1
|
Zhang P, Mao XA, Gong JS, Kong XL, Su C, Zhang XM, Rao ZM, Xu ZH, Shi JS. High-level extracellular expression of phospholipase D by combinatorial fine-tuning strategy in Bacillus subtilis for efficient biosynthesis of phosphatidic acid. BIORESOURCE TECHNOLOGY 2024; 414:131492. [PMID: 39343177 DOI: 10.1016/j.biortech.2024.131492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Although Bacillus subtilis shows promise as a potential microbial cell factory for phospholipase D (PLD) expression, its production capacity remains insufficient. In this study, a secretory expression system, by co-optimization the promoter and signal peptides and employing a fed-batch fermentation strategy, was constructed to enhance expression of PLD from separate sources. The highest PLD production of 4056.9 U/mL was observed using this system, with a PLD production efficiency of 52.0 U/mL/h. Finally, a phosphatidic acid (PA) biosynthesis system was established using the constructed PLD as a catalyst, which achieved a PA yield of 219.1 g/L. This is the highest PLD production and PA yield reported globally to date. The protocol has significant potential for application for industrial PLD production as well as enzymatic phospholipids modification and also provides a valuable reference for overexpressing proteins in B. subtilis.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Xin-An Mao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China.
| | - Xiao-Li Kong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China.
| | - Xiao-Mei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China.
| | - Zhi-Ming Rao
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Zheng-Hong Xu
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China.
| |
Collapse
|
2
|
Zhu X, Luo H, Yu X, Lv H, Su L, Zhang K, Wu J. Genome-Wide CRISPRi Screening of Key Genes for Recombinant Protein Expression in Bacillus Subtilis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404313. [PMID: 38952047 PMCID: PMC11434012 DOI: 10.1002/advs.202404313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Indexed: 07/03/2024]
Abstract
Bacillus subtilis is an industrially important microorganism that is often used as a microbial cell factory for the production of recombinant proteins due to its food safety, rapid growth, and powerful secretory capacity. However, the lack of data on functional genes related to recombinant protein production has hindered the further development of B. subtilis cell factories. Here, a strategy combining genome-wide CRISPRi screening and targeted CRISPRa activation to enhance recombinant protein expression is proposed. First, a CRISPRi library covering a total of 4225 coding genes (99.7%) in the B. subtilis genome and built the corresponding high-throughput screening methods is constructed. Twelve key genes for recombinant protein expression are identified, including targets without relevant functional annotations. Meanwhile, the transcription of recombinant protein genes by CRISPRa is up-regulated. These screened or selected genes can be easily applied to metabolic engineering by constructing sgRNA arrays. The relationship between differential pathways and recombinant protein expression in engineered strains by transcriptome analysis is also revealed. High-density fermentation and generalisability validation results prove the reliability of the strategy. This method can be extended to other industrial hosts to support functional gene annotation and the design of novel cell factories.
Collapse
Affiliation(s)
- Xuyang Zhu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Hui Luo
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Xinrui Yu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Huihui Lv
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Lingqia Su
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Kang Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Jing Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| |
Collapse
|
3
|
Chen JP, Zhou L, Gong JS, Wang NK, Miao FF, Su C, Gao XL, Xu GQ, Shi JS, Xu ZH. Semiautomated design and soluble expression of a chimeric antigen TbpAB01 from Glaesserella parasuis. Biotechnol Bioeng 2024; 121:2163-2174. [PMID: 38595326 DOI: 10.1002/bit.28710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Pathogenic bacterial membrane proteins (MPs) are a class of vaccine and antibiotic development targets with widespread clinical application. However, the inherent hydrophobicity of MPs poses a challenge to fold correctly in living cells. Herein, we present a comprehensive method to improve the soluble form of MP antigen by rationally designing multi-epitope chimeric antigen (ChA) and screening two classes of protein-assisting folding element. The study uses a homologous protein antigen as a functional scaffold to generate a ChA possessing four epitopes from transferrin-binding protein A of Glaesserella parasuis. Our engineered strain, which co-expresses P17 tagged-ChA and endogenous chaperones groEL-ES, yields a 0.346 g/L highly soluble ChA with the property of HPS-positive serum reaction. Moreover, the protein titer of ChA reaches 4.27 g/L with >90% soluble proportion in 5-L bioreactor, which is the highest titer reported so far. The results highlight a timely approach to design and improve the soluble expression of MP antigen in industrially viable applications.
