1
|
Wang Z, Pan H, Ni S, Li Z, Lian J. Establishing CRISPRi for Programmable Gene Repression and Genome Evolution in Cupriavidus necator. ACS Synth Biol 2024; 13:851-861. [PMID: 38350870 DOI: 10.1021/acssynbio.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Cupriavidus necator H16 is a "Knallgas" bacterium with the ability to utilize various carbon sources and has been employed as a versatile microbial cell factory to produce a wide range of value-added compounds. However, limited genome engineering, especially gene regulation methods, has constrained its full potential as a microbial production platform. The advent of CRISPR/Cas9 technology has shown promise in addressing this limitation. Here, we developed an optimized CRISPR interference (CRISPRi) system for gene repression in C. necator by expressing a codon-optimized deactivated Cas9 (dCas9) and appropriate single guide RNAs (sgRNAs). CRISPRi was proven to be a programmable and controllable tool and could successfully repress both exogenous and endogenous genes. As a case study, we decreased the accumulation of polyhydroxyalkanoate (PHB) via CRISPRi and rewired the carbon fluxes to the synthesis of lycopene. Additionally, by disturbing the expression of DNA mismatch repair gene mutS with CRISPRi, we established CRISPRi-Mutator for genome evolution, rapidly generating mutant strains with enhanced hydrogen peroxide tolerance and robustness in microbial electrosynthesis (MES) system. Our work provides an efficient CRISPRi toolkit for advanced genetic manipulation and optimization of C. necator cell factories for diverse biotechnology applications.
Collapse
Affiliation(s)
- Zhijiao Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| | - Haojie Pan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| | - Sulin Ni
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
2
|
Fan J, Zhang Y, Li W, Li Z, Zhang D, Mo Q, Cao M, Yuan J. Multidimensional Optimization of Saccharomyces cerevisiae for Carotenoid Overproduction. BIODESIGN RESEARCH 2024; 6:0026. [PMID: 38213763 PMCID: PMC10777738 DOI: 10.34133/bdr.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Microbial synthesis of carotenoids is a highly desirable alternative to plant extraction and chemical synthesis. In this study, we investigated multidimensional strategies to improve the carotenoid synthesis in the industrial workhorse of Saccharomyces cerevisiae. First, we rewired the yeast central metabolism by optimizing non-oxidative glycolysis pathway for an improved acetyl-CoA supply. Second, we restricted the consumption of farnesyl pyrophosphate (FPP) by the down-regulation of squalene synthase using the PEST degron. Third, we further explored the human lipid binding/transfer protein saposin B (hSapB)-mediated metabolic sink for an enhanced storage of lipophilic carotenoids. Last, the copper-induced GAL expression system was engineered to function in the yeast-peptone-dextrose medium for an increased biomass accumulation. By combining the abovementioned strategies, the final engineered yeast produced 166.79 ± 10.43 mg/l β-carotene in shake flasks, which was nearly 5-fold improvement of the parental carotenoid-producing strain. Together, we envision that multidimensional strategies reported here might be applicable to other hosts for the future industrial development of carotenoid synthesis from renewable feedstocks.
