their functions. Constraint-based reconstruction and analysis (COBRA) approaches, employing genome-scale metabolic models (GEMs), have emerged as the state-of-the-art tool to simulate the behavior of microbial communities from their constituent genomes. In the last decade, many tools have been developed that use COBRA approaches to simulate multi-species consortia, under either steady-state, dynamic, or spatiotemporally varying scenarios. Yet, these tools have not been systematically evaluated regarding their software quality, most suitable application, and predictive power. Hence, it is uncertain which tools users should apply to their system and what are the most urgent directions that developers should take in the future to improve existing capacities. This study conducted a systematic evaluation of COBRA-based tools for microbial communities using datasets from two-member communities as test cases. First, we performed a qualitative assessment in which we evaluated 24 published tools based on a list of FAIR (Findability, Accessibility, Interoperability, and Reusability) features essential for software quality. Next, we quantitatively tested the predictions in a subset of 14 of these tools against experimental data from three different case studies: a) syngas fermentation by C. autoethanogenum and C. kluyveri for the static tools, b) glucose/xylose fermentation with engineered E. coli and S. cerevisiae for the dynamic tools, and c) a Petri dish of E. coli and S. enterica for tools incorporating spatiotemporal variation. Our results show varying performance levels of the best qualitatively assessed tools when examining the different categories of tools. The differences in the mathematical formulation of the approaches and their relation to the results were also discussed. Ultimately, we provide recommendations for refining future GEM microbial modeling tools.
Collapse
Affiliation(s)
- William T. Scott
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
- UNLOCK, Wageningen University & Research and Delft University of Technology, Wageningen, the Netherlands
| | - Sara Benito-Vaquerizo
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Johannes Zimmermann
- Christian-Albrechts-University Kiel, Institute of Experimental Medicine, Research Group Medical Systems Biology, Kiel, Germany
| | - Djordje Bajić
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Almut Heinken
- Inserm U1256 Laboratoire nGERE, Université de Lorraine, Nancy, France
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
- UNLOCK, Wageningen University & Research and Delft University of Technology, Wageningen, the Netherlands
| |
Collapse
|
5
|
Liu Z, Fu B, Wang J, Li W, Hu Y, Liu Z, Fu C, Li D, Wang C, Xu N. Transcriptomics Reveals the Effect of Strain Interactions on the Growth of A. Oryzae and Z. Rouxii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5525-5534. [PMID: 36989392 DOI: 10.1021/acs.jafc.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The microbial community structure in traditional fermented foods is quite complex, making the relationship between strains unclear. In this regard, the co-culture system can simulate microbial interactions during food fermentation and reveal the morphological changes, metabolic processes, and gene expression of microbial communities. The present study sought to investigate the effects of microbial interactions on the growth of Aspergillus oryzae and Zygosaccharomyces rouxii through omics. After co-cultivation, the pH value and dry weight were consistent with the pure culture of Z. rouxii. Additionally, the consumption of reducing sugar decreased, and the enzymatic activity increased compared with the pure culture of fungus. The analysis of volatile organic compounds (VOCs) and transcriptomics showed that co-culture significantly promoted the effect on Z. rouxii. A total of 6 different VOCs and 2202 differentially expressed genes were identified in the pure and co-culture of Z. rouxii. The differentially expressed genes were mainly related to the endonucleolytic cleavage of rRNA, ribosome biogenesis in eukaryotes, and RNA polymerase metabolic pathways. The study results will provide insights into the effect of microbial interactions on the growth of A. oryzae and Z. rouxii.
Collapse
Affiliation(s)
- Zeping Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Bin Fu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jing Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Wei Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yong Hu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Zhijie Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Caixia Fu
- Hubei Tulaohan Flavouring and Food Co., Ltd., Yichang, Hubei 443000, China
| | - Dongsheng Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Chao Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Ning Xu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| |
Collapse
|
6
|
Naseri G. A roadmap to establish a comprehensive platform for sustainable manufacturing of natural products in yeast. Nat Commun 2023; 14:1916. [PMID: 37024483 PMCID: PMC10079933 DOI: 10.1038/s41467-023-37627-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Secondary natural products (NPs) are a rich source for drug discovery. However, the low abundance of NPs makes their extraction from nature inefficient, while chemical synthesis is challenging and unsustainable. Saccharomyces cerevisiae and Pichia pastoris are excellent manufacturing systems for the production of NPs. This Perspective discusses a comprehensive platform for sustainable production of NPs in the two yeasts through system-associated optimization at four levels: genetics, temporal controllers, productivity screening, and scalability. Additionally, it is pointed out critical metabolic building blocks in NP bioengineering can be identified through connecting multilevel data of the optimized system using deep learning.
Collapse
Affiliation(s)
- Gita Naseri
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117, Berlin, Germany.
- Institut für Biologie, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115, Berlin, Germany.
| |
Collapse
|
7
|
Zhao R, Dong W, Yang C, Jiang W, Tian J, Gu Y. Formate as a supplementary substrate facilitates sugar metabolism and solvent production by Clostridium beijerinckii NCIMB 8052. Synth Syst Biotechnol 2023; 8:196-205. [PMID: 36824491 PMCID: PMC9941364 DOI: 10.1016/j.synbio.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Microbial utilization and conversion of organic one-carbon compounds, such as formate and methanol that can be easily produced from CO2, has emerged as an attractive approach for biorefinery. In this study, we discovered Clostridium beijerinckii NCIMB 8052, a typical solventogenic Clostridium strain, to be a native formate-utilizing bacterium. 13C isotope analysis showed that formate could be metabolized via both assimilation and dissimilation pathways in C. beijerinckii NCIMB 8052. Notably, the use of formate as the supplementary substrate by this strain could significantly enhance its glucose consumption and ABE (acetone-butanol-ethanol) production, largely due to the up-regulation of genes responsible for glycolysis and glucose transport under formate stress. Based on these findings, we further improved formate tolerance of C. beijerinckii NCIMB 8052 by adaptive laboratory evolution, generating an evolved strain Cbei-FA01. The Cbei-FA01 strain could produce 23.0 g/L of ABE solvents using glucose and formate as dual substrates, ∼50% higher than that of the wild-type strain under the same condition. Moreover, such a promotion effect of formate on ABE production by Cbei-FA01 was also observed in fermenting a glucose-xylose mixture. This work reveals a previously unreported role of formate in biological ABE production, providing a new approach to utilize this one-carbon source.
Collapse
Affiliation(s)
- Ran Zhao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenyue Dong
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chen Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Weihong Jiang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jinzhong Tian
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China,Corresponding author. 300 Fenglin Road, Shanghai, 200032, China.
| | - Yang Gu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China,Corresponding author.
| |
Collapse
|
8
|
Benito-Vaquerizo S, Nouse N, Schaap PJ, Hugenholtz J, Brul S, López-Contreras AM, Martins dos Santos VAP, Suarez-Diez M. Model-driven approach for the production of butyrate from CO 2/H 2 by a novel co-culture of C. autoethanogenum and C. beijerinckii. Front Microbiol 2022; 13:1064013. [PMID: 36620068 PMCID: PMC9815533 DOI: 10.3389/fmicb.2022.1064013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
One-carbon (C1) compounds are promising feedstocks for the sustainable production of commodity chemicals. CO2 is a particularly advantageous C1-feedstock since it is an unwanted industrial off-gas that can be converted into valuable products while reducing its atmospheric levels. Acetogens are microorganisms that can grow on CO2/H2 gas mixtures and syngas converting these substrates into ethanol and acetate. Co-cultivation of acetogens with other microbial species that can further process such products, can expand the variety of products to, for example, medium chain fatty acids (MCFA) and longer chain alcohols. Solventogens are microorganisms known to produce MCFA and alcohols via the acetone-butanol-ethanol (ABE) fermentation in which acetate is a key metabolite. Thus, co-cultivation of an acetogen and a solventogen in a consortium provides a potential platform to produce valuable chemicals from CO2. In this study, metabolic modeling was implemented to design a new co-culture of an acetogen and a solventogen to produce butyrate from CO2/H2 mixtures. The model-driven approach suggested the ability of the studied solventogenic species to grow on lactate/glycerol with acetate as co-substrate. This ability was confirmed experimentally by cultivation of Clostridium beijerinckii on these substrates in batch serum bottles and subsequently in pH-controlled bioreactors. Community modeling also suggested that a novel microbial consortium consisting of the acetogen Clostridium autoethanogenum, and the solventogen C. beijerinckii would be feasible and stable. On the basis of this prediction, a co-culture was experimentally established. C. autoethanogenum grew on CO2/H2 producing acetate and traces of ethanol. Acetate was in turn, consumed by C. beijerinckii together with lactate, producing butyrate. These results show that community modeling of metabolism is a valuable tool to guide the design of microbial consortia for the tailored production of chemicals from renewable resources.
