1
|
Lin Y, Li Y, Wu X, Xu W, Zhang Z, Zhu H, Zhou H. NgAP2a Targets KCS Gene to Promote Lipid Accumulation in Nannochloropsis gaditana. Int J Mol Sci 2024; 25:10305. [PMID: 39408634 PMCID: PMC11477109 DOI: 10.3390/ijms251910305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The commercialization of algal lipids and biofuels remains impractical due to the absence of lipogenic strains. As lipogenesis is regulated by a multitude of factors, the success in producing industrially suitable algal strains through conventional methods has been constrained. We present a new AP2 transcription factor, designated as NgAP2a, which, upon overexpression, leads to a significant increase in lipid storage in Nannochloropsis gaditana while maintaining the integrity of other physiological functions. These provide methodologies for enhancing petroleum output and optimizing the carbon fluxes associated with specific products. An integrated analysis of RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) data has elucidated that the NgAP2a-induced up-regulation of critical genes is implicated in lipogenesis. Specifically, NgAP2a has been demonstrated to directly bind to the M1 motif situated within the promoter region of the KCS gene, thereby promoting the transcriptional activation of genes pertinent to lipid metabolism. In summary, we elucidate a plausible pathway whereby NgAP2a serves as a direct modulator of the KCS gene (Naga_100083g23), thereby influencing the expression levels of genes and molecules associated with lipid biosynthesis.
Collapse
Affiliation(s)
- Yihua Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (Y.L.); (Y.L.); (X.W.); (W.X.); (Z.Z.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
| | - Yanyan Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (Y.L.); (Y.L.); (X.W.); (W.X.); (Z.Z.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
| | - Xiaobin Wu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (Y.L.); (Y.L.); (X.W.); (W.X.); (Z.Z.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
| | - Weinan Xu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (Y.L.); (Y.L.); (X.W.); (W.X.); (Z.Z.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
| | - Zhengying Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (Y.L.); (Y.L.); (X.W.); (W.X.); (Z.Z.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
| | - Hongmei Zhu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;
| | - Hantao Zhou
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (Y.L.); (Y.L.); (X.W.); (W.X.); (Z.Z.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
2
|
Song Y, Wang F, Chen L, Zhang W. Engineering Fatty Acid Biosynthesis in Microalgae: Recent Progress and Perspectives. Mar Drugs 2024; 22:216. [PMID: 38786607 PMCID: PMC11122798 DOI: 10.3390/md22050216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Microalgal lipids hold significant potential for the production of biodiesel and dietary supplements. To enhance their cost-effectiveness and commercial competitiveness, it is imperative to improve microalgal lipid productivity. Metabolic engineering that targets the key enzymes of the fatty acid synthesis pathway, along with transcription factor engineering, are effective strategies for improving lipid productivity in microalgae. This review provides a summary of the advancements made in the past 5 years in engineering the fatty acid biosynthetic pathway in eukaryotic microalgae. Furthermore, this review offers insights into transcriptional regulatory mechanisms and transcription factor engineering aimed at enhancing lipid production in eukaryotic microalgae. Finally, the review discusses the challenges and future perspectives associated with utilizing microalgae for the efficient production of lipids.
Collapse
Affiliation(s)
- Yanhui Song
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.S.); (L.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Fangzhong Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.S.); (L.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.S.); (L.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.S.); (L.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Xin Y, Wu S, Miao C, Xu T, Lu Y. Towards Lipid from Microalgae: Products, Biosynthesis, and Genetic Engineering. Life (Basel) 2024; 14:447. [PMID: 38672718 PMCID: PMC11051065 DOI: 10.3390/life14040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Microalgae can convert carbon dioxide into organic matter through photosynthesis. Thus, they are considered as an environment-friendly and efficient cell chassis for biologically active metabolites. Microalgal lipids are a class of organic compounds that can be used as raw materials for food, feed, cosmetics, healthcare products, bioenergy, etc., with tremendous potential for commercialization. In this review, we summarized the commercial lipid products from eukaryotic microalgae, and updated the mechanisms of lipid synthesis in microalgae. Moreover, we reviewed the enhancement of lipids, triglycerides, polyunsaturated fatty acids, pigments, and terpenes in microalgae via environmental induction and/or metabolic engineering in the past five years. Collectively, we provided a comprehensive overview of the products, biosynthesis, induced strategies and genetic engineering in microalgal lipids. Meanwhile, the outlook has been presented for the development of microalgal lipids industries, emphasizing the significance of the accurate analysis of lipid bioactivity, as well as the high-throughput screening of microalgae with specific lipids.