Collapse
Affiliation(s)
- Jin-Ping Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People's Republic of China
- Institute of Future Food Technology, JITRI, Yixing, People's Republic of China
| | - Lin Zhou
- Jiangsu Nannong High-Tech Co., Ltd., Jiangyin, People's Republic of China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People's Republic of China
- Institute of Future Food Technology, JITRI, Yixing, People's Republic of China
| | - Nan-Kai Wang
- Institute of Future Food Technology, JITRI, Yixing, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Fen-Fang Miao
- Jiangsu Nannong High-Tech Co., Ltd., Jiangyin, People's Republic of China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People's Republic of China
- Institute of Future Food Technology, JITRI, Yixing, People's Republic of China
| | - Xin-Le Gao
- Jiangsu Nannong High-Tech Co., Ltd., Jiangyin, People's Republic of China
| | - Guo-Qiang Xu
- Institute of Future Food Technology, JITRI, Yixing, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People's Republic of China
- Institute of Future Food Technology, JITRI, Yixing, People's Republic of China
| | - Zheng-Hong Xu
- Institute of Future Food Technology, JITRI, Yixing, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
- College of Biomass Science and Engineering, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
4
|
Hu M, Liu J, Gan Y, Zhu H, Han R, Liu K, Liu Y, Zhao M, Li X, Xue Z. N-terminal truncated phospholipase A1 accessory protein PlaS from Serratia marcescens alleviates inhibitory on host cell growth and enhances PlaA1 enzymatic activity. BIORESOUR BIOPROCESS 2024; 11:61. [PMID: 38916814 PMCID: PMC11199421 DOI: 10.1186/s40643-024-00777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
Phospholipase A1 (PLA1) is a kind of specific phospholipid hydrolase widely used in food, medical, textile. However, limitations in its expression and enzymatic activity have prompted the investigation of the phospholipase-assisting protein PlaS. In this study, we elucidate the role of PlaS in enhancing the expression and activity of PlaA1 through N-terminal truncation. Our research demonstrates that truncating the N-terminal region of PlaS effectively overcomes its inhibitory effect on host cells, resulting in improved cell growth and increased protein solubility of the protein. The yeast two-hybrid assay confirms the interaction between PlaA1 and N-terminal truncated PlaS (∆N27 PlaS), highlighting their binding capabilities. Furthermore, in vitro studies using Biacore analysis reveal a concentration-dependent and specific binding between PlaA1 and ∆N27 PlaS, exhibiting high affinity. Molecular docking analysis provides insights into the hydrogen bond interactions between ∆N27 PlaS and PlaA1, identifying key amino acid residues crucial for their binding. Finally, the enzyme activity of PLA1 was boost to 8.4 U/mL by orthogonal test. Study significantly contributes to the understanding of the interaction mechanism between PlaS and PlaA1, offering potential strategies for enhancing PlaA1 activity through protein engineering approaches.
Collapse
Affiliation(s)
- Mengkai Hu
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Jun Liu
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Yufei Gan
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Hao Zhu
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Rumeng Han
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Kun Liu
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Yan Liu
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Ming Zhao
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Xiangfei Li
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China.
| | - Zhenglian Xue
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China.