Collapse
Affiliation(s)
- Jian Fan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
| | - Yang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
| | - Wenhao Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
| | - Zhizhen Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
| | - Danli Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
| | - Qiwen Mo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
| | - Mingfeng Cao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
- Key Laboratory for Synthetic Biotechnology of Xiamen City,
Xiamen University, Fujian 361005, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
- Key Laboratory for Synthetic Biotechnology of Xiamen City,
Xiamen University, Fujian 361005, China
| |
Collapse
|
3
|
Pan Q, Ma X, Liang H, Liu Y, Zhou Y, Stephanopoulos G, Zhou K. Biosynthesis of geranate via isopentenol utilization pathway in Escherichia coli. Biotechnol Bioeng 2023; 120:230-238. [PMID: 36224741 PMCID: PMC10092522 DOI: 10.1002/bit.28255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
Abstract
Isoprenoids are a large family of natural products with diverse structures, which allow them to play diverse and important roles in the physiology of plants and animals. They also have important commercial uses as pharmaceuticals, flavoring agents, fragrances, and nutritional supplements. Recently, metabolic engineering has been intensively investigated and emerged as the technology of choice for the production of isoprenoids through microbial fermentation. Isoprenoid biosynthesis typically originates in plants from acetyl-coA in central carbon metabolism, however, a recent study reported an alternative pathway, the isopentenol utilization pathway (IUP), that can provide the building blocks of isoprenoid biosynthesis from affordable C5 substrates. In this study, we expressed the IUP in Escherichia coli to efficiently convert isopentenols into geranate, a valuable isoprenoid compound. We first established a geraniol-producing strain in E. coli that uses the IUP. Then, we extended the geraniol synthesis pathway to produce geranate through two oxidation reactions catalyzed by two alcohol/aldehyde dehydrogenases from Castellaniella defragrans. The geranate titer was further increased by optimizing the expression of the two dehydrogenases and also parameters of the fermentation process. The best strain produced 764 mg/L geranate in 24 h from 2 g/L isopentenols (a mixture of isoprenol and prenol). We also investigated if the dehydrogenases could accept other isoprenoid alcohols as substrates.
Collapse
Affiliation(s)
- Qiuchi Pan
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Xiaoqiang Ma
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.,Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Liang
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Yurou Liu
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Ying Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Gregory Stephanopoulos
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kang Zhou
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Novel Production Methods of Polyhydroxyalkanoates and Their Innovative Uses in Biomedicine and Industry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238351. [PMID: 36500442 PMCID: PMC9740486 DOI: 10.3390/molecules27238351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Polyhydroxyalkanoate (PHA), a biodegradable polymer obtained from microorganisms and plants, have been widely used in biomedical applications and devices, such as sutures, cardiac valves, bone scaffold, and drug delivery of compounds with pharmaceutical interests, as well as in food packaging. This review focuses on the use of polyhydroxyalkanoates beyond the most common uses, aiming to inform about the potential uses of the biopolymer as a biosensor, cosmetics, drug delivery, flame retardancy, and electrospinning, among other interesting uses. The novel applications are based on the production and composition of the polymer, which can be modified by genetic engineering, a semi-synthetic approach, by changing feeding carbon sources and/or supplement addition, among others. The future of PHA is promising, and despite its production costs being higher than petroleum-based plastics, tools given by synthetic biology, bioinformatics, and machine learning, among others, have allowed for great production yields, monomer and polymer functionalization, stability, and versatility, a key feature to increase the uses of this interesting family of polymers.
Collapse
|
5
|
Strategies for production of hydrophobic compounds. Curr Opin Biotechnol 2022; 75:102681. [DOI: 10.1016/j.copbio.2022.102681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/20/2021] [Accepted: 01/01/2022] [Indexed: 12/19/2022]
|
6
|
Shukal S, Lim XH, Zhang C, Chen X. Metabolic engineering of Escherichia coli BL21 strain using simplified CRISPR-Cas9 and asymmetric homology arms recombineering. Microb Cell Fact 2022; 21:19. [PMID: 35123478 PMCID: PMC8817497 DOI: 10.1186/s12934-022-01746-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/21/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The recent CRISPR-Cas coupled with λ recombinase mediated genome recombineering has become a common laboratory practice to modify bacterial genomes. It requires supplying a template DNA with homology arms for precise genome editing. However, generation of homology arms is a time-consuming, costly and inefficient process that is often overlooked. RESULTS In this study, we first optimized a CRISPR-Cas genome engineering protocol in the Escherichia coli (E. coli) BL21 strain and successfully deleted 10 kb of DNA from the genome in one round of editing. To further simplify the protocol, asymmetric homology arms were produced by PCR in a single step with two primers and then purified using a desalting column. Unlike conventional homology arms that are prepared through overlapping PCR, cloning into a plasmid or annealing synthetic DNA fragments, our method significantly both shortened the time taken and reduced the cost of homology arm preparation. To test the robustness of the optimized workflow, we successfully deleted 26 / 27 genes across the BL21 genome. Noteworthy, gRNA design is important for the CRISPR-Cas system and a general heuristic gRNA design has been proposed in this study. To apply our established protocol, we targeted 16 genes and iteratively deleted 7 genes from BL21 genome. The resulting strain increased lycopene yield by ~ threefold. CONCLUSIONS Our work has optimized the homology arms design for gene deletion in BL21. The protocol efficiently edited BL21 to improve lycopene production. The same workflow is applicable to any E. coli strain in which genome engineering would be useful to further increase metabolite production.
