1
|
Fu J, Nguyen K. Reduction of Promiscuous Peptides-Enzyme Inhibition and Aggregation by Negatively Charged Biopolymers. ACS APPLIED BIO MATERIALS 2022; 5:1839-1845. [PMID: 34995072 DOI: 10.1021/acsabm.1c01128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, peptides selected from a microarray were found to inhibit β-gal with promiscuous mechanisms. Peptides inhibited the enzyme in a noncompetitive kinetics, and the inhibition of enzyme activities was reduced under high enzyme concentrations and the addition of detergent. Dynamic light scattering and atomic force microscope revealed that peptide/enzyme aggregation was related to inhibited enzyme activities. Positively charged residues of arginine and lysine were critical for the enzyme inhibition. The preincubation of peptide inhibitors with negatively charged biopolymers of polyphosphates, ssDNA, and low pI peptides could increase the residual activity of peptide-inhibited enzyme, possibly due to the disruption of the electrostatic interaction between positively charged peptide residues and the β-gal surface. Further, negative biopolymers were able to recover the activity of the aggregated peptide/β-gal complex. Negatively charged biopolymers could be used in high-throughput screening assays to reduce peptides/protein aggregation and thereby minimize promiscuous inhibitions.
Collapse
Affiliation(s)
- Jinglin Fu
- Department of Chemistry, Rutgers University-Camden, Camden, New Jersey 08102, United States.,Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, New Jersey 08103, United States
| | - Kaitlyn Nguyen
- Department of Chemistry, Rutgers University-Camden, Camden, New Jersey 08102, United States
| |
Collapse
|
2
|
Manandhar A, Chakraborty K, Tang PK, Kang M, Zhang P, Cui H, Loverde SM. Rational Coarse-Grained Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes. J Phys Chem B 2019; 123:10582-10593. [DOI: 10.1021/acs.jpcb.9b07417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Anjela Manandhar
- Department of Chemistry, College of Staten Island, City University of New York, New York 10314, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York 10016, United States
| | - Kaushik Chakraborty
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York 10016, United States
| | - Phu K. Tang
- Department of Chemistry, College of Staten Island, City University of New York, New York 10314, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York 10016, United States
| | - Myungshim Kang
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York 10016, United States
| | - Pengcheng Zhang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Sharon M. Loverde
- Department of Chemistry, College of Staten Island, City University of New York, New York 10314, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York 10016, United States
| |
Collapse
|
3
|
Fu J, Larini L, Cooper AJ, Whittaker JW, Ahmed A, Dong J, Lee M, Zhang T. Computational and experimental analysis of short peptide motifs for enzyme inhibition. PLoS One 2017; 12:e0182847. [PMID: 28809952 PMCID: PMC5557489 DOI: 10.1371/journal.pone.0182847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/25/2017] [Indexed: 11/18/2022] Open
Abstract
The metabolism of living systems involves many enzymes that play key roles as catalysts and are essential to biological function. Searching ligands with the ability to modulate enzyme activities is central to diagnosis and therapeutics. Peptides represent a promising class of potential enzyme modulators due to the large chemical diversity, and well-established methods for library synthesis. Peptides and their derivatives are found to play critical roles in modulating enzymes and mediating cellular uptakes, which are increasingly valuable in therapeutics. We present a methodology that uses molecular dynamics (MD) and point-variant screening to identify short peptide motifs that are critical for inhibiting β-galactosidase (β-Gal). MD was used to simulate the conformations of peptides and to suggest short motifs that were most populated in simulated conformations. The function of the simulated motifs was further validated by the experimental point-variant screening as critical segments for inhibiting the enzyme. Based on the validated motifs, we eventually identified a 7-mer short peptide for inhibiting an enzyme with low μM IC50. The advantage of our methodology is the relatively simplified simulation that is informative enough to identify the critical sequence of a peptide inhibitor, with a precision comparable to truncation and alanine scanning experiments. Our combined experimental and computational approach does not rely on a detailed understanding of mechanistic and structural details. The MD simulation suggests the populated motifs that are consistent with the results of the experimental alanine and truncation scanning. This approach appears to be applicable to both natural and artificial peptides. With more discovered short motifs in the future, they could be exploited for modulating biocatalysis, and developing new medicine.