Collapse
Affiliation(s)
- Sara Benito-Vaquerizo
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Niels Nouse
- Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, Netherlands
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands,UNLOCK Large Scale Infrastructure for Microbial Communities, Wageningen University and Research and Delft University of Technology, Wageningen, Netherlands
| | - Jeroen Hugenholtz
- Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, Netherlands
| | - Stanley Brul
- Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, Netherlands
| | - Ana M. López-Contreras
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands
| | | | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands,*Correspondence: Maria Suarez-Diez ✉
| |
Collapse
|
9
|
Beura S, Kundu P, Das AK, Ghosh A. Metagenome-scale community metabolic modelling for understanding the role of gut microbiota in human health. Comput Biol Med 2022; 149:105997. [DOI: 10.1016/j.compbiomed.2022.105997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/03/2022] [Accepted: 08/14/2022] [Indexed: 11/03/2022]
|
10
|
Liu Z, Fu B, Duan X, Lv W, Kang S, Zhou M, Wang C, Li D, Xu N. Effects of cell-cell interactions between A. oryzae and Z. rouxii on morphology and secondary metabolites. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Otten JK, Zou Y, Papoutsakis ET. The potential of caproate (hexanoate) production using Clostridium kluyveri syntrophic cocultures with Clostridium acetobutylicum or Clostridium saccharolyticum. Front Bioeng Biotechnol 2022; 10:965614. [PMID: 36072287 PMCID: PMC9441933 DOI: 10.3389/fbioe.2022.965614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 11/18/2022] Open
Abstract
Caproate (hexanoate) and other medium-chain fatty acids are valuable platform chemicals produced by processes utilizing petroleum or plant oil. Clostridium kluyveri, growing on short chain alcohols (notably ethanol) and carboxylic acids (such as acetate) is noted for its ability to perform chain elongation to produce 4- to 8-carbon carboxylates. C. kluyveri has been studied in monoculture and coculture conditions, which lead to relatively modest carboxylate titers after long fermentation times. To assess the biosynthetic potential of C. kluyveri for caproate production from sugars through coculture fermentations, in the absence of monoculture data in the literature suitable for our coculture experiments, we first explored C. kluyveri monocultures. Some monocultures achieved caproate titers of 150 to over 200 mM in 40–50 h with a production rate of 7.9 mM/h. Based on that data, we then explored two novel, syntrophic coculture partners for producing caproate from sugars: Clostridium acetobutylicum and Clostridium saccharolyticum. Neither species has been cocultured with C. kluyveri before, and both demonstrate promising results. Our experiments of C. kluyveri monocultures and C. kluyveri—C. saccharolyticum cocultures demonstrate exceptionally high caproate titers (145–200 mM), fast production rates (3.25–8.1 mM/h), and short fermentation times (18–45 h). These results represent the most caproate produced by a C. kluyveri coculture in the shortest known fermentation time. We also explored the possibility of heterologous cell fusion between the coculture pairs similar to the results seen previously in our group with C. acetobutylicum and Clostridium ljungdahlii. Fusion events were observed only in the C. acetobutylicum—C. kluyveri coculture pair, and we offer an explanation for the lack of fusion between C. saccharolyticum and C. kluyveri. This work supports the promise of coculture biotechnology for sustainable production of caproate and other platform chemicals.
Collapse
Affiliation(s)
- Jonathan K. Otten
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Yin Zou
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Eleftherios T. Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
- *Correspondence: Eleftherios T. Papoutsakis,
| |
Collapse
|
12
|
Metabolite-Based Mutualistic Interaction between Two Novel Clostridial Species from Pit Mud Enhances Butyrate and Caproate Production. Appl Environ Microbiol 2022; 88:e0048422. [PMID: 35695571 PMCID: PMC9275218 DOI: 10.1128/aem.00484-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pit mud microbial consortia play crucial roles in the formation of Chinese strong-flavor baijiu's key flavor-active compounds, especially butyric and caproic acids. Clostridia, one of the abundant bacterial groups in pit mud, were recognized as important butyric and caproic acid producers. Research on the interactions of the pit mud microbial community mainly depends on correlation analysis at present. Interaction between Clostridium and other microorganisms and its involvement in short/medium-chain fatty acid (S/MCFA) metabolism are still unclear. We previously found coculture of two clostridial strains isolated from pit mud, Clostridium fermenticellae JN500901 (C.901) and Novisyntrophococcus fermenticellae JN500902 (N.902), could enhance S/MCFA accumulation. Here, we investigated their underlying interaction mechanism through the combined analysis of phenotype, genome, and transcriptome. Compared to monocultures, coculture of C.901 and N.902 obviously promoted their growth, including shortening the growth lag phase and increasing biomass, and the accumulation of butyric acid and caproic acid. The slight effects of inoculation ratio and continuous passage on the growth and metabolism of coculture indicated the relative stability of their interaction. Transwell coculture and transcriptome analysis showed the interaction between C.901 and N.902 was accomplished by metabolite exchange, i.e., formic acid produced by C.901 activated the Wood-Ljungdahl pathway of N.902, thereby enhancing its production of acetic acid, which was further converted to butyric acid and caproic acid by C.901 through reverse β-oxidation. This work demonstrates the potential roles of mutually beneficial interspecies interactions in the accumulation of key flavor compounds in pit mud. IMPORTANCE Microbial interactions played crucial roles in influencing the assembly, stability, and function of the microbial community. The metabolites of pit mud microbiota are the key to flavor formation of Chinese strong-flavor baijiu. So far, researches on the interactions of the pit mud microbial community have been mainly based on the correlation analysis of sequencing data, and more work needs to be performed to unveil the complicated interaction patterns. Here, we identified a material exchange-based mutualistic interaction system involving two fatty acid-producing clostridial strains (Clostridium fermenticellae JN500901 and Novisyntrophococcus fermenticellae JN500902) isolated from pit mud and systematically elucidated their interaction mechanism for promoting the production of butyric acid and caproic acid, the key flavor-active compounds of baijiu. Our findings provide a new perspective for understanding the complicated interactions of pit mud microorganisms.
Collapse
|
13
|
He Y, Kennes C, Lens PNL. Enhanced solventogenesis in syngas bioconversion: Role of process parameters and thermodynamics. CHEMOSPHERE 2022; 299:134425. [PMID: 35351479 DOI: 10.1016/j.chemosphere.2022.134425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Biofuels, such as ethanol and butanol, obtained from carbon monoxide-rich gas or syngas bioconversion (solventogenesis) are an attractive alternative to traditional fermentation processes with merits of no competition with food production and sustainability. However, there is a lack of comprehensive understanding of some key process parameters and mechanisms enhancing solventogenesis during the fermentation process. This review provides an overview of the current state of the art of the main influencing factors during the syngas fermentation process catalyzed by acetogenic species as well as undefined mixed cultures. The role of syngas pressure, syngas components, fermentation pH, temperature, trace metals, organic compounds and additional materials is overviewed. As a so far hardly considered approach, thermodynamic calculations of the Gibbs free energy of CO conversion to acetic acid, ethanol, butyric acid and butanol under different CO pressures and pH at 25, 33 and 55 °C are also addressed and reviewed. Strategies for enhancing mass transfer and longer carbon chain solvent production are considered as well.
Collapse
Affiliation(s)
- Yaxue He
- National University of Ireland Galway, H91 TK33, Galway, Ireland; Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña (UDC), E-15008, La Coruña, Spain.