Collapse
Affiliation(s)
- Yi Xin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
- Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou 570228, China
| | - Shan Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Congcong Miao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Tao Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
- Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory of Tropical Hydrobiotechnology, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Su H, Shi P, Shen Z, Meng H, Meng Z, Han X, Chen Y, Fan W, Fa Y, Yang C, Li F, Wang S. High-level production of nervonic acid in the oleaginous yeast Yarrowia lipolytica by systematic metabolic engineering. Commun Biol 2023; 6:1125. [PMID: 37935958 PMCID: PMC10630375 DOI: 10.1038/s42003-023-05502-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023] Open
Abstract
Nervonic acid benefits the treatment of neurological diseases and the health of brain. In this study, we employed the oleaginous yeast Yarrowia lipolytica to overproduce nervonic acid oil by systematic metabolic engineering. First, the production of nervonic acid was dramatically improved by iterative expression of the genes ecoding β-ketoacyl-CoA synthase CgKCS, fatty acid elongase gELOVL6 and desaturase MaOLE2. Second, the biosynthesis of both nervonic acid and lipids were further enhanced by expression of glycerol-3-phosphate acyltransferases and diacylglycerol acyltransferases from Malania oleifera in endoplasmic reticulum (ER). Third, overexpression of a newly identified ER structure regulator gene YlINO2 led to a 39.3% increase in lipid production. Fourth, disruption of the AMP-activated S/T protein kinase gene SNF1 increased the ratio of nervonic acid to lignoceric acid by 61.6%. Next, pilot-scale fermentation using the strain YLNA9 exhibited a lipid titer of 96.7 g/L and a nervonic acid titer of 17.3 g/L (17.9% of total fatty acids), the highest reported titer to date. Finally, a proof-of-concept purification and separation of nervonic acid were performed and the purity of it reached 98.7%. This study suggested that oleaginous yeasts are attractive hosts for the cost-efficient production of nervonic acid and possibly other very long-chain fatty acids (VLCFAs).
Collapse
Affiliation(s)
- Hang Su
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Penghui Shi
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Zhaoshuang Shen
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Huimin Meng
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao Institute for Food and Drug Control, Qingdao, 266073, China
| | - Ziyue Meng
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xingfeng Han
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yanna Chen
- Zhejiang Zhenyuan Biotech Co., LTD, Shaoxing, 312365, China
| | - Weiming Fan
- Zhejiang Zhenyuan Biotech Co., LTD, Shaoxing, 312365, China
| | - Yun Fa
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Fuli Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| | - Shi'an Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| |
Collapse
|
5
|
Wang R, Li J, Zhang F, Miao X. Non-Tandem CCCH-Type Zinc-Finger Protein CpZF_CCCH1 Improves Fatty Acid Desaturation and Stress Tolerance in Chlamydomonas reinhardtii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37910392 DOI: 10.1021/acs.jafc.3c05511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The properties and nutritional value of microalgal bioproducts depend significantly on fatty acid desaturation, which is generally modulated by manipulating the culture conditions or associated gene expressions. Here, we investigated the role of CpZF_CCCH1, a non-tandem CCCH-type zinc-finger (non-TZF) protein, in elevating polyunsaturated fatty acid (PUFA) content (11.00-16.36%) in Chlamydomonas reinhardtii. Through lipidomic and flow cytometry analyses, we observed reduced triacylglycerol accumulation (7.01-21.15%) and elevated levels of membrane lipids containing PUFAs (7.81-46.18%) in C. reinhardtii overexpressing CpZF_CCCH1. Additionally, overexpression of nucleus-located CpZF_CCCH1 downregulated genes associated with triacylglycerol assembly and lipid turnover from 2.00- to 2.90-fold, likely by binding to GCN4 motif and promoter of 3-phosphate-glycerol acyltransferase. Furthermore, overexpression of CpZF_CCCH1 alleviated reactive oxygen species levels by 59.28-73.26% and enhanced stress tolerance under adverse conditions. These findings expanded the roles of non-TZF proteins in lipid metabolism, opening new avenues for metabolic engineering to enhance the nutritional value and stress tolerance of microalgae and agricultural crops.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junhao Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoling Miao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Yang R, Wang H, Zhu L, Zhu L, Liu T, Zhang D. Identification and Functional Analysis of Acyl-Acyl Carrier Protein Δ 9 Desaturase from Nannochloropsis oceanica. J Microbiol 2023; 61:95-107. [PMID: 36719619 DOI: 10.1007/s12275-022-00001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 02/01/2023]