Collapse
Affiliation(s)
- Jinglin Fu
- Department of Chemistry, Rutgers University-Camden, Camden, New Jersey, United States of America
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, New Jersey, United States of America
- * E-mail: (JF); (LL)
| | - Luca Larini
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, New Jersey, United States of America
- Department of Physics, Rutgers University-Camden, Camden, New Jersey, United States of America
- * E-mail: (JF); (LL)
| | - Anthony J. Cooper
- Department of Physics, Rutgers University-Camden, Camden, New Jersey, United States of America
| | - John W. Whittaker
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, New Jersey, United States of America
- Department of Physics, Rutgers University-Camden, Camden, New Jersey, United States of America
| | - Azka Ahmed
- Department of Physics, Rutgers University-Camden, Camden, New Jersey, United States of America
| | - Junhao Dong
- Department of Physics, Rutgers University-Camden, Camden, New Jersey, United States of America
| | - Minyoung Lee
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, New Jersey, United States of America
- Department of Physics, Rutgers University-Camden, Camden, New Jersey, United States of America
| | - Ting Zhang
- Department of Chemistry, Rutgers University-Camden, Camden, New Jersey, United States of America
| |
Collapse
|
4
|
Microarray Selection of Cooperative Peptides for Modulating Enzyme Activities. MICROARRAYS 2017; 6:microarrays6020008. [PMID: 28445435 PMCID: PMC5487955 DOI: 10.3390/microarrays6020008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 11/23/2022]
Abstract
Recently, peptide microarrays have been used to distinguish proteins, antibodies, viruses, and bacteria based on their binding to random sequence peptides. We reported on the use of peptide arrays to identify enzyme modulators that involve screening an array of 10,000 defined and addressable peptides on a microarray. Primary peptides were first selected to inhibit the enzyme at low μM concentrations. Then, new peptides were found to only bind strongly with the enzyme–inhibitor complex, but not the native enzyme. These new peptides served as secondary inhibitors that enhanced the inhibition of the enzyme together with the primary peptides. Without the primary peptides, the secondary effect peptides had little effect on the enzyme activity. Conversely, we also selected peptides that recovered the activities of inhibited enzyme–peptide complex. The selection of cooperative peptide pairs will provide a versatile toolkit for modulating enzyme functions, which may potentially be applied to drug discovery and biocatalysis.
Collapse
|
5
|
Xiaoyan Z, Yuanyuan J, Zaijun L, Zhiguo G, Guangli W. Improved activity and thermo-stability of the horse radish peroxidase with graphene quantum dots and its application in fluorometric detection of hydrogen peroxide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 165:106-113. [PMID: 27116472 DOI: 10.1016/j.saa.2016.03.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 03/19/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
Graphene quantum dots (GQDs) have received extensive concern in many fields such as optical probe, bioimaging and biosensor. However, few reports refer on the influence of GQDs on enzyme performance. The paper reports two kinds of graphene quantum dots (termed as GO-GQDs and N,S-GQDs) that were prepared by cutting of graphene oxide and pyrolysis of citric acid and l-cysteine, and their use for the horse radish peroxidase (HRP) modification. The study reveals that GO-GQDs and N,S-GQDs exhibit an opposite effect on the HRP performance. Only HRP modified with GO-GQDs offers an enhanced activity (more than 1.9 times of pristine enzyme) and thermo-stability. This is because GO-GQDs offer a larger conjugate rigid plane and fewer hydrophilic groups compared to N,S-GQDs. The characteristics can make GO-GQDs induce a proper conformational change in the HRP for the catalytic performance, improving the enzyme activity and thermo-stability. The HRP modified with green luminescent GO-GQDs was also employed as a biocatalyst for sensing of H2O2 by a fluorometric sensor. The colorless tetramethylbenzidine (TMB) is oxidized into blue oxidized TMB in the presence of H2O2 by the assistance of HRP/GO-GQDs, leading to an obvious fluorescence quenching. The fluorescence intensity linearly decreases with the increase of H2O2 concentration in the range from 2×10-9 to 2×10-4M with the detection limit of 6.8×10-10M. The analytical method provides the advantage of sensitivity, stability and accuracy compared with present H2O2 sensors based on the pristine HRP. It has been successfully applied in the determination of H2O2 in real water samples. The study also opens a new avenue for modification of enzyme activity and stability that offers great promise in applications such as biological catalysis, biosensing and enzyme engineering.
Collapse
Affiliation(s)
- Zhou Xiaoyan
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiang Yuanyuan
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Li Zaijun
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, Wuxi 214122, China.
| | - Gu Zhiguo
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Wang Guangli
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Roskar I, Molek P, Vodnik M, Stempelj M, Strukelj B, Lunder M. Peptide modulators of alpha-glucosidase. J Diabetes Investig 2015; 6:625-31. [PMID: 26543535 PMCID: PMC4627538 DOI: 10.1111/jdi.12358] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 03/26/2015] [Accepted: 04/27/2015] [Indexed: 01/23/2023] Open
Abstract
AIMS/INTRODUCTION Acute glucose fluctuations during the postprandial period pose great risk for cardiovascular complications and thus represent an important therapeutic approach in type 2 diabetes. In the present study, screening of peptide libraries was used to select peptides with an affinity towards mammalian intestinal alpha-glucosidase as potential leads in antidiabetic agent development. MATERIALS AND METHODS Three phage-displayed peptide libraries were used in independent selections with different elution strategies to isolate target-binding peptides. Selected peptides displayed on phage were tested to compete for an enzyme-binding site with known competitive inhibitors, acarbose and voglibose. The four best performing peptides were synthesized. Their binding to the mammalian alpha-glucosidase and their effect on enzyme activity were evaluated. RESULTS Two linear and two cyclic heptapeptides with high affinity towards intestinal alpha-glucosidase were selected. Phage-displayed as well as synthetic peptides bind into or to the vicinity of the active site on the enzyme. Both cyclic peptides inhibited enzyme activity, whereas both linear peptides increased enzyme activity. CONCLUSIONS Although natural substrates of glycosidase are polysaccharides, in the present study we successfully isolated novel peptide modulators of alpha-glucosidase. Modulatory activity of selected peptides could be further optimized through peptidomimetic design. They represent promising leads for development of efficient alpha-glucosidase inhibitors.