Collapse
Affiliation(s)
- Sudha Shukal
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Proteos level 4, Singapore, 138673, Singapore
| | - Xiao Hui Lim
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Proteos level 4, Singapore, 138673, Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Proteos level 4, Singapore, 138673, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Proteos level 4, Singapore, 138673, Singapore.
| |
Collapse
|
7
|
Zhou K. Engineering microbes to synthesize functionalized biopolymers. J Mater Chem B 2022; 10:7132-7135. [DOI: 10.1039/d2tb01063a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Engineering metabolism of microbes has allowed simultaneous co-production of functional small molecules and biopolymers. This Perspective briefly introduced its working principles and summarized my views on how this approach could...
Collapse
|
8
|
Li C, Swofford CA, Rückert C, Chatzivasileiou AO, Ou RW, Opdensteinen P, Luttermann T, Zhou K, Stephanopoulos G, Jones Prather KL, Zhong-Johnson EZL, Liang S, Zheng S, Lin Y, Sinskey AJ. Heterologous production of α-Carotene in Corynebacterium glutamicum using a multi-copy chromosomal integration method. BIORESOURCE TECHNOLOGY 2021; 341:125782. [PMID: 34419880 DOI: 10.1016/j.biortech.2021.125782] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The carotenoid, α-carotene, is very beneficial for human health and wellness, but microbial production of this compound is notoriously difficult, due to the asymmetric rings on either end of its terpenoid backbone. Here, we report for the first time the efficient production of α-carotene in the industrial bacterium Corynebaterium glutamicum by using a combined pathway engineering approach including evaluation of the performance of different cyclases and analysis of key metabolic intermediates to determine flux bottlenecks in the carotenoid biosynthesis pathway. A multi-copy chromosomal integration method was pivotal in achieving stable expression of the cyclases. In fed-batch fermentation, 1,054 mg/L of α-carotene was produced by the best strain, which is the highest reported titer achieved in microbial fermentation. The success of increased α-carotene production suggests that the multi-copy chromosomal integration method can be a useful metabolic engineering tool for overexpression of key enzymes in C. glutamicum and other bacterium as well.
Collapse
Affiliation(s)
- Cheng Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Charles A Swofford
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Christian Rückert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Alkiviadis Orfefs Chatzivasileiou
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Rui Wen Ou
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Patrick Opdensteinen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Tobias Luttermann
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Kang Zhou
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585 Singapore
| | - Gregory Stephanopoulos
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Kristala L Jones Prather
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | | | - Shuli Liang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Anthony J Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore.
| |
Collapse
|
9
|
Escherichia coli as a platform microbial host for systems metabolic engineering. Essays Biochem 2021; 65:225-246. [PMID: 33956149 DOI: 10.1042/ebc20200172] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
Bio-based production of industrially important chemicals and materials from non-edible and renewable biomass has become increasingly important to resolve the urgent worldwide issues including climate change. Also, bio-based production, instead of chemical synthesis, of food ingredients and natural products has gained ever increasing interest for health benefits. Systems metabolic engineering allows more efficient development of microbial cell factories capable of sustainable, green, and human-friendly production of diverse chemicals and materials. Escherichia coli is unarguably the most widely employed host strain for the bio-based production of chemicals and materials. In the present paper, we review the tools and strategies employed for systems metabolic engineering of E. coli. Next, representative examples and strategies for the production of chemicals including biofuels, bulk and specialty chemicals, and natural products are discussed, followed by discussion on materials including polyhydroxyalkanoates (PHAs), proteins, and nanomaterials. Lastly, future perspectives and challenges remaining for systems metabolic engineering of E. coli are discussed.
Collapse
|
10
|
Panda S, Fung VYK, Zhou JFJ, Liang H, Zhou K. Improving ethylene glycol utilization in Escherichia coli fermentation. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|