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña (UDC), E-15008, La Coruña, Spain
| | - Piet N L Lens
- National University of Ireland Galway, H91 TK33, Galway, Ireland
| |
Collapse
|
14
|
Rafieenia R, Atkinson E, Ledesma-Amaro R. Division of labor for substrate utilization in natural and synthetic microbial communities. Curr Opin Biotechnol 2022; 75:102706. [DOI: 10.1016/j.copbio.2022.102706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 01/30/2023]
|
15
|
Liu Z, Kang B, Duan X, Hu Y, Li W, Wang C, Li D, Xu N. Metabolomic profiles of the liquid state fermentation in co-culture of A. oryzae and Z. rouxii. Food Microbiol 2022; 103:103966. [DOI: 10.1016/j.fm.2021.103966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/31/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
|
16
|
Dynamic modulation of enzyme activity by synthetic CRISPR–Cas6 endonucleases. Nat Chem Biol 2022; 18:492-500. [DOI: 10.1038/s41589-022-01005-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 02/25/2022] [Indexed: 11/08/2022]
|
17
|
Hocq R, Sauer M. An artificial coculture fermentation system for industrial propanol production. FEMS MICROBES 2022. [DOI: 10.1093/femsmc/xtac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ABSTRACT
Converting plant biomass into biofuels and biochemicals via microbial fermentation has received considerable attention in the quest for finding renewable energies and materials. Most approaches have so far relied on cultivating a single microbial strain, tailored for a specific purpose. However, this contrasts to how nature works, where microbial communities rather than single species perform all tasks. In artificial coculture systems, metabolic synergies are rationally designed by carefully selecting and simultaneously growing different microbes, taking advantage of the broader metabolic space offered by the use of multiple organisms.
1-propanol and 2-propanol, as biofuels and precursors for propylene, are interesting target molecules to valorize plant biomass. Some solventogenic Clostridia can naturally produce 2-propanol in the so-called Isopropanol-Butanol-Ethanol (IBE) fermentation, by coupling 2-propanol synthesis to acetate and butyrate reduction into ethanol and 1-butanol.
In this work, we hypothesized propanoate would be converted into 1-propanol by the IBE metabolism, while driving at the same time 2-propanol synthesis. We first verified this hypothesis and chose two propionic acid bacteria (PAB) strains as propanoate producers. While consecutive PAB and IBE fermentations only resulted in low propanol titers, coculturing Propionibacterium freudenreichii and Clostridium beijerinckii at various inoculation ratios yielded much higher solvent concentrations, with as much as 21 g/L of solvents (58% increase compared to C. beijerinckii monoculture) and 12 g/L of propanol (98% increase). Taken together, our results underline how artificial cocultures can be used to foster metabolic synergies, increasing fermentative performances and orienting the carbon flow towards a desired product.
Collapse
Affiliation(s)
- Rémi Hocq
- CD-Laboratory for Biotechnology of Glycerol, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
- Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Sauer
- CD-Laboratory for Biotechnology of Glycerol, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
- Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
18
|
Hu L, Guo S, Wang B, Fu R, Fan D, Jiang M, Fei Q, Gonzalez R. Bio-valorization of C1 gaseous substrates into bioalcohols: Potentials and challenges in reducing carbon emissions. Biotechnol Adv 2022; 59:107954. [DOI: 10.1016/j.biotechadv.2022.107954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
|
19
|
Dahle ML, Papoutsakis ET, Antoniewicz MR. 13C-metabolic flux analysis of Clostridium ljungdahlii illuminates its core metabolism under mixotrophic culture conditions. Metab Eng 2022; 72:161-170. [DOI: 10.1016/j.ymben.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
|
20
|
Flaiz M, Baur T, Gaibler J, Kröly C, Dürre P. Establishment of Green- and Red-Fluorescent Reporter Proteins Based on the Fluorescence-Activating and Absorption-Shifting Tag for Use in Acetogenic and Solventogenic Anaerobes. ACS Synth Biol 2022; 11:953-967. [PMID: 35081709 DOI: 10.1021/acssynbio.1c00554] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anaerobic bacteria are promising biocatalysts to produce industrially relevant products from nonfood feedstocks. Several anaerobes are genetically accessible, and various molecular tools for metabolic engineering are available. Still, the use of bright fluorescent reporters, which are commonly used in molecular biological approaches is limited under anaerobic conditions. Therefore, the establishment of different anaerobic fluorescent reporter proteins is of great interest. Here, we present the establishment of the green- and red-fluorescent reporter proteins greenFAST and redFAST for use in different solventogenic and acetogenic bacteria. Green fluorescence of greenFAST was bright in Clostridium saccharoperbutylacetonicum, Clostridium acetobutylicum, Acetobacterium woodii, and Eubacterium limosum, while only C. saccharoperbutylacetonicum showed bright red fluorescence when producing redFAST. We used both reporter proteins in C. saccharoperbutylacetonicum for multicolor approaches. These include the investigation of the co-culture dynamics of metabolically engineered strains. Moreover, we established a tightly regulated inducible two-plasmid system and used greenFAST and redFAST to track the coexistence and interaction of both plasmids under anaerobic conditions in C. saccharoperbutylacetonicum. The establishment of greenFAST and redFAST as fluorescent reporters opens the door for further multicolor approaches to investigate cell dynamics, gene expression, or protein localization under anaerobic conditions.
Collapse
Affiliation(s)
- Maximilian Flaiz
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Tina Baur
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jana Gaibler
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Christian Kröly
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
21
|
He Y, Lens PNL, Veiga MC, Kennes C. Selective butanol production from carbon monoxide by an enriched anaerobic culture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150579. [PMID: 34582872 DOI: 10.1016/j.scitotenv.2021.150579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
An anaerobic mixed culture able to grow on pure carbon monoxide (CO) as well as syngas (CO, CO2 and H2), that produced unusual high concentrations of butanol, was enriched in a bioreactor with intermittent CO gas feeding. At pH 6.2, it mainly produced acids, generally acetic and butyric acid. After adaptation, under stress conditions of CO exposure at a partial pressure of 1.8 bar and low pH (e.g., 5.7), the enrichment accumulated ethanol, but also high amounts of butanol, up to 6.8 g/L, never reported before, with a high butanol/butyric acid molar ratio of 12.6, highlighting the high level of acid to alcohol conversion. At the end of the assay, both the acetic acid and ethanol concentrations decreased, with concomitant butyric acid production, suggesting C2 to C4 acid bioconversion, though this was not a dominant bioconversion process. The reverse reaction of ethanol oxidation to acetic acid was observed in the presence of CO2 produced during CO fermentation. Interestingly, butanol oxidation with simultaneous butyric acid production occurred upon production of CO2 from CO, which has to the best of our knowledge never been reported. Although the sludge inoculum contained a few known solventogenic Clostridia, the relative taxonomic abundance of the enriched sludge was diverse in Clostridia and Bacilli classes, containing known solventogens, e.g., Clostridium ljungdhalii, Clostridium ragsdalei and Clostridium coskatii, confirming their efficient enrichment. The relative abundance of unassigned Clostridium species amounted to 27% with presumably novel ethanol/butanol producers.
Collapse
Affiliation(s)
- Yaxue He
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research (CICA), BIOENGIN Group, University of La Coruña (UDC), E-15008 La Coruña, Spain; National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Piet N L Lens
- National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research (CICA), BIOENGIN Group, University of La Coruña (UDC), E-15008 La Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research (CICA), BIOENGIN Group, University of La Coruña (UDC), E-15008 La Coruña, Spain.
| |
Collapse
|
22
|
Wu X, Cai W, Zhu P, Peng Z, Zheng T, Li D, Li J, Zhou G, Zhang J, Du G. Function-driven design of Bacillus kochii and Filobasidium magnum co-culture to improve quality of flue-cured tobacco. Front Microbiol 2022; 13:1024005. [PMID: 36875537 PMCID: PMC9978371 DOI: 10.3389/fmicb.2022.1024005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/16/2022] [Indexed: 02/18/2023] Open
Abstract
Flue-cured tobacco (FCT) is an economical raw material whose quality affects the quality and cost of the derived product. However, the time-consuming and inefficient spontaneous aging is the primary process for improving the FCT quality in the industry. In this study, a function-driven co-culture with functional microorganisms was built in response to the quality-driven need for less irritation and more aroma in FCT. The previous study has found that Bacillus kochii SC could degrade starch and protein to reduce tobacco irritation and off-flavors. The Filobasidium magnum F7 with high lipoxygenase activity was screened out for degrading higher fatty acid esters and terpenoids to promote the aroma and flavor of FCT. Co-cultivation with strain SC and F7 obtained better quality improvement than mono-culture at an initial inoculation ratio of 1:3 for 2 days, representing a significant breakthrough in efficiency and a reduction in production costs compared to the more than 2 years required for the spontaneous aging process. Through the analysis of microbial diversity, predicted flora functions, enzyme activities and volatile compositions within the mono- and co-cultivation, our study showed the formation of a function-driven co-culture between two strains through functional division of labor and nutritional feeding. Herein, the function-driven co-culture via bioaugmentation will become an increasingly implemented approach for the tobacco industry.