Collapse
Affiliation(s)
- Irena Roskar
- Entrapharm d.o.o., University of Ljubljana Ljubljana, Slovenia
| | - Peter Molek
- Chair of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana Ljubljana, Slovenia
| | - Miha Vodnik
- Chair of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana Ljubljana, Slovenia
| | - Mateja Stempelj
- Entrapharm d.o.o., University of Ljubljana Ljubljana, Slovenia
| | - Borut Strukelj
- Chair of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana Ljubljana, Slovenia
| | - Mojca Lunder
- Chair of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana Ljubljana, Slovenia
| |
Collapse
|
7
|
Städler B, Falconnet D, Pfeiffer I, Höök F, Vörös J. Micropatterning of DNA-tagged vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:11348-11354. [PMID: 15595756 DOI: 10.1021/la0482305] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present a novel concept for the creation of lipid vesicle microarrays based on a patterning approach termed Molecular Assembly Patterning by Lift-off (MAPL). A homogeneous MAPL-based single-stranded DNA microarray was converted into a vesicle array by the use of vesicles tagged with complementary DNAs, permitting sequence-specific coupling of vesicles to predefined surface regions through complementary DNA hybridization. In the multistep process utilized to fulfill this achievement, active spots consisting of PLL-g-PEGbiotin with a resistant PLL-g-PEG background, as provided by the MAPL process, was converted into a DNA array by addition of complexes of biotin-terminated DNA and NeutrAvidin. This was then followed by addition of POPC vesicles tagged with complementary cholesterol-terminated DNA, thus providing specific coupling of vesicles to the surface through complementary DNA hybridization. Quartz crystal microbalance with dissipation (QCM-D) and optical waveguide lightmode spectroscopy monitoring were used to optimize the multistep surface modification process. It was found that the amount of adsorbed biotinDNA-NeutrAvidin complexes decreases with increasing molar ratio of biotinDNA to NeutrAvidin and decreasing ionic strength of the buffer solution. Modeling of the QCM-D data showed that the shape of the immobilized vesicles depends on the amount of available anchoring groups between the vesicles and the surface. Fluorescent microscopy images confirmed the possibility to create well-defined patterns of DNA-tagged, fluorescently labeled vesicles in the micrometer range.
Collapse
Affiliation(s)
- Brigitte Städler
- BioInterfaceGroup, Laboratory for Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH) Zurich, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
8
|
Horswill AR, Savinov SN, Benkovic SJ. A systematic method for identifying small-molecule modulators of protein-protein interactions. Proc Natl Acad Sci U S A 2004; 101:15591-6. [PMID: 15498867 PMCID: PMC524857 DOI: 10.1073/pnas.0406999101] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Discovering small-molecule modulators of protein-protein interactions is a challenging task because of both the generally noncontiguous, large protein surfaces that form these interfaces and the shortage of high-throughput approaches capable of identifying such rare inhibitors. We describe here a robust and flexible methodology that couples disruption of protein-protein complexes to host cell survival. The feasibility of this approach was demonstrated through monitoring a small-molecule-mediated protein-protein association (FKBP12-rapamycin-FRAP) and two cases of dissociation (homodimeric HIV-1 protease and heterodimeric ribonucleotide reductase). For ribonucleotide reductase, we identified cyclic peptide inhibitors from genetically encoded libraries that dissociated the enzyme subunits. A solid-phase synthetic strategy and peptide ELISAs were developed to characterize these inhibitors, resulting in the discovery of cyclic peptides that operate in an unprecedented manner, thus highlighting the strengths of a functional approach. The ability of this method to process large libraries, coupled with the benefits of a genetic selection, allowed us to identify rare, uniquely active small-molecule modulators of protein-protein interactions at a frequency of less than one in 10 million.
Collapse
Affiliation(s)
- Alexander R Horswill
- Department of Chemistry, Pennsylvania State University, 414 Wartik Laboratory, University Park, PA 16802, USA
| | | | | |
Collapse
|