1
|
Bashiri G. F 420-dependent transformations in biosynthesis of secondary metabolites. Curr Opin Chem Biol 2024; 80:102468. [PMID: 38776765 DOI: 10.1016/j.cbpa.2024.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Cofactor F420 has been historically known as the "methanogenic redox cofactor". It is now recognised that F420 has essential roles in the primary and secondary metabolism of archaea and bacteria. Recent discoveries highlight the role of F420 as a redox cofactor in the biosynthesis of various natural products, including ribosomally synthesised and post-translationally modified peptides, and a new class of nicotinamide adenine dinucleotide-based secondary metabolites. With the vast availability of (meta)genomic data, the identification of uncharacterised F420-dependent enzymes offers the potential for discovering novel secondary metabolites, presenting valuable prospects for clinical and biotechnological applications.
Collapse
Affiliation(s)
- Ghader Bashiri
- Laboratory of Microbial Biochemistry and Biotechnology, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
2
|
Lee M, Fraaije MW. Equipping Saccharomyces cerevisiae with an Additional Redox Cofactor Allows F 420-Dependent Bioconversions in Yeast. ACS Synth Biol 2024; 13:921-929. [PMID: 38346396 PMCID: PMC10949242 DOI: 10.1021/acssynbio.3c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 03/16/2024]
Abstract
Industrial application of the natural deazaflavin cofactor F420 has high potential for the enzymatic synthesis of high value compounds. It can offer an additional range of chemistry to the use of well-explored redox cofactors such as FAD and their respective enzymes. Its limited access through organisms that are rather difficult to grow has urged research on the heterologous production of F420 using more industrially relevant microorganisms such as Escherichia coli. In this study, we demonstrate the possibility of producing this cofactor in a robust and widely used industrial organism, Saccharomyces cerevisiae, by the heterologous expression of the F420 pathway. Through careful selection of involved enzymes and some optimization, we achieved an F420 yield of ∼1.3 μmol/L, which is comparable to the yield of natural F420 producers. Furthermore, we showed the potential use of F420-producing S. cerevisiae for F420-dependent bioconversions by carrying out the whole-cell conversion of tetracycline. As the first demonstration of F420 synthesis and use for bioconversion in a eukaryotic organism, this study contributes to the development of versatile bioconversion platforms.
Collapse
Affiliation(s)
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| |
Collapse
|
3
|
Kang SW, Antoney J, Frkic RL, Lupton DW, Speight R, Scott C, Jackson CJ. Asymmetric Ene-Reduction of α,β-Unsaturated Compounds by F 420-Dependent Oxidoreductases A Enzymes from Mycobacterium smegmatis. Biochemistry 2023; 62:873-891. [PMID: 36637210 DOI: 10.1021/acs.biochem.2c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The stereoselective reduction of alkenes conjugated to electron-withdrawing groups by ene-reductases has been extensively applied to the commercial preparation of fine chemicals. Although several different enzyme families are known to possess ene-reductase activity, the old yellow enzyme (OYE) family has been the most thoroughly investigated. Recently, it was shown that a subset of ene-reductases belonging to the flavin/deazaflavin oxidoreductase (FDOR) superfamily exhibit enantioselectivity that is generally complementary to that seen in the OYE family. These enzymes belong to one of several FDOR subgroups that use the unusual deazaflavin cofactor F420. Here, we explore several enzymes of the FDOR-A subgroup, characterizing their substrate range and enantioselectivity with 20 different compounds, identifying enzymes (MSMEG_2027 and MSMEG_2850) that could reduce a wide range of compounds stereoselectively. For example, MSMEG_2027 catalyzed the complete conversion of both isomers of citral to (R)-citronellal with 99% ee, while MSMEG_2850 catalyzed complete conversion of ketoisophorone to (S)-levodione with 99% ee. Protein crystallography combined with computational docking has allowed the observed stereoselectivity to be mechanistically rationalized for two enzymes. These findings add further support for the FDOR and OYE families of ene-reductases displaying general stereocomplementarity to each other and highlight their potential value in asymmetric ene-reduction.
Collapse
Affiliation(s)
- Suk Woo Kang
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia.,Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung25451, Republic of Korea
| | - James Antoney
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia.,School of Biology and Environmental Sciences, Queensland University of Technology, Brisbane, Queensland4000, Australia.,ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, Queensland4000, Australia
| | - Rebecca L Frkic
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia.,ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia
| | - David W Lupton
- School of Chemistry, Monash University, Melbourne, Victoria3800, Australia
| | - Robert Speight
- School of Biology and Environmental Sciences, Queensland University of Technology, Brisbane, Queensland4000, Australia.,ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, Queensland4000, Australia
| | - Colin Scott
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria3168, Australia.,CSIRO Synthetic Biology Future Science Platform, GPO Box 1700, Canberra, Australian Capital Territory2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia.,ARC Centre of Excellence in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia.,ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia
| |
Collapse
|