Collapse
Affiliation(s)
- Xinying Wu
- School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China.,School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Wen Cai
- Technical Research Center, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Pengcheng Zhu
- School of Biotechnology, Jiangnan University, Wuxi, China.,Technical Research Center, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Zheng Peng
- School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Tianfei Zheng
- School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Dongliang Li
- Technical Research Center, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Jianghua Li
- School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guanyu Zhou
- School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Juan Zhang
- School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guocheng Du
- School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
23
|
He Y, Lens PNL, Veiga MC, Kennes C. Enhanced Ethanol Production From Carbon Monoxide by Enriched Clostridium Bacteria. Front Microbiol 2021; 12:754713. [PMID: 34777310 PMCID: PMC8585497 DOI: 10.3389/fmicb.2021.754713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Carbon monoxide (CO)-metabolizing Clostridium spp. were enriched from the biomass of a butanol-producing reactor. After six successive biomass transfers, ethanol production reached as much as 11.8 g/L with minor accumulation of acetic acid, under intermittent gas feeding conditions and over a wide pH range of 6.45-4.95. The molar ratio of ethanol to acetic acid exceeded 1.7 after the lag phase of 11 days and reached its highest value of 8.6 during the fermentation process after 25 days. Although butanol production was not significantly enhanced in the enrichment, the biomass was able to convert exogenous butyric acid (3.2 g/L) into butanol with nearly 100% conversion efficiency using CO as reducing power. This suggested that inhibition of butanol production from CO was caused by the lack of natural butyric acid production, expectedly induced by unsuitable pH values due to initial acidification resulting from the acetic acid production. The enriched Clostridium population also converted glucose to formic, acetic, propionic, and butyric acids in batch tests with daily pH adjustment to pH 6.0. The Clostridium genus was enriched with its relative abundance significantly increasing from 7% in the inoculum to 94% after five successive enrichment steps. Unidentified Clostridium species showed a very high relative abundance, reaching 73% of the Clostridium genus in the enriched sludge (6th transfer).
Collapse
Affiliation(s)
- Yaxue He
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research (CICA), BIOENGIN Group, University of A Coruña (UDC), A Coruña, Spain.,National University of Ireland Galway, Galway, Ireland
| | - Piet N L Lens
- National University of Ireland Galway, Galway, Ireland
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research (CICA), BIOENGIN Group, University of A Coruña (UDC), A Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research (CICA), BIOENGIN Group, University of A Coruña (UDC), A Coruña, Spain
| |
Collapse
|
24
|
Screening of Gas Substrate and Medium Effects on 2,3-Butanediol Production with C. ljungdahlii and C. autoethanogenum Aided by Improved Autotrophic Cultivation Technique. FERMENTATION 2021. [DOI: 10.3390/fermentation7040264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Gas fermentation by acetogens of the genus Clostridium is an attractive technology since it affords the production of biochemicals and biofuels from industrial waste gases while contributing to mitigate the carbon cycle alterations. The acetogenic model organisms C. ljungdahlii and C. autoethanogenum have already been used in large scale industrial fermentations. Among the natural products, ethanol production has already attained industrial scale. However, some acetogens are also natural producers of 2,3-butanediol (2,3-BDO), a platform chemical of relevant industrial interest. Here, we have developed a lab-scale screening campaign with the aim of enhancing 2,3-BDO production. Our study generated comparable data on growth and 2,3-BDO production of several batch gas fermentations using C. ljungdahlii and C. autoethanogenum grown on different gas substrates of primary applicative interest (CO2 · H2, CO · CO2, syngas) and on different media featuring different compositions as regards trace metals, mineral elements and vitamins. CO · CO2 fermentation was found to be preferable for the production of 2,3-BDO, and a fair comparison of the strains cultivated in comparable conditions revealed that C. ljungdahlii produced 3.43-fold higher titer of 2,3-BDO compared to C. autoethanogenum. Screening of different medium compositions revealed that mineral elements, Zinc and Iron exert a major positive influence on 2,3-BDO titer and productivity. Moreover, the CO2 influence on CO fermentation was explored by characterizing C. ljungdahlii response with respect to different gas ratios in the CO · CO2 gas mixtures. The screening strategies undertaken in this study led to the production of 2.03 ± 0.05 g/L of 2,3-BDO, which is unprecedented in serum bottle experiments.
Collapse
|
25
|
Lahlali R, Ibrahim DS, Belabess Z, Kadir Roni MZ, Radouane N, Vicente CS, Menéndez E, Mokrini F, Barka EA, Galvão de Melo e Mota M, Peng G. High-throughput molecular technologies for unraveling the mystery of soil microbial community: challenges and future prospects. Heliyon 2021; 7:e08142. [PMID: 34693062 PMCID: PMC8515249 DOI: 10.1016/j.heliyon.2021.e08142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/08/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Soil microbial communities play a crucial role in soil fertility, sustainability, and plant health. However, intensive agriculture with increasing chemical inputs and changing environments have influenced native soil microbial communities. Approaches have been developed to study the structure, diversity, and activity of soil microbes to better understand the biology and plant-microbe interactions in soils. Unfortunately, a good understanding of soil microbial community remains a challenge due to the complexity of community composition, interactions of the soil environment, and limitations of technologies, especially related to the functionality of some taxa rarely detected using conventional techniques. Culture-based methods have been shown unable and sometimes are biased for assessing soil microbial communities. To gain further knowledge, culture-independent methods relying on direct analysis of nucleic acids, proteins, and lipids are worth exploring. In recent years, metagenomics, metaproteomics, metatranscriptomics, and proteogenomics have been increasingly used in studying microbial ecology. In this review, we examined the importance of microbial community to soil quality, the mystery of rhizosphere and plant-microbe interactions, and the biodiversity and multi-trophic interactions that influence the soil structure and functionality. The impact of the cropping system and climate change on the soil microbial community was also explored. Importantly, progresses in molecular biology, especially in the development of high-throughput biotechnological tools, were extensively assessed for potential uses to decipher the diversity and dynamics of soil microbial communities, with the highlighted advantages/limitations.
Collapse
Affiliation(s)
- Rachid Lahlali
- Plant Pathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknes, BP S/40, 50001, Meknes, Morocco
| | - Dina S.S. Ibrahim
- Department of Nematodes Diseases and Central Lab of Biotechnology, Plant Pathology Research Institute, Agricultural Research Center (ARC), 12619, Egypt
| | - Zineb Belabess
- Plant Protection Laboratory. Regional Center of Agricultural Research of Oujda, National Institute of Agricultural Research, Avenue Mohamed VI, BP428 60000 Oujda, Morocco
| | - Md Zohurul Kadir Roni
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences (JIRCAS), 1091-1 Maezato-Kawarabaru, Ishigaki, Okinawa, 907-0002, Japan
| | - Nabil Radouane
- Plant Pathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknes, BP S/40, 50001, Meknes, Morocco
- Department of Biology, Laboratory of Functional Ecology and Environmental Engineering, FST-Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Cláudia S.L. Vicente
- MED – Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research (IIFA), Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
- INIAV, I.P. - Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, 2780-159 Oeiras, Portugal
| | - Esther Menéndez
- INIAV, I.P. - Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, 2780-159 Oeiras, Portugal
- Department of Microbiology and Genetics / Spanish-Portuguese Institute for Agricultural Research (CIALE). University of Salamanca, 37007, Salamanca, Spain
| | - Fouad Mokrini
- Plant Protection Laboratory, INRA, Centre Régional de la Recherche Agronomique (CRRA), Rabat, Morocco
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-protection des Plantes, EA 4707, USC, INRAe1488, Université de Reims Champagne-Ardenne, France
| | - Manuel Galvão de Melo e Mota
- NemaLab, MED – Mediterranean Institute for Agriculture, Environment and Development & Department of Biology, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Gary Peng
- Saskatoon Research Development Centre, Agriculture and Agri-Food, Saskatchewan, Canada
| |
Collapse
|
26
|
Metabolic engineering for the production of butanol, a potential advanced biofuel, from renewable resources. Biochem Soc Trans 2021; 48:2283-2293. [PMID: 32897293 DOI: 10.1042/bst20200603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Abstract
Butanol is an important chemical and potential fuel. For more than 100 years, acetone-butanol-ethanol (ABE) fermentation of Clostridium strains has been the most successful process for biological butanol production. In recent years, other microbes have been engineered to produce butanol as well, among which Escherichia coli was the best one. Considering the crude oil price fluctuation, minimizing the cost of butanol production is of highest priority for its industrial application. Therefore, using cheaper feedstocks instead of pure sugars is an important project. In this review, we summarized butanol production from different renewable resources, such as industrial and food waste, lignocellulosic biomass, syngas and other renewable resources. This review will present the current progress in this field and provide insights for further engineering efforts on renewable butanol production.