| |
Collapse
|
5
|
Zhou Q, Huang D, Yang H, Hong Z, Wang C. Improvement of Carotenoids' Production by Increasing the Activity of Beta-Carotene Ketolase with Different Strategies. Microorganisms 2024; 12:377. [PMID: 38399781 PMCID: PMC10891602 DOI: 10.3390/microorganisms12020377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Canthaxanthin is an important antioxidant with wide application prospects, and β-carotene ketolase is the key enzyme involved in the biosynthesis of canthaxanthin. However, the challenge for the soluble expression of β-carotene ketolase is that it hinders the large-scale production of carotenoids such as canthaxanthin and astaxanthin. Hence, this study employed several strategies aiming to improve the soluble expression of β-carotene ketolase and its activity, including selecting optimal expression vectors, screening induction temperatures, adding soluble expression tags, and adding a molecular chaperone. Results showed that all these strategies can improve the soluble expression and activity of β-carotene ketolase in Escherichia coli. In particular, the production of soluble β-carotene ketolase was increased 8 times, with a commercial molecular chaperon of pG-KJE8, leading to a 1.16-fold enhancement in the canthaxanthin production from β-carotene. Interestingly, pG-KJE8 could also enhance the soluble expression of β-carotene ketolase derived from eukaryotic microalgae. Further research showed that the production of canthaxanthin and echinenone was significantly improved by as many as 30.77 times when the pG-KJE8 was added, indicating the molecular chaperone performed differently among different β-carotene ketolase. This study not only laid a foundation for further research on the improvement of β-carotene ketolase activity but also provided new ideas for the improvement of carotenoid production.
Collapse
Affiliation(s)
- Qiaomian Zhou
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.Z.); (D.H.)
| | - Danqiong Huang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.Z.); (D.H.)
- Shenzhen Engineering Laboratory for Marine Algal Biological Development and Application, Shenzhen 518060, China
| | - Haihong Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.Z.); (D.H.)
| | - Zeyu Hong
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.Z.); (D.H.)
| | - Chaogang Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.Z.); (D.H.)
- Shenzhen Engineering Laboratory for Marine Algal Biological Development and Application, Shenzhen 518060, China
| |
Collapse
|
6
|
Li F, Chen Q, Deng H, Ye S, Chen R, Keasling JD, Luo X. One-pot selective biosynthesis of Tyrian purple in Escherichia coli. Metab Eng 2024; 81:100-109. [PMID: 38000548 DOI: 10.1016/j.ymben.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Tyrian purple (6,6'-Dibromoindigo) is an ancient precious dye, which possesses remarkable properties as a biocompatible semiconductor material. Recently, biosynthesis has emerged as an alternative for the sustainable production of Tyrian purple from a natural substrate. However, the selectivity issue in enzymatic tryptophan (Trp) and bromotryptophan (6-Br-Trp) degradation was an obstacle for obtaining high-purity Tyrian purple in a single cell biosynthesis. In this study, we present a simplified one-pot process for the production of Tyrian purple from Trp in Escherichia coli (E. coli) using Trp 6-halogenase from Streptomyces toxytricini (SttH), tryptophanase from E. coli (TnaA) and a two-component indole oxygenase from Providencia Rettgeri GS-2 (GS-C and GS-D). To enhance the in vivo solubility and activity of SttH and flavin reductase (Fre) fusion enzyme (Fre-L3-SttH), a chaperone system of GroEL/GroES (pGro7) was introduced in addition to the implementation of a set of optimization strategies, including fine-tuning the expression vector, medium, concentration of bromide salt and inducer. To overcome the selectivity issue and achieve a higher conversion yield of Tyrian purple with minimal indigo formation, we applied the λpL/pR-cI857 thermoinducible system to temporally control the bifunctional fusion enzyme of TnaA and monooxygenase GS-C (TnaA-L3-GS-C). Through optimization of the fermentation process, we were able to achieve a Tyrian purple titer of 44.5 mg L-1 with minimal indigo byproduct from 500 μM Trp. To the best of our knowledge, this is the first report of the selective production of Tyrian purple in E. colivia a one-pot process.
Collapse
Affiliation(s)
- Feifei Li
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; School of Life Sciences, Inner Mongolia University, Hohhot, 150100, China
| | - Que Chen
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Huaxiang Deng
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shumei Ye
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; School of Life Sciences, Inner Mongolia University, Hohhot, 150100, China; Basic Medical College, Inner Mongolia Medical University, Hohhot, 150100, China
| | - Ruidong Chen
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jay D Keasling
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; QB3 Institute, University of California, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, 94720, USA; The Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, Kemitorvet, Building 220, Kongens Lyngby, 2800, Denmark
| | - Xiaozhou Luo
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; School of Life Sciences, Inner Mongolia University, Hohhot, 150100, China.
| |
Collapse
|