Abstract
The oleaginous marine microalga Nannochloropsis oceanica strain IMET1 has attracted increasing attention as a promising photosynthetic cell factory due to its unique excellent capacity to accumulate large amounts of triacylglycerols and eicosapentaenoic acid. To complete the genomic annotation for genes in the fatty acid biosynthesis pathway of N. oceanica, we conducted the present study to identify a novel candidate gene encoding the archetypical chloroplast stromal acyl-acyl carrier protein Δ9 desaturase. The full-length cDNA was generated using rapid-amplification of cDNA ends, and the structure of the coding region interrupted by four introns was determined. The RT-qPCR results demonstrated the upregulated transcriptional abundance of this gene under nitrogen starvation condition. Fluorescence localization studies using EGFP-fused protein revealed that the translated protein was localized in chloroplast stroma. The catalytic activity of the translated protein was characterized by inducible expression in Escherichia coli and a mutant yeast strain BY4389, indicating its potential desaturated capacity for palmitoyl-ACP (C16:0-ACP) and stearoyl-ACP (C18:0-ACP). Further functional complementation assay using BY4839 on plate demonstrated that the expressed enzyme restored the biosynthesis of oleic acid. These results support the desaturated activity of the expressed protein in chloroplast stroma to fulfill the biosynthesis and accumulation of monounsaturated fatty acids in N. oceanica strain IMET1.
Collapse
Affiliation(s)
- Ruigang Yang
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, 410073, People's Republic of China
- Key Laboratory of Biofuels, Key Laboratory of Shandong Energy Biological Genetic Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
| | - Hui Wang
- Functional Laboratory of Solar Energy, Shandong Energy Institute, Qingdao, 266101, People's Republic of China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, 410073, People's Republic of China
| | - Lvyun Zhu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, 410073, People's Republic of China
| | - Tianzhong Liu
- Key Laboratory of Biofuels, Key Laboratory of Shandong Energy Biological Genetic Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China.
| | - Dongyi Zhang
- Hunan Key Laboratory of Economic Crops, Genetic Improvement, and Integrated Utilization, School of Life Sciences, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China.
| |
Collapse
|
7
|
Xin Y, Wang Q, Shen C, Hu C, Shi X, Lv N, Du X, Xu G, Xu J. Medium-chain triglyceride production in Nannochloropsis via a fatty acid chain length discriminating mechanism. PLANT PHYSIOLOGY 2022; 190:1658-1672. [PMID: 36040196 PMCID: PMC9614496 DOI: 10.1093/plphys/kiac396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Depending on their fatty acid (FA) chain length, triacylglycerols (TAGs) have distinct applications; thus, a feedstock with a genetically designed chain length is desirable to maximize process efficiency and product versatility. Here, ex vivo, in vitro, and in vivo profiling of the large set of type-2 diacylglycerol acyltransferases (NoDGAT2s) in the industrial oleaginous microalga Nannochloropsis oceanica revealed two endoplasmic reticulum-localized enzymes that can assemble medium-chain FAs (MCFAs) with 8-12 carbons into TAGs. Specifically, NoDGAT2D serves as a generalist that assembles C8-C18 FAs into TAG, whereas NoDGAT2H is a specialist that incorporates only MCFAs into TAG. Based on such specialization, stacking of NoDGAT2D with MCFA- or diacylglycerol-supplying enzymes or regulators, including rationally engineering Cuphea palustris acyl carrier protein thioesterase, Cocos nucifera lysophosphatidic acid acyltransferase, and Arabidopsis thaliana WRINKLED1, elevated the medium-chain triacylglycerol (MCT) share in total TAG 66-fold and MCT productivity 64.8-fold at the peak phase of oil production. Such functional specialization of NoDGAT2s in the chain length of substrates and products reveals a dimension of control in the cellular TAG profile, which can be exploited for producing designer oils in microalgae.