Collapse
|
27
|
Anaerobic fluorescent reporters for cell identification, microbial cell biology and high-throughput screening of microbiota and genomic libraries. Curr Opin Biotechnol 2021; 71:151-163. [PMID: 34375813 DOI: 10.1016/j.copbio.2021.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022]
Abstract
The lack of real-time reporters in obligate anaerobes has limited studies in gene expression, promoter characterization, library screening, population dynamics, and cell biology in these organisms. While the use of enzymatic, colorimetric, and luminescent reporters has been reported, the need for reliable anaerobic fluorescent proteins is widely acknowledged. Recently, the fluorescent proteins HaloTag, SNAP-tag and FAST have been established as reliable reporters in Clostridium spp., thus suggesting that these reporters can be adopted widely for many obligate anaerobes. With a multitude of labeling options, these anaerobic fluorescent proteins hold a great potential for screening promoters, terminators, and RBS sites, tracking population dynamics in complex multi-species co-cultures, such as microbiomes, screening libraries, and in cell biology studies of protein localization and interactions using high-resolution microscopy.
Collapse
|
28
|
Flores AD, Holland SC, Mhatre A, Sarnaik AP, Godar A, Onyeabor M, Varman AM, Wang X, Nielsen DR. A coculture-coproduction system designed for enhanced carbon conservation through inter-strain CO 2 recycling. Metab Eng 2021; 67:387-395. [PMID: 34365009 DOI: 10.1016/j.ymben.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/08/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
Carbon loss in the form of CO2 is an intrinsic and persistent challenge faced during conventional and advanced biofuel production from biomass feedstocks. Current mechanisms for increasing carbon conservation typically require the provision of reduced co-substrates as additional reducing equivalents. This need can be circumvented, however, by exploiting the natural heterogeneity of lignocellulosic sugars mixtures and strategically using specific fractions to drive complementary CO2 emitting vs. CO2 fixing pathways. As a demonstration of concept, a coculture-coproduction system was developed by pairing two catabolically orthogonal Escherichia coli strains; one converting glucose to ethanol (G2E) and the other xylose to succinate (X2S). 13C-labeling studies reveled that G2E + X2S cocultures were capable of recycling 24% of all evolved CO2 and achieved a carbon conservation efficiency of 77%; significantly higher than the 64% achieved when all sugars are instead converted to just ethanol. In addition to CO2 exchange, the latent exchange of pyruvate between strains was discovered, along with significant carbon rearrangement within X2S.
Collapse
Affiliation(s)
- Andrew D Flores
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, AZ 85287, ECG 301, 501 E. Tyler Mall, Arizona, 85287, United States
| | - Steven C Holland
- School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ, 85287, United States
| | - Apurv Mhatre
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, AZ 85287, ECG 301, 501 E. Tyler Mall, Arizona, 85287, United States
| | - Aditya P Sarnaik
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, AZ 85287, ECG 301, 501 E. Tyler Mall, Arizona, 85287, United States
| | - Amanda Godar
- School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ, 85287, United States
| | - Moses Onyeabor
- School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ, 85287, United States
| | - Arul M Varman
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, AZ 85287, ECG 301, 501 E. Tyler Mall, Arizona, 85287, United States
| | - Xuan Wang
- School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ, 85287, United States.
| | - David R Nielsen
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, AZ 85287, ECG 301, 501 E. Tyler Mall, Arizona, 85287, United States.
| |
Collapse
|
29
|
Joseph RC, Kelley SQ, Kim NM, Sandoval NR. Metabolic Engineering and the Synthetic Biology Toolbox for
Clostridium. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Bio-conversion of CO 2 into biofuels and other value-added chemicals via metabolic engineering. Microbiol Res 2021; 251:126813. [PMID: 34274880 DOI: 10.1016/j.micres.2021.126813] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 11/24/2022]
Abstract
Carbon dioxide (CO2) occurs naturally in the atmosphere as a trace gas, which is produced naturally as well as by anthropogenic activities. CO2 is a readily available source of carbon that in principle can be used as a raw material for the synthesis of valuable products. The autotrophic organisms are naturally equipped to convert CO2 into biomass by obtaining energy from sunlight or inorganic electron donors. This autotrophic CO2 fixation has been exploited in biotechnology, and microbial cell factories have been metabolically engineered to convert CO2 into biofuels and other value-added bio-based chemicals. A variety of metabolic engineering efforts for CO2 fixation ranging from basic copy, paste, and fine-tuning approaches to engineering and testing of novel synthetic CO2 fixing pathways have been demonstrated. In this paper, we review the current advances and innovations in metabolic engineering for bio-conversion of CO2 into bio biofuels and other value-added bio-based chemicals.
Collapse
|
31
|
Ibrahim M, Raajaraam L, Raman K. Modelling microbial communities: Harnessing consortia for biotechnological applications. Comput Struct Biotechnol J 2021; 19:3892-3907. [PMID: 34584635 PMCID: PMC8441623 DOI: 10.1016/j.csbj.2021.06.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Microbes propagate and thrive in complex communities, and there are many benefits to studying and engineering microbial communities instead of single strains. Microbial communities are being increasingly leveraged in biotechnological applications, as they present significant advantages such as the division of labour and improved substrate utilisation. Nevertheless, they also present some interesting challenges to surmount for the design of efficient biotechnological processes. In this review, we discuss key principles of microbial interactions, followed by a deep dive into genome-scale metabolic models, focussing on a vast repertoire of constraint-based modelling methods that enable us to characterise and understand the metabolic capabilities of microbial communities. Complementary approaches to model microbial communities, such as those based on graph theory, are also briefly discussed. Taken together, these methods provide rich insights into the interactions between microbes and how they influence microbial community productivity. We finally overview approaches that allow us to generate and test numerous synthetic community compositions, followed by tools and methodologies that can predict effective genetic interventions to further improve the productivity of communities. With impending advancements in high-throughput omics of microbial communities, the stage is set for the rapid expansion of microbial community engineering, with a significant impact on biotechnological processes.
Collapse
Affiliation(s)
- Maziya Ibrahim
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Centre for Integrative Biology and Systems Medicine (IBSE), IIT Madras, Chennai 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai 600 036, India
| | - Lavanya Raajaraam
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Centre for Integrative Biology and Systems Medicine (IBSE), IIT Madras, Chennai 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai 600 036, India
| | - Karthik Raman
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Centre for Integrative Biology and Systems Medicine (IBSE), IIT Madras, Chennai 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai 600 036, India
| |
Collapse
|
32
|
Wu Y, Wu J, Shen Q, Zheng X, Chen Y. Anaerobic fermentation metabolism of Moorella thermoacetica inhibited by copper nanoparticles: Comprehensive analyses of transcriptional response and enzyme activity. WATER RESEARCH 2021; 197:117081. [PMID: 33813170 DOI: 10.1016/j.watres.2021.117081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/04/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Engineered nanoparticles are observed to be released into the environment and ended up in wastewater treatment plants. It has been reported that these nanoparticles in sewage might have a toxic effect on microorganisms, and thus affect anaerobic microbial fermentation. However, the mechanisms involved in nanoparticles-induced effects on the anaerobic acidification process and its related bacterial metabolism are still unclear. This work indicated that copper nanoparticles (Cu NPs) were able to cause cell membrane oxidative damage and inhibit the growth and metabolism of Moorella thermoacetica (a model acetogen). The OD600 and acetic acid production of M. thermoacetica in the presence of 1 mg/L of Cu NPs were decreased to 29.2% and 40.7% of the control, respectively. The key mechanism of the inhibitory effect was governed by the fact that Cu NPs significantly reduced the glucose consumption, and led to the decreased pyruvate metabolism levels. Additionally, Cu NPs inhibited the gene expressions and catalytic activities of the key enzymes related to acetic acid production. It was identified that the relative activities of phosphofructokinase, pyruvate kinase, phosphotransacetylase, and acetate kinase of M. thermoacetica in the presence of 1 mg/L of Cu NPs decreased to only 70.1%, 69.3%, 50.1%, and 65.2% of the control, respectively. These results demonstrated that the release of Cu NPs in the environment could pose risks to anaerobic fermentation processes via regulating microbial transcriptional response and enzyme activity.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qiuting Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
33
|
Modeling Growth Kinetics, Interspecies Cell Fusion, and Metabolism of a Clostridium acetobutylicum/Clostridium ljungdahlii Syntrophic Coculture. mSystems 2021; 6:6/1/e01325-20. [PMID: 33622858 PMCID: PMC8573953 DOI: 10.1128/msystems.01325-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium acetobutylicum and Clostridium ljungdahlii grown in a syntrophic culture were recently shown to fuse membranes and exchange cytosolic contents, yielding hybrid cells with significant shifts in gene expression and growth phenotypes. Here, we introduce a dynamic genome-scale metabolic modeling framework to explore how cell fusion alters the growth phenotype and panel of metabolites produced by this binary community. Computational results indicate C. ljungdahlii persists in the coculture through proteome exchange during fusing events, which endow C. ljungdahlii cells with expanded substrate utilization, and access to additional reducing equivalents from C. acetobutylicum-evolved H2 and through acquisition of C. acetobutylicum-native cofactor-reducing enzymes. Simulations predict maximum theoretical ethanol and isopropanol yields that are increased by 0.64 mmol and 0.39 mmol per mmol hexose sugar consumed, respectively, during exponential growth when cell fusion is active. This modeling effort provides a mechanistic explanation for the metabolic outcome of cellular fusion and altered homeostasis achieved in this syntrophic clostridial community.IMPORTANCE Widespread cell fusion and protein exchange between microbial organisms as observed in synthetic C. acetobutylicum/C. ljungdahlii culture is a novel observation that has not been explored in silico The mechanisms responsible for the observed cell fusion events in this culture are still unknown. In this work, we develop a modeling framework that captures the observed culture composition and metabolic phenotype, use it to offer a mechanistic explanation for how the culture achieves homeostasis, and identify C. ljungdahlii as primary beneficiary of fusion events. The implications for the events described in this study are far reaching, with potential to reshape our understanding of microbial community behavior synthetically and in nature.
Collapse
|
34
|
He Y, Cassarini C, Marciano F, Lens PNL. Homoacetogenesis and solventogenesis from H 2/CO 2 by granular sludge at 25, 37 and 55 °C. CHEMOSPHERE 2021; 265:128649. [PMID: 33109359 DOI: 10.1016/j.chemosphere.2020.128649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/30/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
CO2 fermentation is a promising process to produce biofuels like ethanol. It can be integrated in third generation biofuel production processes to substitute traditional sugar fermentation when supplied with cheap electron donors, e.g. hydrogen derived from wind energy or as surplus gas in electrolysis. In this study, granular sludge from an industrial wastewater treatment plant was tested as inoculum for ethanol production from H2/CO2 via non-phototropic fermentation at submesophilic (25 °C), mesophilic (37 °C) and thermophilic (55 °C) conditions. The highest ethanol concentration (17.11 mM) was obtained at 25 °C and was 5-fold higher than at 37 °C (3.36 mM), which was attributed to the fact that the undissociated acid (non-ionized acetic acid) accumulation rate constant (0.145 h-1) was 1.39 fold higher than at 25 °C (0.104 h-1). Methane was mainly produced at 55 °C, while neither acetic acid nor ethanol were formed. Ethanol production was linked to acetic acid production with the highest ethanol to acetic acid ratio of 0.514 at 25 °C. The carbon recovery was 115.7%, 131.2% and 117.1%, while the electron balance was almost closed (97.1%, 110.1% and 109.1%) at 25 °C, 37 °C and 55 °C, respectively. The addition of bicarbonate inhibited ethanol production both at 25 °C and 37 °C. Clostridium sp. were the prevalent species at both 25 and 37 °C at the end of the incubation, which possibly contributed to the ethanol production.
Collapse
Affiliation(s)
- Yaxue He
- National University of Ireland Galway, H91 TK33, Galway, Ireland.
| | - Chiara Cassarini
- National University of Ireland Galway, H91 TK33, Galway, Ireland
| | - Flora Marciano
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Italy
| | - Piet N L Lens
- National University of Ireland Galway, H91 TK33, Galway, Ireland
| |
Collapse
|
35
|
Diender M, Parera Olm I, Sousa DZ. Synthetic co-cultures: novel avenues for bio-based processes. Curr Opin Biotechnol 2021; 67:72-79. [PMID: 33517194 DOI: 10.1016/j.copbio.2021.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
In nature, microorganisms live in multi-species communities allowing microbial interactions. These interactions are lost upon establishing a pure culture, increasing the metabolic burden and limiting the metabolic potential of the isolated microbe. In the past years, synthetic microbial co-cultivation, using well-defined consortia of two or more microbes, was increasingly explored for innovative applications in biotechnology. As such, interspecies interactions take place without the complexity of an open mixed culture, minimizing undesired side reactions. Ultimately, synthetic co-cultivation allows to take well-characterized microbes 'off-the-shelf' to create ecosystems with improved process capabilities. This review highlights some of the recent developments on co-cultivation, focusing on waste-to-chemicals conversions. It also addresses fundamental knowledge on microbial interactions deriving from these studies, which is important to further develop our ability to engineer functional co-cultures for bioproduction.
Collapse
Affiliation(s)
- Martijn Diender
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ivette Parera Olm
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
36
|
Cui Y, Yang KL, Zhou K. Using Co-Culture to Functionalize Clostridium Fermentation. Trends Biotechnol 2020; 39:914-926. [PMID: 33342558 DOI: 10.1016/j.tibtech.2020.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 01/23/2023]
Abstract
Clostridium fermentations have been developed for producing butanol and other value-added chemicals, but their development is constrained by some limitations, such as relatively high substrate cost and the need to maintain an anaerobic condition. Recently, co-culture is emerging as a popular way to address these limitations by introducing a partner strain with Clostridium. Generally speaking, the co-culture strategy enables the use of a cheaper substrate, maintains the growth of Clostridium without any anaerobic treatment, improves product yields, and/or widens the product spectrum. Herein, we review recent developments of co-culture strategies involving Clostridium species according to their partner stains' functions with representative examples. We also discuss research challenges that need to be addressed for the future development of Clostridium co-cultures.
Collapse
Affiliation(s)
- Yonghao Cui
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Kang Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
37
|
Bengtsson-Palme J. Microbial model communities: To understand complexity, harness the power of simplicity. Comput Struct Biotechnol J 2020; 18:3987-4001. [PMID: 33363696 PMCID: PMC7744646 DOI: 10.1016/j.csbj.2020.11.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
Natural microbial communities are complex ecosystems with myriads of interactions. To deal with this complexity, we can apply lessons learned from the study of model organisms and try to find simpler systems that can shed light on the same questions. Here, microbial model communities are essential, as they can allow us to learn about the metabolic interactions, genetic mechanisms and ecological principles governing and structuring communities. A variety of microbial model communities of varying complexity have already been developed, representing different purposes, environments and phenomena. However, choosing a suitable model community for one's research question is no easy task. This review aims to be a guide in the selection process, which can help the researcher to select a sufficiently well-studied model community that also fulfills other relevant criteria. For example, a good model community should consist of species that are easy to grow, have been evaluated for community behaviors, provide simple readouts and - in some cases - be of relevance for natural ecosystems. Finally, there is a need to standardize growth conditions for microbial model communities and agree on definitions of community-specific phenomena and frameworks for community interactions. Such developments would be the key to harnessing the power of simplicity to start disentangling complex community interactions.
Collapse
Affiliation(s)
- Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
38
|
Partners for life: building microbial consortia for the future. Curr Opin Biotechnol 2020; 66:292-300. [PMID: 33202280 DOI: 10.1016/j.copbio.2020.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 01/02/2023]
Abstract
New technologies have allowed researchers to better design, build, and analyze complex consortia. These developments are fueling a wider implementation of consortium-based bioprocessing by leveraging synthetic biology, delivering on the field's multitudinous promises of higher efficiencies, superior resiliency, augmented capabilities, and modular bioprocessing. Here we chronicle current progress by presenting a range of screening, computational, and biomolecular tools enabling robust population control, efficient division of labor, and programmatic spatial organization; furthermore, we detail corresponding advancements in areas including machine learning, biocontainment, and standardization. Additionally, we show applications in myriad sectors, including medicine, energy and waste sustainability, chemical production, agriculture, and biosensors. Concluding remarks outline areas of growth that will promote the utilization of complex community structures across the biotechnology spectrum.