Collapse
Affiliation(s)
- Yi Xin
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qintao Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Shen
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxiu Hu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xianzhe Shi
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Nana Lv
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuefeng Du
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guowang Xu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Zhu Z, Sun J, Fa Y, Liu X, Lindblad P. Enhancing microalgal lipid accumulation for biofuel production. Front Microbiol 2022; 13:1024441. [PMID: 36299727 PMCID: PMC9588965 DOI: 10.3389/fmicb.2022.1024441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Microalgae have high lipid accumulation capacity, high growth rate and high photosynthetic efficiency which are considered as one of the most promising alternative sustainable feedstocks for producing lipid-based biofuels. However, commercialization feasibility of microalgal biofuel production is still conditioned to the high production cost. Enhancement of lipid accumulation in microalgae play a significant role in boosting the economics of biofuel production based on microalgal lipid. The major challenge of enhancing microalgal lipid accumulation lies in overcoming the trade-off between microalgal cell growth and lipid accumulation. Substantial approaches including genetic modifications of microalgal strains by metabolic engineering and process regulations of microalgae cultivation by integrating multiple optimization strategies widely applied in industrial microbiology have been investigated. In the present review, we critically discuss recent trends in the application of multiple molecular strategies to construct high performance microalgal strains by metabolic engineering and synergistic strategies of process optimization and stress operation to enhance microalgal lipid accumulation for biofuel production. Additionally, this review aims to emphasize the opportunities and challenges regarding scaled application of the strategic integration and its viability to make microalgal biofuel production a commercial reality in the near future.
Collapse
Affiliation(s)
- Zhi Zhu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Jing Sun
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yun Fa
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xufeng Liu
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
- *Correspondence: Xufeng Liu,
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
- Peter Lindblad,
| |
Collapse
|
9
|
Xu Y. Biochemistry and Biotechnology of Lipid Accumulation in the Microalga Nannochloropsis oceanica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11500-11509. [PMID: 36083864 DOI: 10.1021/acs.jafc.2c05309] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oils are among the most important agricultural commodities and have wide applications in food/nutrition, biofuels, and oleochemicals. The oleaginous microalga Nannochloropsis oceanica can produce large amounts of oils and the high-value ω-3 eicosapentaenoic acid, which represents a promising resource for oil production targeting biodiesel, nutraceutical, and aquaculture industries. In recent years, with the availability of omics databases and the development of genetic tools, N. oceanica has been extensively investigated as a model photosynthetic organism for studying lipid metabolism and as a green cellular factory to produce lipids for industrial applications. This review summarizes the current knowledge on the lipid composition and biosynthetic pathways of N. oceanica and reviews the recent advances in metabolic engineering of lipid production in this microalga.
Collapse
Affiliation(s)
- Yang Xu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
10
|
Wan Razali WA, Evans CA, Pandhal J. Comparative Proteomics Reveals Evidence of Enhanced EPA Trafficking in a Mutant Strain of Nannochloropsis oculata. Front Bioeng Biotechnol 2022; 10:838445. [PMID: 35646838 PMCID: PMC9134194 DOI: 10.3389/fbioe.2022.838445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/29/2022] [Indexed: 01/23/2023] Open
Abstract
The marine microalga Nannochloropsis oculata is a bioproducer of eicosapentaenoic acid (EPA), a fatty acid. EPA is incorporated into monogalactosyldiacylglycerol within N. oculata thylakoid membranes, and there is a biotechnological need to remodel EPA synthesis to maximize production and simplify downstream processing. In this study, random mutagenesis and chemical inhibitor-based selection method were devised to increase EPA production and accessibility for improved extraction. Ethyl methanesulfonate was used as the mutagen with selective pressure achieved by using two enzyme inhibitors of lipid metabolism: cerulenin and galvestine-1. Fatty acid methyl ester analysis of a selected fast-growing mutant strain had a higher percentage of EPA (37.5% of total fatty acids) than the wild-type strain (22.2% total fatty acids), with the highest EPA quantity recorded at 68.5 mg/g dry cell weight, while wild-type cells had 48.6 mg/g dry cell weight. Label-free quantitative proteomics for differential protein expression analysis revealed that the wild-type and mutant strains might have alternative channeling pathways for EPA synthesis. The mutant strain showed potentially improved photosynthetic efficiency, thus synthesizing a higher quantity of membrane lipids and EPA. The EPA synthesis pathways could also have deviated in the mutant, where fatty acid desaturase type 2 (13.7-fold upregulated) and lipid droplet surface protein (LDSP) (34.8-fold upregulated) were expressed significantly higher than in the wild-type strain. This study increases the understanding of EPA trafficking in N. oculata, leading to further strategies that can be implemented to enhance EPA synthesis in marine microalgae.