Collapse
|
39
|
Du Y, Zou W, Zhang K, Ye G, Yang J. Advances and Applications of Clostridium Co-culture Systems in Biotechnology. Front Microbiol 2020; 11:560223. [PMID: 33312166 PMCID: PMC7701477 DOI: 10.3389/fmicb.2020.560223] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/20/2020] [Indexed: 01/09/2023] Open
Abstract
Clostridium spp. are important microorganisms that can degrade complex biomasses such as lignocellulose, which is a widespread and renewable natural resource. Co-culturing Clostridium spp. and other microorganisms is considered to be a promising strategy for utilizing renewable feed stocks and has been widely used in biotechnology to produce bio-fuels and bio-solvents. In this review, we summarize recent progress on the Clostridium co-culture system, including system unique advantages, composition, products, and interaction mechanisms. In addition, biochemical regulation and genetic modifications used to improve the Clostridium co-culture system are also summarized. Finally, future prospects for Clostridium co-culture systems are discussed in light of recent progress, challenges, and trends.
Collapse
Affiliation(s)
- Yuanfen Du
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China.,Research Laboratory of Baijiu Resource Microorgannisms and Big Data, Sichuan University of Science and Engineering, Yibin, China
| | - Wei Zou
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China.,Research Laboratory of Baijiu Resource Microorgannisms and Big Data, Sichuan University of Science and Engineering, Yibin, China
| | - Kaizheng Zhang
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Guangbin Ye
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Jiangang Yang
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| |
Collapse
|
40
|
Benito-Vaquerizo S, Diender M, Parera Olm I, Martins Dos Santos VAP, Schaap PJ, Sousa DZ, Suarez-Diez M. Modeling a co-culture of Clostridium autoethanogenum and Clostridium kluyveri to increase syngas conversion to medium-chain fatty-acids. Comput Struct Biotechnol J 2020; 18:3255-3266. [PMID: 33240469 PMCID: PMC7658664 DOI: 10.1016/j.csbj.2020.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/17/2022] Open
Abstract
We model a co-culture of C. autoethanogenum and C. kluyveri for syngas fermentation. Biomass species ratio affects ethanol and acetate profiles in the co-culture. The model predicts that addition of succinate increases caproate production. Genetic interventions in C. autoethanogenum could increase caproate production.
Microbial fermentation of synthesis gas (syngas) is becoming more attractive for sustainable production of commodity chemicals. To date, syngas fermentation focuses mainly on the use of Clostridium species for the production of small organic molecules such as ethanol and acetate. The co-cultivation of syngas-fermenting microorganisms with chain-elongating bacteria can expand the range of possible products, allowing, for instance, the production of medium-chain fatty acids (MCFA) and alcohols from syngas. To explore these possibilities, we report herein a genome-scale, constraint-based metabolic model to describe growth of a co-culture of Clostridium autoethanogenum and Clostridium kluyveri on syngas for the production of valuable compounds. Community flux balance analysis was used to gain insight into the metabolism of the two strains and their interactions, and to reveal potential strategies enabling production of butyrate and hexanoate. The model suggests that one strategy to optimize the production of medium-chain fatty-acids from syngas would be the addition of succinate. According to the prediction, addition of succinate would increase the pool of crotonyl-CoA and the ethanol/acetate uptake ratio in C. kluyveri, resulting in a flux of up to 60% of electrons into hexanoate. Another potential way to further optimize butyrate and hexanoate production would be an increase of C. autoethanogenum ethanol production. Blocking either acetaldehyde dehydrogenase or formate dehydrogenase (ferredoxin) activity or formate transport, in the C. autoethanogenum metabolic model could potentially lead to an up to 150% increase in ethanol production.
Collapse
Affiliation(s)
- Sara Benito-Vaquerizo
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Martijn Diender
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ivette Parera Olm
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
41
|
Köpke M, Simpson SD. Pollution to products: recycling of ‘above ground’ carbon by gas fermentation. Curr Opin Biotechnol 2020; 65:180-189. [DOI: 10.1016/j.copbio.2020.02.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 02/01/2023]
|
42
|
Charubin K, Streett H, Papoutsakis ET. Development of Strong Anaerobic Fluorescent Reporters for Clostridium acetobutylicum and Clostridium ljungdahlii Using HaloTag and SNAP-tag Proteins. Appl Environ Microbiol 2020; 86:e01271-20. [PMID: 32769192 PMCID: PMC7531948 DOI: 10.1128/aem.01271-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
One of the biggest limitations in the study and engineering of anaerobic Clostridium organisms is the lack of strong fluorescent reporters capable of strong and real-time fluorescence. Recently, we developed a strong fluorescent reporter system for Clostridium organisms based on the FAST protein. Here, we report the development of two new strong fluorescent reporter systems for Clostridium organisms based on the HaloTag and SNAP-tag proteins, which produce strong fluorescent signals when covalently bound to fluorogenic ligands. These new fluorescent reporters are orthogonal to the FAST ligands and to each other, allowing for simultaneous labeling and visualization. We used HaloTag and SNAP-tag to label the strictly anaerobic organisms Clostridium acetobutylicum and Clostridium ljungdahlii We have also identified a new strong promoter for protein expression in C. acetobutylicum, based on the phosphotransacetylase gene (pta) from C. ljungdahlii Furthermore, the HaloTag and the SNAP-tag, in combination with the previously described FAST system, were successfully used to measure cell populations in bacterial mixed cultures and showed the simultaneous orthogonal labeling of HaloTag and SNAP-tag together with the FAST protein reporter. Finally, we show the expression of recombinant fusion protein of FAST and the ZapA division protein (from C. acetobutylicum) in C. ljungdahlii. The availability of multiple strong fluorescent reporters is a major addition to the genetic toolkit of Clostridium and other anaerobes that will lead to better understanding of these unique organisms.IMPORTANCE Up to this point, assays and methods involving fluorescent reporter proteins were unavailable or limited in Clostridium organisms and other strict anaerobes. Green fluorescent protein (GFP), mCherry, and flavin-binding proteins (and their derivatives) have been used only in a few clostridia with limited success and yielded low fluorescence compared to aerobic microbial systems. Recently, we reported a new strong fluorescent reporter system based on the FAST protein as a first step in expanding the fluorescence-based reporters for Clostridium and other anaerobic microbial platforms. Additional strong orthogonal fluorescent proteins, with distinct emission spectra are needed to allow for (i) multispecies tracking within the growing field of microbial cocultures and microbiomes, (ii) protein localization and tracking in anaerobes, and (iii) identification and development of natural and synthetic promoters, ribosome-binding sites (RBS), and terminators for optimal protein expression in anaerobes. Here, we present two new strong fluorescent reporter systems based on the HaloTag and SNAP-tag proteins.
Collapse
Affiliation(s)
- Kamil Charubin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Hannah Streett
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Eleftherios Terry Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
43
|
Interspecies Microbial Fusion and Large-Scale Exchange of Cytoplasmic Proteins and RNA in a Syntrophic Clostridium Coculture. mBio 2020; 11:mBio.02030-20. [PMID: 32873766 PMCID: PMC7468208 DOI: 10.1128/mbio.02030-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microbial syntrophy is universal in nature, profoundly affecting the composition and function of microbiomes. We have recently reported data suggesting direct cell-to-cell interactions leading to electron and material exchange between the two microbes in the syntrophy between Clostridium ljungdahlii and C. acetobutylicum Here, transmission electron microscopy and electron tomography demonstrated cell wall and membrane fusions between the two organisms, whereby C. ljungdahlii appears to invade C. acetobutylicum pole to pole. Correlative fluorescence transmission electron microscopy demonstrated large-scale exchange of proteins. Flow cytometry analysis captured the extent and dynamic persistence of these interactions. Dividing hybrid cells were identified containing stained proteins from both organisms, thus demonstrating persistence of cells with exchanged cellular components. Fluorescence microscopy and flow cytometry of one species with stained RNA and the other tagged with a fluorescent protein demonstrated extensive RNA exchange and identified hybrid cells, some of which continued to divide, while some were in an advanced C. acetobutylicum sporulation form. These data demonstrate that cell fusion enables large-scale cellular material exchange between the two organisms. Although unanticipated and never previously reported, these phenomena are likely widely distributed in nature, have profound implications for species evolution and the function of microbial communities, and could find utility in biotechnology. They may shed new light onto little-understood phenomena, such as antibiotic heteroresistance of pathogens, pathogen invasion of human tissues, and the evolutionary trajectory and persistence of unculturable bacteria.IMPORTANCE We report that two different bacterial organisms engage in heterologous cell fusion that leads to massive exchange of cellular material, including proteins and RNA, and the formation of persistent hybrid cells. The interspecies cell fusion observed here involves a syntrophic microbial system, but these heterologous cell fusions were observed even under nonstrict syntrophic conditions, leaving open the possibility that strict syntrophy may not be necessary for interspecies cell fusion and cellular material exchange. Formation of hybrid cells that contain proteins and RNA from both organisms is unexpected and unprecedented. Such fusion events are likely widely distributed in nature, but have gone undetected. The implications are profound and may shed light onto many unexplained phenomena in human health, natural environments, evolutionary biology, and biotechnology.
Collapse
|
44
|
Heffernan JK, Valgepea K, de Souza Pinto Lemgruber R, Casini I, Plan M, Tappel R, Simpson SD, Köpke M, Nielsen LK, Marcellin E. Enhancing CO 2-Valorization Using Clostridium autoethanogenum for Sustainable Fuel and Chemicals Production. Front Bioeng Biotechnol 2020; 8:204. [PMID: 32292775 PMCID: PMC7135887 DOI: 10.3389/fbioe.2020.00204] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 03/02/2020] [Indexed: 01/02/2023] Open
Abstract
Acetogenic bacteria can convert waste gases into fuels and chemicals. Design of bioprocesses for waste carbon valorization requires quantification of steady-state carbon flows. Here, steady-state quantification of autotrophic chemostats containing Clostridium autoethanogenum grown on CO2 and H2 revealed that captured carbon (460 ± 80 mmol/gDCW/day) had a significant distribution to ethanol (54 ± 3 C-mol% with a 2.4 ± 0.3 g/L titer). We were impressed with this initial result, but also observed limitations to biomass concentration and growth rate. Metabolic modeling predicted culture performance and indicated significant metabolic adjustments when compared to fermentation with CO as the carbon source. Moreover, modeling highlighted flux to pyruvate, and subsequently reduced ferredoxin, as a target for improving CO2 and H2 fermentation. Supplementation with a small amount of CO enabled co-utilization with CO2, and enhanced CO2 fermentation performance significantly, while maintaining an industrially relevant product profile. Additionally, the highest specific flux through the Wood-Ljungdahl pathway was observed during co-utilization of CO2 and CO. Furthermore, the addition of CO led to superior CO2-valorizing characteristics (9.7 ± 0.4 g/L ethanol with a 66 ± 2 C-mol% distribution, and 540 ± 20 mmol CO2/gDCW/day). Similar industrial processes are commercial or currently being scaled up, indicating CO-supplemented CO2 and H2 fermentation has high potential for sustainable fuel and chemical production. This work also provides a reference dataset to advance our understanding of CO2 gas fermentation, which can contribute to mitigating climate change.
Collapse
Affiliation(s)
- James K. Heffernan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Saint Lucia, QLD, Australia
| | - Kaspar Valgepea
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Saint Lucia, QLD, Australia
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | | | - Isabella Casini
- Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| | - Manuel Plan
- Queensland Node of Metabolomics Australia, The University of Queensland, Saint Lucia, QLD, Australia
| | | | | | | | - Lars K. Nielsen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Saint Lucia, QLD, Australia
- Queensland Node of Metabolomics Australia, The University of Queensland, Saint Lucia, QLD, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Saint Lucia, QLD, Australia
- Queensland Node of Metabolomics Australia, The University of Queensland, Saint Lucia, QLD, Australia
| |
Collapse
|
45
|
Liu Z, Wang K, Chen Y, Tan T, Nielsen J. Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nat Catal 2020. [DOI: 10.1038/s41929-019-0421-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Developing a Microbial Consortium for Enhanced Metabolite Production from Simulated Food Waste. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5040098] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Food waste disposal and transportation of commodity chemicals to the point-of-need are substantial challenges in military environments. Here, we propose addressing these challenges via the design of a microbial consortium for the fermentation of food waste to hydrogen. First, we simulated the exchange metabolic fluxes of monocultures and pairwise co-cultures using genome-scale metabolic models on a food waste proxy. We identified that one of the top hydrogen producing co-cultures comprised Clostridium beijerinckii NCIMB 8052 and Yokenella regensburgei ATCC 43003. A consortium of these two strains produced a similar amount of hydrogen gas and increased butyrate compared to the C. beijerinckii monoculture, when grown on an artificial garbage slurry. Increased butyrate production in the consortium can be attributed to cross-feeding of lactate produced by Y. regensburgei. Moreover, exogenous lactate promotes the growth of C. beijerinckii with or without a limited amount of glucose. Increasing the scale of the consortium fermentation proved challenging, as two distinct attempts to scale-up the enhanced butyrate production resulted in different metabolic profiles than observed in smaller scale fermentations. Though the genome-scale metabolic model simulations provided a useful starting point for the design of microbial consortia to generate value-added products from waste materials, further model refinements based on experimental results are required for more robust predictions.
Collapse
|
47
|
A Strongly Fluorescing Anaerobic Reporter and Protein-Tagging System for Clostridium Organisms Based on the Fluorescence-Activating and Absorption-Shifting Tag Protein (FAST). Appl Environ Microbiol 2019; 85:AEM.00622-19. [PMID: 31076434 DOI: 10.1128/aem.00622-19] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/07/2019] [Indexed: 01/03/2023] Open
Abstract
Visualizing protein localization and characterizing gene expression activity in live Clostridium cells is limited for lack of a real-time, highly fluorescent, oxygen-independent reporter system. Enzymatic reporter systems have been used successfully for many years with Clostridium spp.; however, these assays do not allow for real-time analysis of gene expression activity with flow cytometry or for visualizing protein localization through fusion proteins. Commonly used fluorescent reporter proteins require oxygen for chromophore maturation and cannot be used for most strictly anaerobic Clostridium organisms. Here we show that the fluorescence-activating and absorption-shifting tag protein (FAST), when associated with the fluorogenic ligand 4-hydroxy-3-methylbenzylidene-rhodanine (HMBR; now commercially available) and other commercially available ligands, is highly fluorescent in Clostridium acetobutylicum under anaerobic conditions. Using flow cytometry and a fluorescence microplate reader, we demonstrated FAST as a reporter system by employing the promoters of the C. acetobutylicum thiolase (thl), acetoacetate decarboxylase (adc), and phosphotransbutyrylase (ptb) metabolic genes, as well as a mutant Pthl and modified ribosome binding site (RBS) versions of Padc and Pptb Flow cytometry-based sorting was efficient and fast in sorting FAST-expressing cells, and positively and negatively sorted cells could be effectively recultured. FAST was also used to tag and examine protein localization of the predicted cell division FtsZ partner protein, ZapA, to visualize the divisome localization in live C. acetobutylicum cells. Our findings suggest that FAST can be used to further investigate Clostridium divisomes and more broadly the localization and expression levels of other proteins in Clostridium organisms, thus enabling cell biology studies with these organisms.IMPORTANCE FAST in association with the fluorogenic ligand HMBR is characterized as a successful, highly fluorescent reporter system in C. acetobutylicum FAST can be used to distinguish between promoters in live cells using flow cytometry or a fluorescence microplate reader and can be used to tag and examine protein localization in live, anaerobically grown cells. Given that FAST is highly fluorescent under anaerobic conditions, it can be used in several applications of this and likely many Clostridium organisms and other strict anaerobes, including studies involving cell sorting, sporulation dynamics, and population characterization in pure as well as mixed cultures, such as those in various native or synthetic microbiomes and syntrophic cultures.
Collapse
|
48
|
Engineering Clostridium for improved solvent production: recent progress and perspective. Appl Microbiol Biotechnol 2019; 103:5549-5566. [DOI: 10.1007/s00253-019-09916-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 01/07/2023]
|