Collapse
Affiliation(s)
- Wan Aizuddin Wan Razali
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom.,Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Caroline A Evans
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Jagroop Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
11
|
Zhuang XY, Zhang YH, Xiao AF, Zhang AH, Fang BS. Key Enzymes in Fatty Acid Synthesis Pathway for Bioactive Lipids Biosynthesis. Front Nutr 2022; 9:851402. [PMID: 35284441 PMCID: PMC8905437 DOI: 10.3389/fnut.2022.851402] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary bioactive lipids, one of the three primary nutrients, is not only essential for growth and provides nutrients and energy for life's activities but can also help to guard against disease, such as Alzheimer's and cardiovascular diseases, which further strengthen the immune system and maintain many body functions. Many microorganisms, such as yeast, algae, and marine fungi, have been widely developed for dietary bioactive lipids production. These biosynthetic processes were not limited by the climate and ground, which are also responsible for superiority of shorter periods and high conversion rate. However, the production process was also exposed to the challenges of low stability, concentration, and productivity, which was derived from the limited knowledge about the critical enzyme in the metabolic pathway. Fortunately, the development of enzymatic research methods provides powerful tools to understand the catalytic process, including site-specific mutagenesis, protein dynamic simulation, and metabolic engineering technology. Thus, we review the characteristics of critical desaturase and elongase involved in the fatty acids' synthesis metabolic pathway, which aims to not only provide extensive data for enzyme rational design and modification but also provides a more profound and comprehensive understanding of the dietary bioactive lipids' synthetic process.
Collapse
Affiliation(s)
- Xiao-Yan Zhuang
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yong-Hui Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - An-Feng Xiao
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Ai-Hui Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- *Correspondence: Ai-Hui Zhang
| | - Bai-Shan Fang
- College of Food and Biological Engineering, Jimei University, Xiamen, China
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
12
|
Uprety BK, Morrison EN, Emery RJN, Farrow SC. Customizing lipids from oleaginous microbes: leveraging exogenous and endogenous approaches. Trends Biotechnol 2021; 40:482-508. [PMID: 34625276 DOI: 10.1016/j.tibtech.2021.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/22/2022]
Abstract
To meet the growing demands of the oleochemical industry, tailored lipid sources are expanding to oleaginous microbes. To control the fatty acid composition of microbial lipids, ground-breaking exogenous and endogenous approaches are being developed. Exogenous approaches employ extracellular tools such as product-specific feedstocks, process optimization, elicitors, and magnetic and mechanical energy, whereas endogenous approaches leverage biology through the use of product-specific microbes, adaptive laboratory evolution (ALE), and the creation of custom strains via random and targeted cellular engineering. We consolidate recent advances from both fields into a review that will serve as a resource for those striving to fulfill the vision of microbial cell factories for tailored lipid production.
Collapse
Affiliation(s)
- Bijaya K Uprety
- Discovery Biology, Noblegen Inc., Peterborough, ON K9L 1Z8, Canada; Biology Department, Trent University, Peterborough, ON K9L 0G2, Canada
| | - Erin N Morrison
- Discovery Biology, Noblegen Inc., Peterborough, ON K9L 1Z8, Canada; Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada
| | - R J Neil Emery
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada; Biology Department, Trent University, Peterborough, ON K9L 0G2, Canada
| | - Scott C Farrow
- Discovery Biology, Noblegen Inc., Peterborough, ON K9L 1Z8, Canada; Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada.
| |
Collapse
|